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CHAPTER 1

Banach Spaces and Linear Operators

1. Banach Spaces

Definition 1.1 (Norm). Let X be a vector space. A norm on X is a function || - || : X — R
satisfying

e ||z|| > 0 with equality if and only if x = 0.

o [laz| = |af].

o llz+yll <l +lyll for all 2,y € X.

We call the pair (X, || - ||) a normed vector space.

Theorem 1.2 (Reverse triangle inequality). Let X be a normed vector space. For any xz,y € X,

we have

Mzl =Nyl < flz = wll

Definition 1.3 (Complete space). Let X be a normed vector space. Then X is complete if every

Cauchy sequence in X converges to some = € X.
Definition 1.4 (Banach space). A Banach space is a complete normed vector space.

Proposition 1.5 (Convergence). Let (V,|| - ||) be a normed vector space. A sequence () in V

converges to x € V if given € > 0, there exists N such that |z — z,|| < € whenever n < N.
Lemma 1.6. If z, — z, then ||z, || — ||z|| € R.

PrOOF. [[lz]l = [J2| < [l — wal] = 0. D
Proposition 1.7. Every convergent sequence is Cauchy.
Definition 1.8 (Banach space). A complete, normed, vector space is called a Banach space
Proposition 1.9. (K,|-|) is complete.
Proposition 1.10. (¢, - ||,) is a Banach space for all 1 < p < oo

PROOF. A general proof outline follows.

e Use completeness of R to find a candidate for the limit.

e Show this limit function is in V.
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e Show that z,, = 2 in V.
(n)

Let 2(™ be a Cauchy sequence in 7. Since |x§n) - xgn)| < &t — 2™, we know that z; s a
(n)

J
We now show that > 72, |2;[? < co. We have O

Cauchy sequence in K. Hence, lim,_,., x; ' := x; exists, and is our limit candidate.

Proposition 1.11. (¢([a,b]), || - ||s) is @ Banach space
Proposition 1.12. If 1 < p < oo, then ({([a,b]),]| - ||p) is not a Banach space.

PRroOOF. Consider a sequence of functions that is equal to one on [0, %], Zero on [% + %, 1], and

linear between. This is a Cauchy sequence that does not converge to a continuous function. O
We've seen that (¢([a,D]), || - ||,) is not complete for 1 < p < 0.

Theorem 1.13 (Completion). Let (V,||-||) be a normed vector space over K. There exists a Banach
space (V1, || - 1l1) such that (V,|| - ) is isometrically isomorphic to a dense subspace of (Vi,|| - |l1)-

Furthermore, the space (V1,] - ||1) is unique up to isometric isomorphisms.

PROOF. Rather straightforward - construct Cauchy sequences, append limits, quotient out (as

different sequences may converge to the same limit). O
Definition 1.14. (V1,] - ||1) is called the completion of (V.| -||).

Definition 1.15 (Dense). If X is a topological space and Y C X, then Y is dense in X if the
closure of Y in X equals X, that is, Y = X.
Alternatively, for each x € X, there exists (y,) in Y such that y,, — .

Definition 1.16 (Isomorphism of vector spaces). Two normed vector spaces (X, || - || X) and (Y, || -

||lY) are isometrically isomorphic if there is a vector space isomorphism ¥ : X — Y such that
[T(@)[ly = [zllx VzeX

Example 1.17. Let ¢y = {(x;) |#{i,z; # 0} < oo}. The completion of o, || - ||, is (&7, | - ||p)

because,

e /y is a subspace of /P,

e It is dense, since we can easily construct a sequence in ¢, converging to arbitrary x € ¢P.

Example 1.18 ( LP spaces). Let pu be the Lebesgue measure on R. Let

b
LP([a,b]) = {measurable f : [a,b] — K| / [fIPdp < oo}

1/p
Let [|fll, = (ff|f|p du) . Since ||f]l, = 0 <= f = Oa.e, we quotient out by the rule
f=g < f—g=0a.e., and then our space of equivalence classes forms a normed vector space,
denoted LP([a, b]).
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Theorem 1.19 (Riesz-Fischer). (LP([a,b]), ] - |l,) is the completion of (Cla,b],]| - |lp), and is a

Banach space.
PROOF. Properties of the Lebesgue integral. O

Remark.

e Let X be any compact topological space, let C(X) = {f : X — K| f is continuous}, and
let || flloo = sup,ex ||f(x)]. Then C(X, | - ||o) is Banach.

e Let X be any topological space. Then the set of all continuous and bounded functions
with the supremum norm forms a Banach space.

e Let (S, A, 1) be a measure space. Then we can define the £P and LP analogously, and

they are also Banach.

2. Linear Operators

Definition 2.1 (Linear operators on normed vector spaces). Let X,Y be vector spaces over K. A

linear operator is a function T': X — Y such that
T(x+y)=T(x)+T(y)
T(azx) = oaT(x)
for all z,vy, .
We write Hom(X,Y) ={T: X — Y |T is linear}
Definition 2.2. T : X — Y is continuous at z € X if for all € > 0, there exists § > 0 such that
o —yllx <d= [Tz —Tyll, <e

Definition 2.3.
L(X,Y)={T:X — Y |T is linear and continuous}

Remark. If dim(X) < oo then Hom(X,Y) = £(X,Y). This is not true if X has infinite dimension.

Definition 2.4 (Bounded linear operator). Let T : X — Y be linear, then T is bounded if T
maps bounded sets in X to bounded sets in Y. That is: for each M > 0 there exists M’ > 0 such
that

lzllx < M = |Tz|ly <M

Consider the space £(X,Y), the set of all linear and continuous maps between two normed

vector spaces X and Y.

Theorem 2.5 (Fundamental theorem of linear operators). Let (X, |- ||x) and Y, | - |y be normed
vector spaces. Let T € Hom(X,Y), the set of all linear maps from X toY. Then the following are

all equivalent.



2. LINEAR OPERATORS 7

1) T is uniformly continuous
2) T is continuous
3) T is continuous at 0

4) T is bounded
5) There exists a constant ¢ > 0 such that

ITz|ly <c|z|]lx VreX

PROOF. 1) = 2) = 3) is clear.
3) = 4). Since T is continuous at 0, given e = 1 > 0, there exists ¢ such that

|Tx —TO0|| <1 whenever || X —0| <,

i.e. that ||z <& = |Tz| < 1. Let y € X. The ||2%|| < 4, and so ||T (%) || << 1. Hence,

Myl
0
Tl Tyl <1
[yl
and so Il
Yy
Tyl < =2=
Iyl < %

for all y € X. Thus, for all ||y|| < M, we have ||Ty| < M’, where M’ = & "and so T is bounded.
4) = 5). If T is bonded, given M = 1 > 0, there exists ¢ > 0 such that ||z|| < 1= ||Tz| <.

Then
X
I () I <e
El

Hence, ||Tz|| < c|lz||.
5) = 1). If 5) holds, then

[Tz — Tyl = |T(x — y)|| < cllz—yll.
So if € is given, taking § = £, we have
|72 = Ty| < clle = yl| < > = O

Corollary. If T € Hom(X,Y), then T continuous <= T bounded <= ||Tz| < c|z| for all
rzcX.

Definition 2.6 (Operator norm). The operator norm of T' € L(z,y), ||T|| is defined by any one
of the following equivalent expressions.

(&) [T = inf{e > O[Tz < cfjx[]}-

(b) 17| = sup, 4o L5k

()

(d) 17| = supjzy=1 Tz

|T|| = supyzy<1 [T ]]-

Proposition 2.7. The operator norm is a norm on L(x,y).
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PRrOOF. The following are simple to verify.
(a) ||T|| > 0, with equality if and only if T = 0.
(b) llaT|l = |l T]-
(©) IS+T < IS+ (17

Example 2.8 (Calculating || T||). To calculate ||T'||, try the following.

1) Make sensible calculations to find ¢ such that
1Tz < cll]

for all z € X.
2) Find z € X such that [|Tz|| = ¢||z||.

Remark. Ignore 12, Q3(b), Q8 on the practice sheet, as we will be ignoring Hilbert space theory

for the time being.

Definition 2.9 (Algebraic dual). Let (X, | - ||) be a normed vector space over K. The algebraic
dual of X is
X* =Hom(X,K) = {p: X — K| is linear}.

Elements of X™* are called linear functionals.
Definition 2.10 (Continuous dual (just dual)). The continuous dual (just dual) of X is

X' =L(X,K)={p: X = K|y is linear and continuous}.
Remark. X* D X' if dim(X) = oc.
Example 2.11. Let (p([a,b]),] - |lco) be the normed vector space of polynomials p : [a,b] — K.

(a) The functional D : p([0,1
(b) The functional I : p([0,1]

]) = K given by D(p) = p/(1) is linear, but not continuous.
) — K given by I(p) = fol p(t) dt is linear and continuous.

PROOF. (a) Linearity is clear. The p,(¢t) = t" for all ¢ € [0,1]. Then |D(p,)| = nl|pnllc. SO

D is not continuous, as continuity implies that there exists ¢ such that
[Tz < cll].-

(b) Exercise: Show ||I|| = 1.
]

Describing the continuous dual space X’ is one of the first things to do when trying to under-

stand a normed vector space. It is generally pretty difficult to describe X’.

Proposition 2.12 (Dual of the ¢# space for (1 < p < 00)). Let 1 < p < co. Let q be the “dual” of
p, defined by % + % = 1. Then (¢P) is isometrically isomorphic to ¢9.
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Remark (Observation before proof). Let 1 < p < co. Let e; = (0,0,...,1,0,...) where 1 is in the
i-th place.

1) If x = (x;) € P, then
Xr = Zwiei
=1

in the sense that the partial sums converge to x.

2) If ¢ : ¢ — K is linear and continuous, then
o0
o(z) = zip(es)
i=1
PROOF OF OBSERVATIONS. Let S, = Y | x;e;. Then

2 = SullZ = 10,0, ., 1, Tnya, .- )2

oo

2 el

1=n+1

— 0 as it is the tail of a convergent sum.
Write ¢(z) as
w(x) =p( lim S,) (continuity)

n—oo
= lim ((S5))
n
= 11_}111 (2 <Z$i€i>
i=1

= nh_)rr;O;xiap(ei) (linearity)

= Z%“P(ei) U
i=1

PROOF. Define a map 6 by
6: 01— (£P)
Y= Py
where ¢, (z) = x;y; for all z € (7.

(1) ¢, is linear, as ¢, (z + 2') = ¢y (x) + @, (z’) (valid as sums converge absolutely.)

(2) ¢, is continuous, as

oy (@) = 1Y wiyal <Y Jwiyl < lellyllylly
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by Holder’s inequality. From the fundamental theorem of linear operators, as |p,(z)] <

llzllpllyllg, we have that ¢, is continuous, and that

leyll < llyllq (%)

(3) 0 is linear.
(4) 0 is injective, as
0y) =0(y) = @y = vy = @y(z) = @y (z) Vo el
= pyle;) =py(e;) VieN=y, =y, VieN=y=y
(5) 0 is surjective. Let ¢ € (¢P). Let y = (¢(e1),...,0(en)s---) = (Y1,---,Yn,-..). We now show
y € (1.
Let (™ € (2 be defined by

lyil?

(n) _ Yi
0 otherwise

ifi <mandy; #0

Then - N
pa™) =3 aMp(e) = > [yl (1)
=1

i=1
by Observation 2) above.
On the other hand, we know

lp(@™) < ez,
oo 1/p
= lle| (Z |x§”>|p>
=1
n 1/p
_ ol (z |yz-|<q-l>p)
=1

n 1/p
= ol <Z Iyilq> as1/p+1/q=1. (%)
i=1

Now, using (f) and (%), we have

n mn 1/p
S Il < el (z w)
=1 =1

and so we must have
lyllq < el (o %)

and so y € (9.
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We also have, by (%),
1Yllq < lleeyll
(6) Finally, we show that 6 is an isometry. By (*) and (x x ), we have
10 = lleyll = llyllq

as required. O

How big is X’? When is X’ # {0}7 Examples suggest that X’ is big with a rich structure.



CHAPTER 2

The Hahn-Banach theorem

The Hahn-Banach theorem is a cornerstone of functional analysis. It is all about extending
linear functionals defined on a subspace to linear functionals on the whole space, while preserving

certain properties of the original functional.

Definition 0.13 (Seminorm). A let X be a vector space over K. A seminorm on X is a function
p: X — R such that

(1) plz +y) <p(z)+ply) VYo,yeX

(2) p(Ax) = [Ap(x) Vze X,AeK

Theorem 0.14 (General Hahn-Banach). Let X be a vector space over K. Let p: X — R be a
seminorm on X. Let Y C X be a subspace of X. If f: Y — K is a linear functional such that

If(y) <ply) YyeY

then there is an extension f: X — K such that
° f is linear
o fy)=1fly) ey
o |f(2) < plz) VoeX
Remark. This is great.
e Y can be finite dimensional (and we know about linear functionals on finite dimensional
spaces)
e If p(z) = ||z||, then
[f@)] <z vVoeX
and so f € X’
Corollary. Let (X,| - ||) be a normed vector space over K. For each y € X, with y # 0, there is
o € X’ such that
ey) =yl and [lell =1
PrROOF. Fix y #0in X. Let Y = {Ky} = {\y|A € K}, a one-dimensional subspace.
Define f: Y — K, f(A\y) = Al|ly||. This is linear. Set p(x) = ||z||. Then

|f(Ay) = p(\y)

12
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and so by Hahn-Banach, there exists f : X — K such that
° f is linear
o f(Ay) =f(y) VAeK

o [f(@)] <] VzeX
Then we have f € X" and || f|| = 1 as required. O

1. Zorn’s Lemma

Theorem 1.1 (Axiom of Choice is equivalent to Zorn’s Lemma). See handout for proof that

AC. = Z.L.

Definition 1.2 (Partially ordered set). A partially ordered set (poset) is a set A with a relation
< such that

(1) a<aforallae A,
(2) If a < b and b < athen a = b,
(3) fa<band b<c¢ thena<c

Definition 1.3 (Totally ordered set). A totally ordered set is a poset (A4, <) such that ifa,b € A
then either a < b or b < a.

Definition 1.4 (Chain). A chain in a poset (4, <) is a totally ordered subset of A.

Definition 1.5 (Upper bound). Let (A, <) be a poset. An upper bound for B C A is an element
u € A such that b < v for all b € B.

Definition 1.6 (Maximal element). A maximal element of a poset (4, <) is an element m € A

such that m < z implies x = m, that is,
m<zT=T=m

Example 1.7. Let S be any set. Let P(S) be the power set of S (the set of all subsets of .S).
Define a < b <= a C b. Maximal element is S

Theorem 1.8 (Zorn’s Lemma). Let (A, <) be a poset. Suppose that every chain in A has an upper

bound. Then A has (at least one) mazimal element.
Example 1.9 (Application - all vector spaces have a basis).

Definition 1.10 (Linearly independent). Let X be a vector space over F. We call B C X linearly
independent if
M+ F AT, =0=> A==, =0

for all finite {x1,...,z,} C B.



1. ZORN’S LEMMA 14

Definition 1.11 (Span). We say B C X spans X if each z € X can be written as
T=MT1 4+ ATy
for some A1,..., A\, € F and {z1,...,2,} C B.

Definition 1.12 (Hamel basis). A Hamel basis is a linearly independent spanning set. Equivalently,
B C X is a Hamel basis if and only if each x € X can be written in exactly one way as a finite

linear combination of elements of B.
Theorem 1.13. FEvery vector space has a Hamel basis

PROOF. Let L = {linearly independent subsets}, with subset ordering. Let C' be a chain in L.
Let u = J, . a. Then

(1) uel,
(2) w is an upper bound for C.

acC

So Zorn’s Lemma says that L has a maximal element b.

Then b is a Hamel basis.

e b is linearly independent.
e If Span(b) # X, there exists X € X\Span(b), and b’ = b|{J{z} € L is linearly indepen-

dent, contradicting maximality of b.

]
Remark. If X, | - ||) is Banach, every Hamel basis is uncountable.

Theorem 1.14 (Hahn-Banach theorem over R). Let X be a real linear space and let p(x) be a
seminorm on X . Let M be a real linear subspace of X and fo a real-valued linear functional defined
on M. Let fo satisfy fo(x) < p(z) on M. Then there exists a real valued linear functional F' defined
on X such that

(i) F is an extension of fo, that is, F(x) = fo(x) for all x € M, and

(i) F(z) <p(x) on X.

PrOOF. We first show that f; can be extended if M has codimension one. Let xg € X\ M and
assume that span(M U {zo}) = X. As z9 ¢ M be can write z € X uniquely in the form

r=m -+ axg

for a € R. Then for every ¢ € R, the map f. € Hom(X,R) given by f.(m + az) = fo(m) + ca is
well defined, and f.(m) = fo(m) for all m € M. We now show that we can choose ¢ € R such that
fe(z) < p(z) for all z € X. Equivalently, we must show

fo(m) + ca < p(m + axg)
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for all m € M and a € R. By positive homogeneity of p and linearity of f we have
fo(m/a)+c<plrg+m/a) a>0
fo(=m/a) —c < p(—x9g —m/a) a <0

Hence we need to choose ¢ such that

¢ < p(xo +m) — fo(m)

¢ > —p(—xo+m) + fo(m).
This is possible if

—p(=z0 +ma) + fo(m1) < p(xo +m2) — fo(ma)
for all my, mo € M. By subadditivity of p we can verify this condition since
fo(m1 +ma) < p(mima) = p(m1 — xo +ma — z9) < p(m1 — x0) + p(ma + o)

for all mq,ms € M. Hence ¢ can be chosen as required.
Hence D(F') = X, and the theorem is proven. O

Theorem 1.15 (Hahn-Banach over C). Suppose that ¢ is a seminorm on a complex vector space
X and let M sub a subspace of X. If fo € Hom(M,C) is such that |fo(z)| < p(z) for all x € M,
then there exists an extension f € Hom(X,C) such that flyp = fo and |f(x)| < p(z) for all x € X.

PROOF. Split fy into real and imaginary parts
fo(z) = go(x) + iho(z).
By linearity of f, we have
0=ifo(x) — foliz) = igo(x) — ho(x) — go(ix) — iho(iz)
= —(90(iw) + ho(x)) + i(go(x) — ho(iz))

and so ho(x) = —go(ix). Therefore,

fo(z) = go(z) — igo(iz)
for all z € M. We now consider X as a vector space over R, Xg. Now considering My as a
subspace of Xg. GSince go € Hom(Mg,R) and go(z) < |fo(x)| < p(z) and so by the real Hahn-
Banach, there exists g € Hom(Xg, R) such that g|a;, = go and g(x) < p(z) for all x € Xr. Now set
F(z) = g(z) — ig(iz) for all x € Xg. Then by showing f(ixz) = if(x), we have that f is linear.
We now show |f(x)| < p(x). For a fixed x € X choose A € C such that Af(z) = |f(z)|. Then
since | f(z)| € R and by definition of f, we have

[f(@)] = Af(@)| = f(Ax) = g(Az) < p(Az) = [Ap(x) = p(z)



as required.

1. ZORN’S LEMMA
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CHAPTER 3

An Introduction to Hilbert Spaces

1. Hilbert Spaces
Definition 1.1 (Inner product). Let X be a vector space over K. An inner product is a function

()X xX 5K

such that

(1) (z+y,2) = (,2) + (y, 2)

(2) {(az,z) = alx, 2)

3) (z,9) = (y,2)

(4) (z,x) > 0 with equality if and only if x =0

‘We then have
(T, y+2) = (z,9) + (2,2)
and

(x,az) = alx, z)

Definition 1.2 (Inner product space). Let (X, (-,-)) be an inner product space. Defining
lz|| = v/{z,z) turns X into a normed vector space. To prove the triangle inequality, we use the

Cauchy-Swartz theorem.

Theorem 1.3 (Cauchy-Schwarz). In an inner product space (X, (-,-)), we have

[z, )l < llzllllyll Vz,y e X

PROOF.
0<{(zx—Ay,z— \y)
= (z,2) — (2, \y) — Ay, ) + (Ay, Ay)
= ||zl = Mz, y) — My, z) + [A[ly]®
= [|l2[|* = 2Re(A(y, z)) + [A[*[ly]|?

17
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Set A\ = {&Y%  Then

e
2 2
0 < ||.’£||2 _ 2Re(|<x’yz‘ )+ ‘<x»y2|
1yl Iyl
2
_ ||.13||2 _ |<x,y2|
lyl
as required. 0
Corollary.
l +yll < [lzf| + [yl
Definition 1.4 (Hilbert space). If (X, (,-)) is complete with respect to || - || then it is called a

Hilbert space.

Example 1.5. (a) (2, where (z,y) = Y2 2;7;.
Cauchy-Schwarz then says

(o) o0 o0
i=1 i=1 i=1

(b) L2([a,b]), where (f,g) = [* f(x)g(x) dx.
Cauchy-Swartz then says

b
| / H@)a@ dr < ...

Definition 1.6 (Orthogonality). Let (X, (-,-)) be inner product spaces. Then x,y € X are orthog-
onal if (z,y) = 0 where z,y # 0.

Theorem 1.7. Let z;,...,x, be pairwise orthogonal elements in (X, (-,-)). Then

n n
1Y il = Il
i=1 i=1
Theorem 1.8 (Parallelogram identity). In (X, (-,-)) we have
Iz +ylI* + o =yl = 201z + llylI*) (%)
forall z,y € X.

Remark. If (X, | - ||) is a normed vector space which satisfies parallelogram identity then X is an
inner product space with inner products defined by the polarisation equation
(lz +ylI* = = = yl?) K=R

1
{.y) = j 2 2 . SN2 2
1 (lz+yll? = llz = yl* + ille + iyl — ifz —iyl?) K=C
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2. Projections

Definition 2.1 (Projection). Let X be a vector space over K. A subset M of X is convex if for
any x,y € M, then
tr+(1—t)ye M Vtel0,1]

Theorem 2.2 (Projection). Let (H,{-,-,)) be a Hilbert space. Let M C H be closed and conver.

Let © € H. THen there exists a unique point m, € M which is closest to x, i.e.

|l — mg|| = inf ||z —m| =d
meM

ProOF. For each k > 1 choose m;, € M such that

1
fSfomM2§f+E
Each m,, exists as d is defined as the infimum over all m.

Then

lm = mul|* = [|(my, — @) — (mx — )|

= 2llmi — @[|* + 2]y — @[|* = [Imy, +my — 22|
2

A L

2
§2d2+7+2d2+ 5

4

and as my,/2 +my/2 € M, we have || — g||2 > ¢%. Then

1 1
I = m? < 23 +7)

Thus (my,) is Cauchy. So my — m, € M as H is complete and M is closed. We then have
|z —m,| =d

and so now we show that m, is unique.

Suppose that there exists m/, € M with ||x —m/|| = d. Then by the above inequality, we have
my —m)
e = |2 = 2, — a2 + 2, - al? - 4= o) <0

from above. O

Definition 2.3 (Projection operator). Let (,(-,-,)) be a Hilbert space. Let M C H be closed
and convex. Define

PM TH—H
by Pur(x) = m, from above. This is the projection of H onto M.
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Definition 2.4 (Orthogonal decomposition). If S C H, let
St ={recH|(zr,y) =0 VyeSs.
We call S+ the orthogonal component.

Theorem 2.5 (From previous lecture). If M C H, then the projection of H onto M is

Pn:H—H
T = my
where my € M is the unique element with |z — mg| = infear ||z —m]).

Lemma 2.6. Let M C H be closed subspace. Then x — Pyx € M~ for all x € H.

PROOF. Let m € M. We need to show (x — Py, m) = 0. This is clear if m = 0. Without loss

of generality, assuming m # 0, we can assume ||m|| = 1. Then write
x — Pyx =2 — (Pyx + (x — Pyyx,mym) + (& — Py, m)ym.
Let the bracketed term be m’. Then © — m/ L (x — Pyrx, m)m because
(x —m/, (x — Ppyrz,m)m) = (x — Py, m)(x —m’,m)
= C(x — Pyx — (x — Pypx, m)m,m)
= C((x — Pyz,m) — (& — Ppyz,m)||m||)
=0.

So ||x — Pyz||? = ||z —m'||? +|(x — Pyrz,m)|?. So ||z — Pyx||? > ||z — Py + [{(z — Pyrx,m)|?
by definition of Py;x. Thus,
(x — Pyz,my =0

and thus ¢ — Py € M+, O

Theorem 2.7. The following theorem is the key fundamental result. Let (H,(-,-,)) be a Hilbert
space. Let M be a closed subspace of H. Then

H=MaoM*
That is, each x € H can be written in exactly one way as r = m +m* withm € M, m* € M*.

ProoF. Existence - Let © = P,z + (v — Pyx).

Uniqueness - Let = 21 + 21, 2 = 73 + 23 with 71,29 € M, 21,25 € M+ . Then
xl—xgzmi—xf e Mt

Then

(x1 —x9,1 — ) = 0= 21 = X9.
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Thus 21 = 7. t

Corollary. Let M C H be a closed subspace. Then we have

(a) Py € LOH, H).

(b) ||Pull < 1.

(¢) ImPy = M,KER Py; = M+,
(d) P2, = Py.

(¢) Pyr =1— Py

PROOF. (c), (d), (e) exercises.

(a). Let x,y € H. Write x = z1 + 21 and y = y; + yi- with z1,y1 € M and 21 ,yi € M*.
Then

v=y= (21 +y)+ @1 +u1)
and so
Py(z+y)=z1+u0
and similarly Pys(ax) = aPyx. We also have
|| = | Parz + (z — Py)|?
= || Pya|® + |z — Pyra|f?

> [|Pas]®

and so || Py < 1. O

If y € H is fixed, then the map
py: H—K
z = (z,y)
is in H’'. Linearity is clear, and continuity is proven by Cauchy-Swartz,
oy ()] = [{z, )] < l[yllll=]-
So [leyll < llyll- Since |y (y)| = [lyl[*, we then have
leyll = llyll-
Theorem 2.8 (Riesz Representation Theorem). Let H be a Hilbert space. The map
0:H—H
Y= @y

is a conjugate linear bijection, and ||¢y| = ||yl
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PRrOOF. Conjugate linearity is clear.
Injectivity

Py = @y = py(@) =y (z) Va
SO
(ry=(zy)=0 =u-y,y—y)=0
and so y = y/.
Surjectivity Let ¢ € H'. We now find y € H with ¢ = ¢,. If ¢ = 0, take y = 0. Suppose
@ # 0. Then KER ¢ # H. But KER ¢ is a closed subspace of H. So
H = (KER ¢) @ (KER ¢)*.

Hence (KER @) # {0}. Pick z € (KER ¢)*, 2 # 0. For each x € H, the element
p(z)
p(2)

Note that ¢(z) # 0 since z ¢ KER . Then

z € KER ¢

2,2)
2,2
¢(2)
p(z 2
= (z,z — ——|l=|
(2)
and so
e
and so letting y = ﬁz(ﬁg z, we have ¢ = . 0

Example 2.9. From Hahn-Banach given y € H there exists ¢ € H’ such that

el =1

and ¢(y) = |ly||]. We can be very constructive in the Hilbert case, and let

Y
P@) = @

Example 2.10. All continuous linear functionals on L?([a,b]) are of the form

b
ﬂﬁz/f@ﬂﬂm

for some g € L?([a, b]).
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Example 2.11 (Adjoint operators). Let Hi,Hs be Hilbert spaces. Let T" € L(H1,H2). The
adjoint of T is T* € L(H2, H1) given by

(Tz,y)2 = (x, Ty
forall x € Hi,y € Ho
Exercise 2.12. Check all of the above.
Exercise 2.13. Prove T* = T where T" is the transpose.
3. Orthonormal Systems

Definition 3.1 (Orthonormal system). As subset S C H is an orthonormal system (orthonor-
mal) if

(e,€') = e Ve €8
Definition 3.2 (Complete orthonormal system or Hilbert basis). An orthonormal system S is

complete or a Hilbert basis if

span S = H
Remark. By Gram-Schmidt and Zorn’s Lemma, every Hilbert space has a complete orthonormal
system.
Example 3.3. (1) ¢2. Then

S=A{eli>1}
is orthonormal and is complete.
(2) L2([0,27]). Then .
S = {%e”’tm €7}
is orthonormal and is complete. Completeness follows from Stone-Weierstrass theorem.
(3) L&([0,27]). Then

S=A{ ! ! cos nt ! sinnt|n > 1}
=17 , —=si
Vo T e

is orthonormal and is complete, again by Stone-Weierstrass.

We want to look at series ) ., which is tricky if S is not countable.

e€S

Lemma 3.4. If {e; |k > 0} is orthonormal, then

converges in H if and only if
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converges in K.

If either series converges, then

2 o
=D lail?
k=0

00
E ar€r
k=0

Note. If z,, — z,y, — vy, then
(T, yn) = (z,y)

Proor. If ZZOZO axey, converges to x, then
n n
(z,2) = T}g&)(Z ager, Z arey)
k=0 k=0

n
= lim Z|ak|2
n—oo
k=0

Conversely, if Y7 |ax|? converges, then writing z, = > _ axey, we have
m
1Y axel?
k=n-+1

m

Z larer||* by Pythagoras
k=n+1

m

Z |ak|2 —0

k=n+1

|l Zm — xn”Q

and so (z,,) is Cauchy, and hence converges by completeness of H.

Lemma 3.5. Let {e1,...,en} be orthonormal. Then
> e P < le)®
k=1

for each x € H.

PROOF. Let y =Y 1_, (x,ex) ex. Let 2 =2 —y. We claim that z L y. We have

(z,y) =(r —y,y)
(z,y) — |yl

S Twen) (eoew) = 3 | (@, en) P

k=1 k=1
0.

n
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So

l[1* = lly + 2|

= |ly||* + ||z||* Pythagoras

n
>yl = [ e I
k=1

We want to write expressions like )~ ¢ (7, ¢€) e.

Corollary. Let x € H and S orthonormal. Then
{ee S| (z,e) #0}
is countable.

PRrROOF.

fee 8| (re) 0t = JleeSI{nel>

k>1
From the lemma,

1
#ie € S||{we)| > £} < k|27
For if this number were greater than k?||z||?, then the LHS in Lemma is greater than 5 k%(|z[|>. O

Therefore:

Corollary (Bessel’s Inequality). If S is orthonormal, then

Yoz P < Jalf?

ecS
forallz e H

PROOF. Y ¢ |(z,€)|? is a sum of countably many positive terms, and so order is not important.
(]

We want to write ) g (7, e) e. This sum is over a countable set, but is the order important?

Theorem 3.6. Let S be orthonormal. Let M = span S. Then

Pyx = Z (x,e)e

eeS

where the sum can be taken in any order.
PRrOOF. Fix x € H. Choose an enumeration

{ex |k >0} ={ee S| (z,e) #0}.
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By Bessel’s inequality, we have

oo
D Haen) [P < Jlz)?
k=0

and so the LHS converges. By Lemma @, we know
oo
y= (x,ex)er € M
k=0

converges in H.

26

Write z = y+(z—y) = M+M~*. We claim (x—y) € M*. Then Py;z = y from characterisation

of projection operator. Let e € S. Then

n
(z—y,e) = lim <$ - ;O (z,ex) ek, 6>

= lim ((z,e) — Z (x, e) {ex, e))

n—o00
k=

= (z,e) — Z (x,ex) (eg, €) .

k=0
If e € {e/’ € §| (x,€) # 0}, then e = e; for some j, and so

(x—y,e) = (z,¢5) = (x,¢;) = 0
If (x,e) =0, then e # ¢; for all j, and so (e;,e) = 0, and so
(x —y,e)=0—-0=0.
Thus z — y € (span S)*.

Exercise 3.7. Show that
1

x —y € (span S) M+

Recall that if {z1....} is a countable orthonormal system in a Hilbert space H. Then

oo oo
Zakek <00 — Z|ak|2 < 00
k=1 k=1

and
oo oo
1Y arerl® = laxl?
k=1 k=1

We also had the following.
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Theorem 3.8. Let S be orthonormal in H. Let M = span S. Then
Py = Z(az,e}e Ve € H
ecS

where the sum has only countable many terms and convergence is unconditional.

Theorem 3.9. Let S be orthonormal in H. Then following are equivalent.

(a) S is a complete orthonormal system (span S = H ).
(b) x =73 cq{x,e)e for all x (Fourier series).
(¢) ||lz|]* =X cq | (x e) [* for all x (Parseval’s formula,).

PrOOF. (a) = (b). If M =span S = H, then

PMx:x:Z<a?,e)e

ecS

by Theorem @
(b) = (c). By the infinite Pythagoras theorem (x).
(c) = (a). Let M = span S. Suppose that z € M+. Then z =0+ 2z € M + M*. Hence

0=|Puzl® =) (zehell> = [(ze) P = |2|°

ecsS ecsS

which implies z = 0, so M = H, and so S is complete. O

Remark. Consider L?([0,27]), and let S = {e,, |n € Z}. Then we can write

F=> cuen

nez

where ¢, = (f,e.) = 7= o f(t)e " dt.
We do not claim that convergence is pointwise, what we have proven is convergence is in L2,

If— Z cnenll2 =0

In|<N
as N — oco. This is not the same as pointwise or uniform convergence (|| - ||oo)-
4. The Stone-Weierstrass Theorem

This is a useful tool to show an orthonormal system is complete. In fact, this theorem is
about uniformly approximating elements of C(X), where X is a compact Hausdorff space. it is a

generalisation of the Weierstrass approximation theorem.

Theorem 4.1 (Weierstrass approximation theorem). Let f € C([a,b]) and let € > 0 be given. Then

there exists a polynomial p(x) such that

[f(z) = p(z)] < oo Va € [a,b],
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that is, ||f — pllec < €.

Corollary. This implies the following important results:

e Continuous functions can be uniformly approzimated by polynomials.

e P([a,b]), the space of polynomials on [a,b], is dense in C([a,b]).

e P([a,b]) =C([a,b]).

We now prove Stone’s 1930’s generalisation.
First some setup: Let X be a compact Hausdorff space throughout. We then know that

C(X) is a vector space. It also has sensible vector multiplication,

(f9)(x) = f(x)g(x).

Thus C(X) is a unital, commutative, associative ring. As we have

f(Ag) = Af9)
then C(X) is a unital, commutative, associative algebra over K.

Definition 4.2 (Subalgebra). A subalgebra of C(X) is a subset A which is closed under scalar
multiplication, vector addition, and vector multiplication. A is unital if it contains the constant
function f(z) = 1.

Example 4.3. P([a,b]) is a subalgebra of C([a, b]).
When is A dense in C(X)?

Theorem 4.4 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a
subalgebra of C(X). If

(1) A is unital,

(2) f e A= f* € A, where f*(z) = f(x),

(8) A separates points of X.

Then A= C(X).

Definition 4.5. A separates points of X if, given x # y, there is a function f € A with f(z) # f(y).

Corollary. (a) P(la,b]) is dense in C([a,b]), as f(x) = x separates points.

(b) Trigonometric polynomials are dense in

{f €C((0,2a]) [ f(0) = f(2m)}-
(¢c) Trigonometric polynomials are dense in L?([0,2x]), and
S ={e,|neZ}

is complete.
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Setup
Lemma 4.6. The function f(t) = |t| can be uniformly approximated by polynomials on [—1,1]

PROOF. The binomial theorem says

(14 2)Y? = i (i)x" Ve € [—1,1]

n=0
We then have
© /1
tH=vVE =1+ -1)=)_ (Z)(t2—1)" te[-v2,V72]
n=0
Now let py(t) = suml_, (é) (t> = 1)", and
I -ew =1 3 (2)@-1r1< 3 1(2)]
n=N+1 n=N+1
and so |||t| — pnlleo — 0 as N — oo on [—1,1]. O

Theorem 4.7 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a
subalgebra of C(X). If

(1) A is unital,
(2) fe A= f* € A, where f*(z) = f(z),
(8) A separates points of X.

Then A =C(X).
PROOF. We first prove for Cr(X).

Lemma 4.8. Let A be a unital subalgebra of Cr(X) . Then
(a) [f| € A, B

(b) min(flv-- -7fn)amax(f1a"-7fn) €A

fOT' a’”f7flvafn€AQCR(X>

PrOOF. (a) Replace f by W so we can assume that || f||c = 1. From the previous lemma,
we know for each n > 1 there is a polynomial p,, : [~1,1] — R such that ||| — p,(t)| < % for
all t € [-1,1].

Since |f(z)| < ||flloc =1 for all € X, we have

1
111 = pa(HIl < —

But p,(f) is a finite linear combination of 1, f, f2, f3,... and so in in A, as A is unital. Thus

|f| € A.



4. THE STONE-WEIERSTRASS THEOREM 30

(b) Use the formulas

max(f?.g):f‘—’—g%v—g', Inln(f’g):f—i_g%‘f_mej

and induction.

O

PROOF OF STONE-WEIERSTRASS FOR Cgr(X). Let f € Cr(X) and let € > 0 be given. We need
to find g € A such that
f(z)—g(z) <€ VzeX

Step 0. We can assume that A is closed.
Exercise 4.9. Why?
Step 1. Let =,y € X be fixed.
Proposition 4.10. There exists f,, € A with
fay(@) = f(@),  fay(z) = f(y)

PrROOF. If x =y then trivial (take fz(2) = f(z)1(2)).
If © # y, since A separates points, there is h € A with h(z) # h(y). Then take

foy=ah+ble A
we can invert the coefficient matrix to find our coefficients a and b. O
Step 2. Let x € X be fixed.

Proposition 4.11. There exists f, € A such that

o fu(2) < f(z)+e

Proor. For each y € X let
Oy ={z € X| fay(z) < f(2) + €}

where f;, is the function from Step 1. These are all open sets (why?) and thus

x=Jo,

yeX
since y € O,.
By compactness of X, we have
m
X = U Oyz
i=1

Letting f, = min(fey,,. .-, fzy,). Then
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e Since fuy,(z) = f(z) for all i,

o If z € X, then z € Oy, for some ¢, and so

fz(2) < fxyz(z) < f(z) +e

as required.

Step 3.

Proposition 4.12. There exists a function g € A such that

1f(2) = g(z)] <€
forall z € X.

Proor. For each x € X, let
Us ={z € X| fa(2) > f(z) — €}
where f, is from Step 2. These sets U; are open and since x € U,, for an open cover, we can write
x=J =0,
reX j=1
Define g = max(fzy,..., fz,). ff z€ X,
e g(2) = fu,(2) for some i, which is less than f(z) + € from Step 2.

o If 2 € Uy, for some j =1,...,n, then

9(2) 2 fa;(2) > f(2) — €.

Exercise 4.13. Where did we use the Hausdorff property?

We now prove for Ce(X).
Let
Ar = {f € A| f is real valued}.
THen Ag is an R-subalgebra of Cr(X). It is unital, as 1 € A and it is real valued.
We now show Ag separates points. If x # y, there is f € A such that f(z) # f(y). Write
f = u+iv with u, v real valued. Either u(z) # u(y) or v(z) # v(y), and so Agr separates points.

Hence Ap is dense in Cg.
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Now, let f € Cc(X). Then write f = w+4v. Then u,v € Cr(X). Then given € > 0, there exists
uy,v1 € Ag such that

[l — oo <

€
Writing fi = u1 + iv; € A, we have

€
5 lo—ville <

[\

1 = filloo < lI(u =) +i(v —v1)[loo < [l = t]loo +[Jv = v1flc <€
and thus A is dense in Ce(X).

Corollary. Polynomials are dense in C([a,b]).

ProOF. A = P([a,b]) is an algebra, is unital, is closed under complex conjugation, and sepa-
rates points. Thus, A is dense in C([a, b]).

O
Definition 4.14 (Trigonometric polynomials). A trigonometric polynomail is an expression

E Cn e1nt

nez
with finitely many ¢, # 0. So these are polynomials in s = ¢ and s ! =5 =¢

—it

Corollary. The space A of all trigonometric polynomials is dense in C(II), where Il = {z € C||z| =
1}

PROOF. A is a sub-algebra of C(II), it is unital, closed under complex conjugation,

E cneint

— C,nelnt
nez

neZ

and separates points. T is a compact Hausdorff space, and thus Stone-Weierstrass states that A is
dense in C(II).

O
Corollary. The orthonomal system

S={—e"™|neZ
{ o | }
is complete in L*([0,27]).

PROOF. span S = A is a space of trigonometric polynomials, which is dense in C(IT). Define
@ : C,([0,27])] — C(IT)
Fe f

where C,([0,2n]) = {f € C([0,27]) | f(0 = f(2m))}. Then ® is an isometric isomorphism, and
therefore functions of the form f(t) = ¢,e™" is dense in C, ([0, 27]).
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By the construction of the Lebesgue integral, simple functions

n
E ailAi
i=1

are dense in L?([0, 27]).
Exercise 4.15. Given f € L?([0,27]) and € > 0, there exists g € C,([0,2n]) such that || f — g2 < €.
Thus A is dense in L%([0, 27]). O

Corollary. The following are separable (have a countable dense subset):

(a) C([a, b)),
(b) L¥([a,b]) , 1 <p < o0

PrOOF. (a) We have P([a,b]) is dense in C([a,b]) and set Pg([a, b]) with rational coefficients
is dense in P([a,b]). Clearly, Pg([a,b]) is countable, and thus is dense in C([a, b]).
(b) Use the fact that C([a,b]) is dense in LP([a, b]).

Corollary. Let X be a compact metric space. Then C(X) is separable.
PRrROOF. As X is a compact metric space, then X is separable.
Exercise 4.16. Why?
Let {x,, |n > 1} be a countable dense subset of X. For each n > 1 and m > 1 define
faom : X =K

by

= inf d(a,
fnm(x) Z¢Bl(gn,%) (z,2)

We then claim f,, ,, is continuous. Now, let A be the space of all K-linear combinations of

k k
Sot s Intmp By k€N (%)

This is a sub-algebra of C(X), as A is unital, closed under conjugation, and separates points -
if 21,20 € X with 21 # 29, Choose n,m such that z; € B(xn,%), Zn & B(:cn,%). Thus the
sub-algebra A is dense by Stone-Weierstrass.

The subset of Q-linear combinations of (x) is countable and dense. 0
Lemma 4.17. If X is compact metric space then X is separable.

Proor. For each m > 1,

1
x=J B(x; —)
reX



4. THE STONE-WEIERSTRASS THEOREM 34

has a finite subcover
N,

m 1
X = B m,n__
U Blamar,)
and thus the subset of all {z,,,,} is a countably dense subset. O
Corollary.
-9 o0
pL 1
Tl

n=1
PRrROOF. S = {\/#276”” |n € Z} is complete, and so Parseval’s formula holds,

IF1I3 =D 1 (fren) [

neEZ
Apply to f(x) = x. O

A common strategy is to prove for polynomials, and then Stone-Weierstrass proves it for con-

tinuous functions.

Corollary. If f € C([a,b] x [c,d]) then

([l?umwmzlf[ﬂ%mmw

PROOF. By direct calculation, the result is true for two-variable polynomials. Let f € C([a, b] x
[¢,d]) and € > 0 be given. By Stone-Weierstrass, the space of polynomials in 2 variables is dense in

C([a,b] x [¢,d]) and so there exists a polynomial p(z,y) with

|f(z,y) — p(z,y)| < b=

The result then follows by direct calculation. U



CHAPTER 4

Uniform Boundedness and the Open Mapping Theorem

The following is at the core of two of the cornerstone theorems of functional analysis - the

uniform boundedness principle and the open mapping theorem.

1. The Principle of Uniform Boundedness

Theorem 1.1 (Baire’s theorem). Let X be a complete metric space. If Uy,Us,... are open dense
subsets of X, then

o0
U=()Ux
n=1

is dense in X.

PrROOF. Let z € X and € > 0 be given. We need to show that
B(z,e)NU #0.

Lemma 1.2. There exists sequences (z,,) in X and (e,) in RT with the property that

(a) 1 =z, € = €.
(b) €, 10
(¢) B(Znt1,€nt1) C B(zn,en) NU, for alln > 1.

PRrROOF. Let x1,...,2, and €1, ..., €, be chosen. By density of U,,
B(zp,€,) N U, # 0.
Choose #p41 € B(xpn,€n) N Uyp. Choose €, > 0 such that B(zni1,€,,,) € B(zp,€,) N U,

1

’
(openness). We have €/, < €,. Choose 0 < €,41 < min(Z2, |

), then we have

B(#p41,€n41) € B(@ni1, €h41)

c B(Inv 671) NU,
and €,41 < €, with €,41 < n%rl O
Given the lemma, the theorem follows. If m > n, then by (c),

B@m,em) € B(xn,en) NU, (%)

35
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In particular, x,, € B(zp,e€,). Thus, d(zn,2m) < €, for all m > n. Thus (z,) is Cauchy, and so
z, — ¢ in X by completeness. By (%), we then have d(z,,() < €, for all n > 1. So ¢ € B(x,, €p).
So by (c), ¢ € m C B(zn, €n) NUny.

Thus ¢ € B(x,€) and thus ( € U =2, U,. O

The following corollary is often used

Corollary. Let X be a complete metric space. If C1,Cs,... are closed with X = |J7—, then

n=1
Int(Cy,) # 0 for some n.

ProOF. If Int(C,) = @ for all n then U,, = X\C,, are open and dense. So by Baire’s theorem,
N2, U, is sense, and in particular, (\n = 1°U,, # (. We have

o0

x=|Jc. = D (X\Uy)

n=

X\([) Un)
n=1
c X,
a contradiction. O

There are three cornerstone theorems.

e Hahn-Banach,
e Uniform Boundedness,

e Open Mapping.

Theorem 1.3 (Uniform boundedness). Let X,Y be Banach spaces. Let T,, o € A, a family of

continuous linear operators Ty, : X =Y. Then if
sup || Toz|| < oo
a€cA
for each fixed x € X, then
sup ||Tw|| < oo
a€cA
Remark. Rather amazing - you get a global bound from pointwise bounds.
PROOF. For each n > 1, let
X, ={z € X|||Toz| < nVa € A}

These are closed (7, is continuous) and

>
I
(@
>
3

3
Il
—
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by the hypothesis.
By the corollary to Baire’s theorem, we know there exists ng > 1 with Int(X,,,) # 0. Choose
xo € Int(X,, ), and let » > 0 such that

B(zg,7) C Int(X,,).
If ||z|| <1 then x¢ + 72 € B(xo,7). So 7o + 12 € X,,,, and
[Ta(zo + r2)|| < noVa € A,
but [[|al| — [[b]]] < |la + b]|, so
1 Ta(r2)|| = [Ta(zo)ll < 1Ta(z0 +72)| < n0.

So 7| Taz|| < no+ ng, and
2
7oz < Z2V]2]l < LVa € 4
T

For a general z € X,

T 2n
T, = |[To(— < —
[Tzl = | a(HxH)HxH < — Izl
and thus ||T,[| < 222, which implies
sup || T || < oo O
acA

Recall, the Fourier series of f € L?([—7,7]) is

> (frex)en

kEZ

e'Lk‘t

where ey (t) = oS This converges to f in the L? norm.

Exercise 1.4. If f is 2w-periodic and continuous, does the Fourier series converge pointwise?

There are explicit (complicated) examples, but the easiest existence is using the uniform bound-

edness principle.

Proposition 1.5. There is a 2w periodic continuous function whose Fourier series does not converge
at 0.

PROOF. Let Cp([—m,7]) = {f € C([—m,n])| f(—m) = f(m)}. This is a Banach space with || - [|s.
If feCp,let

fao= Y (frer)en

|k|<n

Remark. We can now define, for each n > 1, a linear operator 7T, : C, = K by

Tn(f) = fn(o)
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If £,(0) converges (as n — oo) for each f € C,, then
sup [T, f| = sup [ fn(0)] < o0
n>1 n>1
for all f € Cp, which by uniform boundedness implies
sup || T[] < oo (*)
n>1

We now show that (x) is false.

We have

)= o [ st aets

[k<n

1 " 4
=— [ fa)| > e *emh | at
2 ) x |k[<n
= L " Dt -y ar
o). ¥

where D, (t) = Z|k|<n e*f* is the Dirichlet Kernel. The Dirichlet kernel is real, and even, with

sin(n + 1)t

Dn(t) = .1
sin 5
Note. T, is continuous, with norm [|T,|| = 5= [™_[Dy(t)| dt.
PROOF.
1 ™
TNl < 5 | IfOIIDa(t)] dt

—T

< (5 [ IDa01ae) 151

and so ||| < % ffﬂ | D, (t)]| dt.
Going the other way, let
1 Du(t)>0
St = .
-1 D,(t)<0

We have seen hat set functions can be approximated in L!-norm by continuous (periodic) functions.
So if € > 0 is given, there is a g € C,, such that

= " (g(t) — s(0)Da(t) di| < .

2 ),

g can be chosen with ||g|lcc = 1.
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So Lo
T.(9) — — D, ()| dt .
@ -5 [ 1Da0la| <
Thus L
[ IDawlat - L) < e
m —T

So

gl ["
Tt > 1= [ D).

Since € > 0 was arbitrary,
1 T
T, > — D, (t)|dt.
7.l = 5 [ 100

All that remains is to show that

1 ™
T, =— D, (t)|dt
1Tl = 5= | 1Da(O]d - o

—T

‘We have
1 iy
|mm=f/|awnm
™ Jo

1 /’r |sin(n + 1)t
0

|sin £|

dt

s

2 /” |sin(n + 1)t
0

s t

9 (’I’LJr%)TF .
_ 7/ sin v do
T 0 v

> dt

as n — oQ.

Thus there exists f € C, such that the Fourier series of f diverges at x = 0.

2. The Open Mapping Theorem

This theorem is tailor-made to deal with inverse operators.

39
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Definition 2.1 (Open mapping). Let X,Y be metric spaces. A function f : X — Y is open if

open sets in X are mapped to open sets in Y.

Theorem 2.2 (Open mapping theorem). Let X,Y be Banach spaces. If T € L(X,Y) is surjective
then T is open.

Corollary (Bounded inverse theorem). Let X,Y be Banach spaces. If T € L(X,Y) is bijective,
then
T-'e L(Y,X).

PROOF. Let O C X be open. Then (T~1)71(0) = T(O) is open (by the open mapping

theorem). Thus 7! is continuous. O

Corollary. Let (X, | - ||1) and (X, | - ||2) be Banach spaces. If
[z]ly < Cllzfly Vee X
then || - [l and || - [|2 are equivalent.
PROOF.
i (X ll2) = (X M)
T x
is linear, surjective and injective, and also continuous, as
li(2)]] = [lzlly < Cllz]2.
So the bounded inverse theorem gives
X ) = (X 2)

is continuous. Thus there exists A > 0 such that ||i~!(x)|2 < A||z||1, which implies ||z|]2 < Al|z||;.
So .
Zlellz <llzlle Vo e X O

More generally, if T € L(X,Y) is bijective, then by the bounded inverse theorem,
cllzl| < [[Taf| < O]
— 1 —
where ¢ = 7=, C = (1T

Lemma 2.3. Let X be a Banach space andY a normed space. Then forT € L(X,Y), the following

are equivalent.
(a) T is open
(b) There exists r > 0 such that B(0,7) C T'(B(0,1))
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(c) There exists r > 0 such that B(0,r) C T'(B(0,1)).

PROOF. (a) = (b), (c). As B(0,1) is open, the set T'(B(0,1)) is open in Y. Since 0 € T(B(0, 1))
there exists > 0 such that the set

B(0,7) C T(B(0,1)) € T(B(0,1)) € T(B(0, 1).

(c) = (b). Assume that there exists r > 0 such that

B(0,r) C T(BO,1)).
We now show that B(0, 5) € T'(B(0,1)) which proves (b). Let y € B(0, 5). Then 2y € B(0,r) and

since B(0,7) C T(B(0,1)) there exists 1 € B(0,1) such that
T
29— Tos] < L
Hence 4y — 2Tz, € B(0,r) and by the same argument as before there exists z2 € B(0, 1) such that
|4y — 2Tz — T < g

Continuing this way we construct a sequence (z,) € B(0,1) such that

||2ny _ 2"‘1Tx1 — e — 2T$n_1 - T.]?nH <

N3

for all n. Dividing by 2" we obtain

n

_ T
||y—22 M| < il
k=1

Hence y = Y o, 27Tz, Since ||z1]| <1 for all k € N we have that

oo oo
S 2oyl < S2 k=1
k=1 k=1
and so the series
oo
T = Z Q*kxk
k=1

converges absolutely in X as X is Banach and hence complete. We have also that ||z|| < 1 and so

x € B(0,1). Because T is continuous we have

n
— T -k _
Tx—nh_{r;O;Z Txy =1y

by construction of x. Hence y € T(B(0,1)) and (b) follows.
(b) = (a). By (b) and the linearity of T' we have

T(B(0, ) = eT(B(0,1))
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for all e > 0. Since the map z — ez is a homeomorphism on Y the set T(B(0, €)) is a neighbourhood
of zero for all € > 0. Now let U C X be open and y € T(U). As U is open there exists € > 0 such
that

B(xz,e) =2+ B(0,e) CU

where y = Tz. Since z — x + z is a homeomorphism and 7 is linear we have

T(B(z,e)) = Tz + T(B(0,€)) = y + T(B(0,€)) € T(V).

Hence T(B(x,€)) is a neighbourhood of y in T'(U). As y was arbitrary in T(U) it follows that T'(U)

is open. O

Lemma 2.4. Let X be a normed vector space and S C X convexr with S = —5. Ifg has a

non-empty interior, then S is a neighbourhood of zero.

PROOF. First note that S is convex. If 2,y € S and z,,y, € S with x,,y, — =,y then
tr, + (1 —ty,) € S for all n and t € [0, 1]. Letting n — oo we get tz + (1 —t)y € S for all t € [0,1]
and so S is convex. We also easily have S = —S. If S has a non-empty interior, there exists z € S
and € > 0 such that B(z,€) C S. Therefore z + h € S whenever ||h|| < € and since S = —S we also
have —(z & h) € S. By the convexity of S we have

1
y = 5((x+h)+(—ac+h)) es
whenever ||h|| < e. Hence B(0,¢) C S, and so S is a neighbourhood of zero. O

Theorem 2.5 (Open mapping theorem). Suppose that X andY are Banach spaces. If T € L(X,Y)

is surjective, then T is open.

PROOF. As T is surjective we have

Y = [J 7(B(0,n))
neN

with [T(B(0,n))] closed for all n € N. Since Y is complete, by a corollary to Baire’s theorem,

there exists n € N such that T(B(0,n)) has non-empty interior. Since the map z +— nx is a

homeomorphism and T is linear, the set T'(B(0, 1)) has non-empty interior as well. Now B(0, 1) is
convex and B(0,1) = —B(0, 1). By linearity of T' we have that

T(B(0,1)) = ~T(B(0, 1))

is convex as well. Since we know that T'(B(0, 1)) has non-empty interior, the previous lemma implies

that T'(B(0,1)) is a neighbourhood of zero, and thus there exists > 0 such that
B(0,r) € T(B(0,1))

and since X is Banach the previous lemma shows that T is open. O
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Exercise 2.6. If XY are vector spaces, and if T': X — Y is linear, then I'(T") is a subspace of

X x Y. Moreover, if X,Y are normed vectors paces, with
(@, Tx)|[p = [lo]| + (| T[]

Theorem 2.7 (Closed Graph theorem). Let X,Y be Banach spaces, and T € Hom(X,Y). Then
T € L(X,Y) if and only if T'(T) is closed in X x Y.

PROOF. Suppose T' € L(X,Y). If x,, — z in X, then
(xn, Txy) — (z,Tx)

by continuity of T, and so I'(T') is closed.

Conversely, suppose that I'(T) is closed in X x Y. Define a norm || - ||r on X by |z|r =
llz|| + || Tx||. Since I'(T) is closed, and since (X, || -||) is Banach, then (X, | - ||r) is also a Banach
space (exercise). Note that ||z|| < ||z|lr. So by a corollary to the Open Mapping theorem, || - || and

|l - |Ir are equivalent. So there is ¢ > 0 with
lzllr < ¢|lz|| Vze X.

So ||z|| + [|Tz|| < ¢||lz||, and so ||Tz|| < (¢ — 1)||z||, and so T is continuous. O



CHAPTER 5

Spectral Theory

The eigenvalues of an n x n matrix T over C are the A € C with
det(AT—T) =0
that is, Al — T is not invertible.
Remark. Showing existence of eigenvalues is equivalent to the fundamental theorem of algebra.
Remark. We need our base field to be C to get reasonable spectral theory.
Definition 0.8. Write £(X) = L(X, X).
Definition 0.9. Let X be a Banach space over K, and let 7' € £(X). Then the spectrum of T is
o(T) ={X € K| Xl — T is not invertible}.
Remark. A\ — T is non invertible if either AT — T is not injective, or AI — T is not surjective.

Remark. If dim(X) < oo, then X\KER (T') ~ im(T), and so T is injective if and only if T is
surjective. This fails in the infinite dimensional case - consider the left and right shift operators on
2.

Definition 0.10 (Eigenvalue). A € K is an eigenvalue of T' € £(X) if there is z # 0 with Tz = Az,
i.e. A is an eigenvalue if and only if A\l — T is not injective.

Theorem 0.11. Let X # {0} be a Banach space over C, and let T € L(X). Then o(T) is a

non-empty, compact (closed and bounded) subset of
{reCliA<ITI}

Example 0.12. Let L, R : £2 — (2 be the left and right shift operators.
Then ||L|| = 1, and so (L) € D(0,1). If |\| < 1, then
LGNS ) = (A N30 ) = A, A5003,000)

and so \ is an eigenvalue. Thus D(0,1) C (L) C D(0,1). But o(L) is closed, and so o(L) = D(0, 1).
Are the A with |A| = 1 eigenvalues? No - suppose |A| =1 and = # 0 with Lz = A\x.

44
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Then
L"(z) = \"x.
Thus, 2,41 = A"z;. Then 2 = (21, A\, 21, \2x1,...) which is not in 2.
Then ||R|| = 1, and so o(R) C D(0,1).
Note. LRx = L(0,x1,...) = (x1,22,...), SO
LR=1 (%)
Remark. Unlike dim(X) < oo, (x) does NOT say that R is invertible (RL = I).

Consider the operator L(AI — R) = AL — I = —A(A"'I —L). If 0 < || < 1, then we know that
A7 — L is invertible (as A= ¢ o(L)). So if A\I — R were invertible, then L is invertible, which is
false. Thus A € o(R). Hence

D(0,1)\{0} C o(R) € D(0,1).
Since o(R) is closed, o(R) = D(0,1).

Theorem 0.13. Let X # {0} be a Banach space over C. LetT € L(X). Then o(T) is a nonempty,
compact subset of
A e CIA<ITI}-

Lemma 0.14. With above assumptions o(T) C {\ € C||A| < ||T||}.
PROOF. We need to show that if |A| > ||T|| then AI — T is invertible.
Technique: Geometric series. We guess

1 — T*

I-T)*'= = :
(A ) M =T £\t

We now verify this guess. Since

i 7% Z IITII’“
|)\|k+1 - ‘)\|k+1
k=0

. k .
the series S = Y77 ) 55+ converges in X.
We now show that S is the inverse of A\l —T. As we are working in infinite dimensions, we ned

to check left and right inverses. Let S, = 2;11 ,\%1 Then
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and so S(\I = T) = (A —T)S and so A — T is invertible. O

Exercise 0.15. Show that if ||[I — T'|| < 1 then 7T is invertible with inverse Y ;o (I — T)* Hint:

Consider
1 1

T I—(I-T)
In particular, the ball B(I,1) in £(X) consists of invertible elements.

The following is used to show o(T") is closed and nonempty, it is also interesting in its own
right.

Proposition 0.16. Let X be Banach over K. Let GL(X) = {T € L(X)|T invertible. Then

(a) GL(X) is a group under composition of operators.
(b) GL(X) is open in L(X).
(¢) The map
v: GL(X) = GL(X)
Tw—T!

is continuous.

PROOF. (a) The open mapping theorem tells us that if 7€ GL(X) then 77! € £(X), and so
T-! € GL(X). The rest is clear.
(b) Let Ty € GL(X). We claim

1
B (To, ||) C GL(X).
(e

We have
1T =T T = | Ty 1 (To = T)|
< |75 I To = 7|
1
<1 aSTeB(TO7_1>
175
(c) We have

1T =T~ = 1T~ 1(T ~ To)T5 " |
< T7HIT = Tl 757 (%)
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_ < 1
If |T — Ty < T then

17 =175 = I(To = T)Ty |
170 — 7|1 75 "l
1

5"

IN

IN

We then have

1T~ = (775 )~

=11 -T15)¥
k=0
e}
<M =TT
k=0
<2
Hence |77 = || Ty (ToT~Y)|| < | T N ToT Y < 2||T5 ], and from (%), we have

175t =77 < 2 T3 PIT — To

and so T +— T~ is continuous.

d
Corollary. o(T) is closed.
PROOF. Let
f:C— L(X)
A=A =T
This is continuous, as
[FA) = FQo)ll = [[(A = Ao
= |A = Aol
and
o(T) = f~ (L(X)\GL(X))
which is the inverse image of a closed set, and hence is closed. O

So o(T') is a compact subset of {\ € C| |A| < ||T||}. Write p(T)) = C\o(T) (the resolvent set),
and let Ry = R: p(T) — L(X) with Rp(\) = (M —T)~ L.

Theorem 0.17. Let K=C and X # {0} and T € L(X). Then o(T) # 0.
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PRrROOF. We use Lioville’s theorem - a bounded entire function must be constant.
Let ¢ = £(X)' (hence ¢ : L(X) — C.) Let

fo:p(T)—=C
A= o(R(A))
Lemma 0.18. f, is analytic on p(T).

Proor. We show f,, is differentiable. Consider

fe) = fe(Xo) _ o (R(/\) - R(/\o))

X — o X — o
M —T)"t — (NI -T)71
:(p( A*AOO )
Mol —T) Y (Ao = NI)Y(M - T)7!
:(p( 0 )\07 2 )

== (oI =T) "N =T)7")
— —p (Aol —T)7?)

as A — Ao, where we use the fact that ¢ is continuous and 7' — T~! is continuous. So f, is analytic
on p(T) for all p € L(X)'. O

Now suppose that o(7') = 0. Then f, : C — C is analytic.
Lemma 0.19. f, is bounded.

PROOF. If |A > || T||, then

foA) = e (A =T)71)]
¥ (Z /\k+1> ‘
k=0
> e
=0
— |IT|*
<lell Z EE
k=0

_ el
A= I

<lell

—0

as |A\| = oo. So f, is bounded, entire, and thus f, = ¢ by Lioville’s theorem. By the above,
fo(A) =0 for all \. Hence ¢(R(X)) =0 for all A, ¢.

Thus from Hahn-Banach, R(A) = 0 for all A which is a contradiction, as the zero operator is
not invertible if X # {0}. O
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t

Theorem 0.20 (Spectral mapping theorem (polynomials)). Let T be an n x n matriz over C.
IF we know all the eigenvalues of T, then we know the eigenvalues of every polynomial p(T) =
ag+a1T + -+ a,T". Specifically,

{eigenvalues of p(T)} = {p(\) | A is an eigenvalue of T}

Therefore
o(p(T)) = p(a(T)).
This is called the spectral mapping theorem (for matrices/polynomials).
This also holds for X Banach over C, and T € L(X).

Lemma 0.21. Let C[t] be the algebra of polynomials in t with complex coefficients. Multiplication

is defined as usual.

Lemma 0.22. Let X be Banach over C. Let T € L(X). Then
v: Clt] = L(X)
p—p(T)
is an algebra homomorphism (multiplication corresponds to composition in L(X).)

PRrROOF. Simply check

o(p1 +p2) = w(p1) + @(p2)
@(plm) = @(pl)@(m)
p(ap) = ap(p)

for all py,pa,p € C[t],a € C. O

Theorem 0.23. Let X be Banach over C, and let T € L(X). Then

PROOF. If p = ¢ is constant, then p(T) = ¢l has spectrum

o(p(T)) = o(cl) = {c}
On the other hand,
p(o(T)) = {c}
Now, suppose that p is non constant. Let p € C fixed. By the fundamental theorem of algebra, we

can factorise u — p(t) as
alt —A)™ (=A™
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where Aj,..., A\, are the distinct roots of u — p(t). Note that u = p()\;) for each i. Applying
¢ : Clt] - L(X) from above, we have

pl —p(T) =a(T =)™ ... (T =N\, I)™

Exercise 0.24. If T, ..., T, € £(X) which commute with each other, then T} ... T, is invertible

if and only if the individual elements are invertible.

We know
ueop(T)) <= p—p(T)is not invertible
<= T — Al non invertible for some ¢
< X e o(T)for some i
= p=p\) € plo(T))
and so

O

Definition 0.25 (Spectral radius). Let X # {0} be a Banach space over C. The spectral radius
of T € L(X) is

r(T) = sup{|A[ [ A € o(T)}
=max{|A|: A€ o(T)}

Note.
r(T) < |7
since o(T) C{A € C||A| < ||T||}. Strict inequality can (and often does) occur.

(0 )

Then consider T : C? — C? where ||(z,y)|2 = v/|z|? + |y|2. Then

Example 0.26. Let

IT|| = sup{|| T[> | = € C*}
=/ Amaz (T*T)

T*:<o 0)
10

is conjugate transpose. Then ||T|| = 1. But o(T) = {0}, and so r(T) =0 < 1 = ||T|.

where
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Theorem 0.27 (Gelfand, 1941). Let X # {0} be Banach over C, and let T € L(X). Then
R T n|l/n
H(T) = lim |77

In particular, the limit exists.

PRroOOF. By the spectral mapping theorem,
o(T") ={a(T)}" = {X" ||} € o(T)}.
So
r(T) = r(T™)"/"
< .

So
r(T) < lim inf || 77| /"
n—oo
Now, we must show that
lim sup ||T"||1/" <r(T).
n—roo

Let ¢ € L(X) and let
fo:p(T)—C
A= (A =T)7)

We saw that f,, is analytic on p(T"). We also have
(o] 1 .
fo(A) = Z W‘P(T ) (%)
n=0

if [A\| > ||T||. By general theory of Laurent series, () actually holds for all A € p(T). In particular,
it holds if |A| > (7).
Thus,
lim ——
n— 00 )\n-&-I

Sp for each ¢ € L(X)', and each [A| > r(T), there is Cy , such that

(T") =0 [|Al >r(T)

1
‘“0 (MHWN = e 20

Then by the principle of uniform boundedness, there exists a constant C such that

1 mn
H )\n+1T

<Cy Yn>0
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So ||T™||*/™ < |A[(Cx|A\])Y™, which gives
lim sup ||77]|*/™ < A
n—roo
for all |A| > »(T"). So
limsup || 77||*/™ < r(T)
n—oo

We used the following lemma.

Lemma 0.28. Let X be a normed vector space, A C X a subset. We say that
(1) A is bounded if there exists C' > 0 with ||z| < C, for all x € A.
(2) A is weakly bounded if for each p € X', there exists Cy, > 0 such that
lp(z)| < Cp
for all x € A.
Then we have

A C X is bounded <= weakly bounded

PROOF. A bounded = |jz|| < C for all x € A = |p(x)] < |lellllz| < |l¢]|C. So A is weakly
bounded.

Now, suppose A is weakly bounded. For each z € X, let £ € X" with
() = ().
So |&(¢)| < C,, for all € A. By the principle of uniform boundedness,
1z <C

for all € A, and since ||Z|| = ||z||. Thus A is bounded.
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Compact Operators

We now turn to compact operators. In general, calculating o(7") is difficult, but for compact

operators on a complex Banach space, we have a fairly explicit theory.

Theorem 0.29. Let X be a complex Banach space, with dim(X) = co. Let T : X — X be a
compact operator. Then
(1) 0 € o(T).
(2) o(T)\{0} = 0,(T)\{0}, that is, each X € a(T)\{0} is an eigenvalue of T (0 may or may not
be an eigenvalue.)
(3) We are in exactly one of the cases:
e o(T) = {0}.
o o(T)\{0} is finite (nonempty).
e o(T)\{0} is a sequence of points converging to 0.
(4) Each A € o(T)\{0} is isolated, and the eigenspace KER (A —T') is finite dimensional.

where o,(T) is the point spectrum of T, where
op(T) = {X € K| Xl — T is not injective}
= {X € K| there exits nonzero vector x with (\I — Tz = 0}

= {eigenvalues of T}
ProOF. We shall prove these results next week. U

Definition 0.30. Let X,Y be normed vector spaces. An operator T : X — Y is compact if T is
linear, and if B C X is bounded then T'(B) is relatively compact (a set is relatively compact if its

closure is compact.) Symbolically,

B C X bounded = T(B) compact
Lemma 0.31. [F T is compact, then T is continuous.

PROOF. The closed ball B = {x € X |||z|| < 1} is bounded, and so if T' is a compact operator,

then T'(B) is compact, and hence bounded. Hence ||Tz|| < M for all ||z|| < 1, so T is continuous,
with ||| < M. O



6. COMPACT OPERATORS 54

We now recall definitions of compactness

Theorem 0.32 (Characterisations of compactness). Let X be a metric space. The following are
equivalent.
(1) X is compact (every open cover has a finite subcover).

(2) X is sequentially compact (every sequence in X has a convergent subsequence)
Lemma 0.33. Let X be a compact set. LetY C X. If Y C X is closed, then'Y is compact.

Lemma 0.34. Let V be a finite dimensional vector space. If X C 'V is closed and bounded, then

X is compact.

Theorem 0.35 (Characterisations of compact operators). Let X, Y be normed vector spaces over
K. Let T € L(X,Y). Then the following are equivalent.

(a) T is compact.
(b) T(B) is compact, where B = {z € X |||z| < 1}.
(¢) If (xn)n>1 s bounded in X, then (Txy)n>1 has a convergent subsequence (sequentially com-

pact).

PROOF. (a) = (b) by definition.
(b) = (a). Suppose (b) holds. Let By C X be bounded. THen B; C aB for some a > 0. So

T(B) C T(aB) = oT(B)

which is a closed subset of a compact set, and hence compact.

(a) = (c¢). Suppose T is compact. Let (z,)n>1 be bounded sequence in X. Then T(B) =

{Tx, |n > 1} is relatively compact. So T'(B) is compact, and hence is sequentially compact, and
so has a convergence subsequence.
(c) = (a). Let B C X be bounded. Let (y,)n>1 be a sequence in T(B). Then there is z,, € B

with T2, = yn. So (Zn)n>1 is a bonded sequence. By assumption (Tx,),>1 has a convergent

subsequence. So T'(B) is sequentially compact, and hence compact. O

Corollary. The set {compact operators T : X — Y} is a vector space. That is, if T1, T are com-
pact, then Ty 4+ Ts and oT1 are compact.

ProoF. Exercise. Use (¢) from the characterisation of compact operators. O

Corollary.
K(X,Y) C L(X,Y) C Hom(X,Y)
where K(X,Y) is the set of compact operators T : X =Y.

Example 0.36 (Finite rank operators). Let X, Y be normed vector spaces, and let T € £L(X,Y). If
dim(Im T) < oo, then T is said to have finite rank. Then if T has finite rank, then T is compact.
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PROOF. Let (z,) be a bounded sequence in X. Then ||Tz,| < ||T||||zx|| so (Tz,) is a bounded
sequence in IM 7. But IM T is finite dimensional, and so {T'z, |n > 1} is compact (closed and
bounded), and so (T, ),>1 has a convergent subsequence. By (¢) in Theorem , T is compact.

O

Lemma 0.37. Let X, Y be normed vector spaces. If T € L(X,Y) has finite rank, then there exists
Yoo Yn EIM T and g1, pn € X' withTa =377, j(2)y; for allz € X, withn = dim(Im T).

PROOF. Choose a basis y1,...,y, of IM T. For each j =1,...,n, define o; € (IM T')" by
aj(aiys + -+ anyn) = a;

i.e. coordinate projection. By Hahn-Banach, we can extend a; to a continuous linear functional
a; €Y' Let pj =a;0T : X - K. So ¢; € X'. Since

y=> a;(y)y; Yye T
j=1

we have

3

8

I
[

aj(Tz)y;
1

<.
Il

(avj o T')()y;

<
Il
Ja

I

pi(x)y; VreX.

I

<
Il
—

O

Recall that the closed unit ball in X is compact if and only if dim(X) < co. Then it follows
that the identity map I : X — X is compact if and only if dim(X) < co. Hence,

K(X) < L(X) < Hom(X, X)

when dim(X) = co.

Consider a sequence of compact operators T,,. If T}, is compact and T,, — T, then T is compact.

Lemma 0.38 (Riesz’s Lemma). Let X be a normed vector space. Let Y C X be a proper closed
subspace. Let 0 € (0,1) be given. THen there exists x with ||| = 1 such that ||x — y|| > 0 for all
yevy.

PROOF. Pick any z € X\Y. Let o = infycy ||z — y|| > 0 since Y is closed. Then by the
definition of the infimum, there is yo € ¥ with a < ||z — yol| < §. Now let z = Then

T—Yo
g lz—yoll*
]| = 1.
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Now,
Z— Yo
e~y = —yH
12 = woll
1
= |lz—y_ + |z — woll¥l
12— woll
0
> —a=40
[0

O

Corollary. Let X be a normed vector space. The closed unit ball B(0,1) is compact if and only if
dim(X) < 0.

PROOF. If dim(X) < oo then B(0,1) is compact (since closed and bounded if and only if
compact in finite dimensions). Now suppose dim(X) = oo. Build a sequence (z,,) with ||z,| =1

with no convergent subsequence. Choose finite dimensional subspaces
{0}=X0C X1 CXoC...

These are all closed (finite dimensional spaces are complete, and hence closed). Use the lemma
to choose z, € Xj with ||z = 1, lag — x| > & for al @ € Xp—1. So zp — 2| > L for all
€ X;(j <k—1). So ||z, — xm| > 5 for all m,n > 1. So (z,,) has no convergent subsequence,

and so B(0,1) is not compact. O
Corollary. I: X — X is compact if and only if dim(X) < co.
PROOF. Recall T is compact if and only if T'(B(0, 1)) is relatively compact. O
One way to show that an operator is compact is to apply the following.

Proposition 0.39. Let X be a normed vector space, and let Y be Banach. Suppose that T, €
K(X,Y) for eachn>1. If T,, = T (in operator norm, |Tn — T|| — 0) then T is compact.

PROOF. Let (x,) be a bounded sequence in X. We now construct a subsequence (z,) for which

(T'x!,) converges.

e Since T} is compact, (z,) has a subsequence 2" such that (Tla:g)) converges.

e Since T, is compact and x%l) is bounded, there is a subsequence xg) such that szﬁf)

converges.

. k
e Continuing, we can form a subsequence x,(l ) such that Ty.xk converges.

Let x), = 2", Then (x},) is a subsequence of (x%l)), and (x},)n,>2 is a subsequence of (xf)),

etc. So for each fixed k > 1, (Ta!,) converges.

We now show Tz], is Cauchy, and hence converges. We have

1T, — Ty, || < 1T, — Towy, || + 1Tk, — Toar || + To, — T

nll
n
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where k is to be chosen. Suppose ||z,|| < M for all n > 1. THen

Tz, —Txl|| < 2M||T — Ty || + || Tkx’ +m — Ty,

nll

Let € > 0 be given. Since | T — Ty|| — 0 as k — oo, fix a k for which ||T" — Ty|| < z5;. For

this fixed k, we know (Tjz]) converges, and so is Cauchy. So there exists N < 0 such that
|Tex'm — Tpal,| < frace3 for all m,n < N. Hence [T, — Ta,| < 23M + & = ¢ for all

m,n > N, so is Cauchy, and so converges. O

Example 0.40. Let K(z,y) € L?(R?). Define T : L?*(R) — L?(R) by

z) = /R K () () dy

(Hilbert-Schimidt Integral operator)
Proposition 0.41. T is compact.

PROOF. Note that |Tf]| < || Kllz]| £]l2 forall f € L2(R), where || K|l = ([fas |K (2, y)[? dz dy) />
So T is continuous, with ||T|| < ||K||2. We now exhibit T as a limit of finite rank (hence compact)
operators, with T, : L?(R) — L?(R). Once can see that there is a sequence K,, € L?(R?) of the
form

Z o™ (2)8 (y)

with K,, — K in L?(R?). Then ||T,, — T| < ||Kn — Kl|2 = 0, and so T,, = T. Hence

il (n) (\ a(n)
2> / o™ ()8 (4) £ (4) dy

Ny
< (")> ]gn)(x)
k=1
and so T, f = ZkNii (f), B(n) "™ from which we use that T}, has finite rank. O

Theorem 0.42. Let X be a complex Banach space, with dim(X) = co. Let T : X — X be a
compact operator. Then
(1) 0 € o(T).
(2) o(T)\{0} = 0,(T)\{0}, that is, each X € a(T)\{0} is an eigenvalue of T (0 may or may not
be an eigenvalue.)

(3) We are in exactly one of the cases:

o(T) = {0}.

o(T)\{0} is finite (nonempty).

o o(T)\{0} is a sequence of points converging to 0.

(4) Each A € o(T)\{0} is isolated, and the eigenspace KER (A — T') is finite dimensional.
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where o,(T) is the point spectrum of T, where
op(T) ={X € K| X — T is not injective
= {\ € K| there exits nonzero vector x with (A\I —T)x =0

= {eigenvalues of T}
Compact operators are very well behaved with respect to composition.

Proposition 0.43. Let X,Y, Z be normed vector spaces.

(o) If T € K(X,Y) and S € L(Y, Z), then ST € K(X, Z).
(b) If S € L(X,)Y) and T € K(Y, Z), then T'S € K(X, Z).

PRrROOF. (a) Let (z,) be a bounded sequence in X. Since T is compact, Tz, has a convergent
subsequence, say T, — y € Y. Then (ST'z,,) has a convergent subsequence, namely STz, =
S(T,,) — Sy by continuity of S. So ST is compact.
(b) Let B C X be bounded. Then S(B) is bounded in Y, as S is continuous. So T'S(B) = T'(S(B))
is relatively compact since T is compact. Hence T'S is compact.
O

Corollary (Part (1) of theorem). If X is infinite dimensional Banach space, then 0 € o(T).

PROOF. If 0 ¢ o(T) then T is invertible. By bounded inverse theorem 7! is continuous, and

then I =TT~ is compact, which is a contradiction. O

Theorem 0.44 (Part (3) of theorem). Let X be a normed vector space. Let T € K(X). Then T
has at most countably many eigenvalues. If T has infinitely many eigenvalues, then they can be

arranged in a sequence converging to zero.

PRrROOF. We show that for each N > 0, we have

#{A € op(T)|[[A[ = N} < o0 (%)
Suppose that there is N > 0 such that (x) fails. So Ay, Ag,... are distinct eigenvalues with |A,| >
N for n = 1,2,.... Let z, # 0 be an eigenvector. Tx, = A\,z,, n = 1,2,.... Let X,, =
span {x1,...,z,}. Since {z, | > 1} are linearly independent, we have
X1 CXoC ...

and each X, is closed (finite dimensional).
By Reisz’s Lemma from previous lecture, choose y,, € X,, such that ||y,|| =1 and ||y, — | > %
for all z € X,,—1. So (yn) is bounded in X. We show that Ty, has no convergence subsequence,

contradicting compactness of T.
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Let m > n. Then
1Ty — Tynll = IAmym — Ay — TYm + Tyn)|
= [Am| |ym — (something in Xp,—1)||
1 1
Z §|A7n| Z §N

as required.
Note that y,, = a1x1 + - - - + a¢mxy. Then

)\mym - Tym = Amalxl +---+ )\mammm - (al)\lxl + -+ amAmmm)
=a1(Am = A1)z + - F a1 (A = A1) Tm1 € X

and Ty, € X,,_1 since n < m.
O

Definition 0.45 (Projection operator). Let X be a vector space. A linear operator P : X — X is
called a projection if P2 = P.
Proposition 0.46. If P: X — X is a projection then I — P is a projection, and
IMI—P=KErR P, KERI-P=1IMm P
PROOF. If P2 = P then (I — P)2>=1—-2P + P? =1 — P and so I — P is a projection. Let
x € IMI — P Then x = (I — P)y for some y € X. So Pr = P(I — P)y = (P — P*y = 0.

Sox € KERPand IMT — P C KER P. If # € KER P the Px = 0. So (I — P)x = z, and
zelv (I P). 0

Definition 0.47 (Direct sum). Let X be a vector space, and let X7, X5 be subspaces. Then
X = X; @ X, (direct sum) if
X =X1+ Xo

and X1 N X3 = {0}. Equivalently, X = X; & X5 if and only if each z € X can be written in exactly

one way as © = x1 + To with z1 € X1, 29 € Xo.
Theorem 0.48 (Equivalence of direct sums and projections). Let X be a vector space.
(a) If P: X — X is a projection, then
X =(Im P)® (KER P)
(b) If X = X; & Xs, there exists a unique projection with
IMm P=X;, KER P = Xs.

Specifically, Pr = x1 if © = x1 + 2.
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PrOOF. (a) Let P : X — X be a projection. Then we show X = (Im P) @ (Im I — P),
x = Px+ (I — P)x. This shows that X =IMm P+1IM I — P. If x € Im PNKER P then z = Py
and Pz = 0. Hence, Pz = P?y = PY =0 and so = = 0.
(b) Exercise.
(]

Proposition 0.49. Let X be Banach. Let X = X1 ® Xo. Let P : X — X be the corresponding
projection operator. Then
PeL(X) < X;,Xs closed

PROOF. (=). Suppose P is continuous. Then X; =IM P = KER I — P and X5 = KER P are
both closed. For example, if x,, € KER P and x, — z, then 0 = Px,, — Px and so x € KER P.
(«<). Suppose that X7, X3 are closed. Since X = X7 @ X2, we can define a new norm | - || by

[2]]" = llz1 ]| + [Jz2[] where z = z1 + 2.

Exercise 0.50.

(a) Show that || - ||’ is a norm.

(b) Show that (X,]|-||") is Banach. This relies on the fact that (X, ||-||) is Banach and X, X5 are
closed.
Note that ||z|| = [|z1 + x2|| < ||z1]| + [|z2]| = |||, and so by a corollary to the open mapping

theorem, there is a ¢ > 0 with ||z|" < ¢||z|| for all z € X, and so
1Pzl = [lza]l < lza]l + w2l = [lz[|” < cll|
and hence P is continuous. (]

Corollary. Let X be Banach, and let M be a finite dimensional subspace. Then there exists a
closed N with
X=M®e&N.

PROOF. Let v1,...,v, be a basis of M. Define, for each j =1,...,n, ¢; € M’ by p;(a1v1 +
.-+ 4+ apvy) = a;. Then using Hahn-Banach to extend ¢; € X’. Let P : X € X be defined by

Pz = Z @;(x)v;.
j=1

Then we need only check that P is linear and continuous, IM P = M, and P? = P. Now take
N =KER P and then X = M & N. O

We are now ready to prove the following theorem.

Theorem 0.51. Let X be Banach, and let T € K(X), and let A € K\{0}. For all k € N, we have
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(a) Ker (M —T)* is finite dimensional.
—_———

generalised eigenspace

(b) Im (M — T)* is closed.

PrOOF. Reductions. Since KER (A\] —T)* = KER (I — A~!T)*  and similarly for the image,

by replacing T' € K(X) by AT € K(X), we can assume that A\ = 1.

Also, we have

-1y -3 (B

n=0

=J— Tnz: <§> (-1 tpn—t

continuous

=I-T.

where T is the composition of compact and continuos operators, and so is compact. So we can take
A=1Lk=1.

(a)

The closed unit ball in KER I — T is

{reKer I -T||z|| <1} ={Tz|z e KEr [ - T, |z| < 1}

C T(B(0,1))

which is compact as T  is compact. Hence, the closed unit ball in KeEr I — T is compact, and
thus KER I — T is finite dimensional.
Let S =1 —T. We then need to show that IM S is closed. Since KER S is finite dimensional

from above, there is a closed subspace N with
X=(KErRS)® N

Note that Im S = S(X) = S(N), and that S|y : N — X is injective.
Suppose that S(N) is not closed. So there is a sequence (z,) in N such that Sz, — y €
X\S(N). Then there are two cases

Case 1 (||zn|| = o). Let y, = mg@n Then Sy, = ”Tlnl‘S’xn — 0. But (yn)n>1 is bounded
in X, and so there exists a subsequence y,, such that Ty, — z (as T is compact). Hence
Yn, = SYn,, + TYn, — 0+ 2. Thus z € N (as y,, € N, and N is closed), and ||z|| = 1.

So Syn, — 0, but Sy,, — Sz with z € N\{0}, by the continuity of S. This contradicts
the injectivity of S|y.

Case 2 (||, || does not tend to infinity). So (x,) has a bounded subsequence (z,, ). Since T

is compact, (z,,) has a subsequence such that (Txnkl) converges, to z1 say. By replacing x,,
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by this subsequence we can assume that Sz,, — y, and that Tz, — z. A before, we can write
Ty =8xp +Tx, = y+ 2.

So x,, converges to © € N. So Sz, — Sz € S(N) by continuity, but we assume that Sz, —
y € X\S(N), which achieves our contradiction.

O

Let T : C™ — C" be a linear operator. Then in the simplest case, T has n distinct eigenvalues,
and the corresponding eigenvectors are linearly independent, forming a basis for C™.

Hence, C* = Cx1 & - - - ® Cz,, and the matrix of T relative to this basis is simply diagonal with
Alyy A

This is not always possible, because there is not always a basis of eigenvectors. Instead look at

the generalised eigenspace,
{z € C" | (M —T)*z = 0 for some k > 1.

But {0} C KErR (M —T)! CKER (M —T)? C ... and since dim(C") < oo this must stabilise. Let
r > 1 be the fist time that KER (Al —T)" = KER (M — T)""1. Then the generalised \-eigenspace
is just KER (A —T)". There is a basis of C™ consisting of generalised eigenvectors, and the matrix

of T relative to this basis is in block form.

Definition 0.52 (Complete reduction). Let T': X — X be linear. If X = X; @ X3 be can write

T Ty T2\ (71
xr =
To1r Too) \ 2
where we identify z1 + 9 <= (z1,22). Here,
T11 : X1 — Xl
T12 : X2 — X1
T21 : X2 — X2

TQQIXQ _>.X2

we say that X = X; @ X3 completely reduces T (well adapted to T') if
T
Tx = 1 0 i
0 TQ To

Exercise 0.53. If X = X; & X5 completely reduces T = T7 & T5, then

(a) KER T = KER T1 ® KER Tp
by IMT=IMmT, ®Im Ty

We write T'=T7 & Ts.



6. COMPACT OPERATORS 63

(¢) T is injective if and only if Ty, T% are injective
(d) T is surjective if and only if T7, T, are surjective
(e) If T is bijective, then X = X; & X5 completely reduces T-! = Tl_1 D T2_1.

Corollary. Let X = X7 ® X5 be Banach, with X1, X5 closed subspaces. If X = X1 ® Xo completely
reduces T =Ty @ Ty € L(X), then

(a) T1 S E(Xl),TQ S E(Xg)
(b) o(T) = o(T1) Uo(T2)
(¢c) op(T) = 0p(T1) Uop(T2)

ProOF. Exercise. 0

Consider the following chains
{0} CKer S' CKER S%C ...
XD2Im S'DIm 2

U

where X is a vector space and S € Hom(X, X). It is easy to see that if KER S” = KER S™*! then
KER S" = KER S"T*. Similarly for images (p. 109 in Daners.)

There is no reason that these should stabilise in general.
Theorem 0.54. Let X be Banach, T € K(X), A # 0. Then both chains (with S = X\ —T') stabilise.

PRrOOF. Without loss of generality, assume A = 1, so we can write S = I — T. Suppose that

the kernel chain does not stabilise. Since we assume
Ker S' € KEr S? C KER S® C

We know that these are closed (being finite dimensional) subspaces. So Reisz’s Lemma gives
z, € KER S" with ||lz,|| = 1, |z, — 2| > % for all z € KER S"F!. This is a bounded sequence.
We claim that Tz, has no convergent subsequence.
Let m > n. Then
Tz — Tx,|| = |(I = ey, — (I — T + T — 0|
=Sz, — STy — T — Ty ||

= |xm — (STm — Szp + ) ||

in Ker S™~1

>

DN |

The image argument is similar - using the fact that the images are closed - proved in the previous

lecture. O
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Theorem 0.55. Let X be a vector space, S € Hom(X, X). Suppose that
a(S) = inf{r > 1|Ker S" = Kgr S"'}
5(S) =inf{r >1|Im S" =Im S"1},

the ascent and descent of S respectively, are both finite.
Then

(a) a(S) =6(S) =r, say
(b) X = KER S" @ Im S
(¢) The direct sum in (b) completely reduces S.

PRrOOF. Daner’s notes, p. 109. O

Corollary. Let X be Banach, T € K(X), N # 0. Letr = (Ml —T) = §(\ —T). Then
X =KER (AT =T)"@®IM (Al —T)" and this completely reduces I — T, pu € K.

Corollary. If X is Banach, T € K(X),A # 0 then A\ — T is injective if and only if \I — T is

surjective.
PROOF.
M — T injective
= 0€ Ker (\[ -T)' = Ker (A - T)?
=aM-T)=1
=M -T)=1
=X =KErR M -T)®IM (A -T)

={0}
=X=IM(\-T)

= X is surjective
The other direction is similar. O

Corollary. Let X be Banach, T € K(X). Thus each X € o(T)\{0} is an eigenvalue.

PRrROOF. Immediate from the previous corollary. O



CHAPTER 7

The Hilbert Space Decomposition

Recall the following.

Corollary. Let X be Banach, T € K(X), X # 0. Letr = oAl —=T) = §(\ = T). Then
X =KER (AT =T)"@®IM (Al —T)" and this completely reduces uI — T, pu € K.

Also note that IM KER (M — T)" is closed, and KER (A — T')" is finite dimensional.

Exercise 0.56. Let Al,...,\, € o(T)\{0}. Let N; = KER (\;I —T)} be the generalised \;-
eigenspace. Show that there exists closed subspaces M with

X=NONoD---OM

with T =T, ®T5 @ --- & Ty, and so spectral theory tells us how to diagonalise T'.

In Hilbert spaces we can say even more. Recall that the adjoint of T' € £(H) is defined by
(Tz,y) = (x, T"y) Vz,yeH

Then T* € L(H).

Definition 0.57 (Self-adjoint). T' € L(H) is
(a) Hermitian (self-adjoint) if T* =T.
(b) Unitary if T*T = TT* = I.

(¢c) Normal if T*T =TT*.

Remark. For matrices, we have

(a) Hermitian if and only if AT = A.
(b) Unitary if and only if the columns of A are orthonormal.

(c) Hermitian and unitary operators are normal.
Proposition 0.58. Let H be Hilbert over C. IF T € L(H) is normal, then r(T) = ||T.

ProoOF. For Hermitian operators it is easy. We have
IT)* =TT = ]I

65
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By induction ,we then have ||T||?" = || T%"||. So
1 n|l/n
W) = lim |77

= lim 7%/
n—oo

1T

For normal operators, we have
17| = 1(T*)*T||
=TT )T
= ||T*TT*T|| normal
= [[(T*T)(T*T)]|
= |T°7|*
= |7
and then we have ||T?|| = || T']|? and the proof follows by induction. O
Corollary. Let H be a Hilbert space over C.
(a) If T € L(H) is unitary, then
o(T)CT={reC|p =1}
(b) If T € L(H) is Hermitian, then
o(T)CR.

PROOF.

(a) On practice sheet. Use the fact that o(T*) = o(T).
(b) Let A=a+ib € o(T). So AI —T is not invertible. Hence, (A +it)I — (T +itI) is not invertible
for all t € R. Then
|\ +it)|* < (T 4 itI)?
<||T +it||?
= (T +atI)*(T +itI)]|
= (T —at) (T +itl)||
= 172+ 1]
<||T?% 4 #2
However, the left hand side is equal to

a® +b% + 2bt + 2,
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and so we obtain
a? + 0% +20t < ||T|> VteR

and so b= 0.
O
Lemma 0.59. Let H be Hilbert over C. Let T € L(H), and let
My={xeH|Te=X x} =KER N[ -T
be the A-eigenspace of T. Then
(a) My L M, if X # p.
(b) If T is normal, each My is T and T* invariant. That is,
T(My) € My, T*(My)C M.
PRroOF.
(a) Let u e My,v € M,. Then
(A = p) (u,v) = (A, v) = (u, fiw)
= (Tu,v) — (u, T"v)
= (Tu,v) — (Tu,v)
=0
and so (u,v) = 0.
(b) If T is normal, then KEr T'= KER T™* as
|Tz||* = (Tx, Tx) = (x, T*Tx)
= (x,TT*x) = (T *z,T"x)
= | T"z||*.
Similarly, if T is normal then AI — T is normal. Then
My =KErR AI =T (T invariant)
=KER M —T* (T* invariant).
U

The spectral theory for compact normal operators in a Hilbert space is particularly nice, as the

following theorem demonstrates.
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Theorem 0.60. Let T € L(H) be compact and normal. Then
H= D M
Aeo(T)
the closure of the span of the eigenspaces, and H has an orthonormal basis consisting of eigenvectors.

Moreover, T acts diagonally with respect to this basis.

PROOF. Let

M = @ M,

Aeo(T)
a closed subspace. Hence H = M @ M, where

M* ={zcH| (x,m)=0Ym € M}.

We must show that M+ = {0}. Assume the contrary. Then consider T = M+ — # be the

restriction of T to M+. Then we have

T:M*"— M*
is compact and normal (Exercise). Then

(a) o(T) = {0}. Then #(T) = 0, and so ||T|| = 0, and so T = 0. Then each z € M*\{0}
satisfies T = 0 = 0Oz, and so 2 € My with M+ C My C M, a contradiction (from direct sum
decomposition). Hence M = {0}.

(b) o(T) # {0}. So there is an eigenvalue X € o(T)\{0}. So there is € M\{0} with Tz = \z.
o Tx = Az, and so x € (M, N M+)\{0}, a contradiction. Hence M+ = {0}.

Choose an orthonormal basis for each M), and combine to get an orthonormal basis of H, using
My L MM' O

1. The Fredholm Alternative

Recall that for matrices, we have the following result, known as the Fredholm alternative.

Theorem 1.1 (Fredhold alternative (Finite dimensional spaces)). Let A : C* — C™ be linear.

Then exactly one of the following two things occur:

(1) Ax =0 has only the trivial solution x = 0, in which case Ax = b has a unique solution for each
beCm.
(2) Ax = 0 has a non-trivial solution, in which case Ax = b has either no solutions, or infinitely

many solutions.
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Definition 1.2 (Hilbert-Schmidt integral operators).

T : L*([a,b]) — L*([a,b])

b
@)@ [ Ky
where ||K||2 is finite. These are compact operators.

Consider equations of the following form

M@ - [ s i = oo,
where A\ # 0 and g € L? are given. This can be rewritten in the form
MN-T)f=g.
Then we have the following theorem, due to Fredholm.

Theorem 1.3 (Fredholm alternative (Hilbert spaces)). Let H be Hilbert over C, and let T € K(H).

Then exactly one of the following occurs.

(a) (\I —T) =0 has only the trivial solution, in which case (\I —T)x = b has a unique solution
for each b € H.

(b) (M —T)x = 0 has a non trivial solution, in which case (A — T)x = b has a solution if and
only if b Ly for every solution y of the equation

A —-T*)y =0
This is finite dimensional, as it is the kernel of (\[ —T)*.
PROOF.

(a) If (\I — T)x = 0 has only the trivial solution, then KER AI — T = {0} and so it is injective.
Hence A is not an eigenvalue, and so A is not a spectral value. So AI — T is invertible, and so
(M — T)x = b has a unique solution = (A — T)~'b, which can be expanded into a series
expression if [A| > r(T).

(b) Suppose (AI —T)z = 0 has a non-trivial solution. Then

(M — T)x = b has a solution
<= belIM A —T which is closed
— be ((Im X -T)H)*
> be (KErR A —T%)*
<« bly VyeKEr N —T". O

Proposition 1.4 (Miscelaneous).
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(a) If M is a closed subspace of H, then M = M++.
(b) IFS:H — H and S € L(H), then (Im S)+ = KER S*.

PrOOF.
(a) Let m € M, then (m,z) =0 for all z € M+, and so m € (M+)* = M+, and so M C M++.
Let z € M++. Since M is closed, H = M & M+, and so c = m+m*. Soxz —m €
M++ 4+ M C MY and so x —m =mt € M+, But M* is closed, and so H = M+ @ M+,
Sox—m—0,andx =me M.
(b)
(IMm )t ={zeH| (z,sy) =0 VyeH}
={xeH]|(Sz,y) =0 VyeH}
={x e H|Sz=0}
= KErR S*
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