MSH2 - PROBABILITY THEORY

ANDREW TULLOCH

Contents

1. Lecture 1 - Thursday 3 March	2
1.1. Constructing extensions of functions to form probability measures	2
2. Lecture 2 - Thursday 3 March	3
2.1. Key results from Measure Theory	3
3. Lecture 3 - Thursday 10 March	4
3.1. Modes of Convergence	6
4. Lecture 4 - Thursday 10 March	6
5. Lecture 5 - Thursday 17 March	8
6. Lecture 6 - Thursday 17 March	11
7. Lecture 7 - Thursday 24 March	14
8. Lecture 8 - Thursday 24 March	16
9. Lecture 9 - Thursday 31 March	18
9.1. Martingales	20
10. Lecture 10 - Thursday 31 March	20
10.1. Conditional expectations	21
10.2. Stopping times	22
11. Lecture 11 - Thursday 7 April	23
12. Lecture 12 - Thursday 7 April	25
13. Lecture 13, 14 - Thursday 14 April	28
13.1. Characteristic functions	30
14. Lecture 14 - Thursday 14 April	33
15. Lecture 15 - Thursday 21 April	33
16. Lecture 16 Thursday 21 April	36
16.1. Lattice distributions	36
17. Lecture 17 - Thursday 5 May	38
17.1. Sequences of characteristic functions	38
18. Lecture 18 - Thursday 12 May	41
18.1. Central limit theorem	42

 $\mathbf{2}$

19. Lecture 19 - Thursday 19 May	46
19.1. Stable Laws	46
20. Lecture 20 - Thursday 19 May	48
20.1. Infinitely divisible distributions	48
21. Lecture 21 - Thursday 26 May	50
22. Exam material	52

Definition 1.1 (σ -field). Let Ω be a non-empty set. Let \mathcal{F} be a collection of subsets of Ω . We call \mathcal{F} a σ -field if

- $\emptyset \in \mathcal{F},$
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F},$
- $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$
- If $(A_i) \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

Definition 1.2 (Probability measure). Let \mathbb{P} be a function on \mathcal{F} satisfying

- If $A \in \mathcal{F}$ then $\mathbb{P}(A) \ge 0$,
- $P(\Omega) = 1$,
- If $(A_j) \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mathbb{P}\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mathbb{P}(A_j)$.

Then we call \mathbb{P} a **probability measure** on \mathcal{F} .

Definition 1.3 (σ -field generated by a set). If A is a class of sets, then $\sigma(A)$ is the smallest σ -field that contains A.

Example 1.4. For a set B, $\sigma(B) = \{\emptyset, \Omega, B, B^c\}$.

Definition 1.5 (Borel σ -field). Let \mathcal{B} be the class of all **finite** unions of intervals of the form (a, b] on \mathbb{R} . The σ -field $\sigma(\mathcal{B})$ is called the **Borel** σ -field.

Note that \mathcal{B} itself is not a σ -field - consider $\bigcup_{j=1}^{\infty} (0, \frac{1}{2} - \frac{1}{j}] = (0, \frac{1}{2}) \notin \mathcal{B}$.

1.1. Constructing extensions of functions to form probability measures.

Lemma 1.6 (Continuity property). Let \mathcal{A} be a field of subsets of Ω . Assume $\emptyset \in \mathcal{A}$ and that \mathcal{A} is closed under complements and finite unions.

If $A_j \in \mathcal{F}$ and $A_{j+1} \subset A_j$ with $\bigcap_{j=1}^{\infty} A_j = \emptyset$, then $\lim_{j \to \infty} \mathbb{P}(A_j) = 0$.

Theorem 1.7. Let $\sigma(\mathcal{A})$ be the σ -field generated by \mathcal{A} . If the continuity property holds, then there is a **unique** probability measure on $\sigma(\mathcal{A})$ which is an extension of \mathbb{P} , i.e. the measures agree on all elements of \mathcal{A} .

Definition 1.8 (Limits of sets). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and assume $(A_i) \in \mathcal{F}$. Then define $\limsup_{m \to \infty} A_n$ as

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m \ge n} A_m = \overline{\lim} A_n$$

An element $\omega \in \overline{\lim} A_n$ if and only if $\omega \in A_m$ for some $m \ge n$ for all n - that is, ω is in infinitely many of the sets A_m .

Similarly, define $\liminf_{m\to\infty} A_n$ as

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m \ge n} A_m = \underline{\lim} A_n$$

An element $\omega \in \underline{\lim} A_n$ if and only if ω is in all but a finite number of sets A_m . Clearly,

$$\underline{\lim}A_n \subseteq \overline{\lim}A_n$$

If $\underline{\lim} A_n$ and $\overline{\lim} A_n$ coincide we write it as $\lim A_n$.

Lemma 1.9. Assume the continuity property holds. If $A_n \downarrow A$ then $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$, and if $A_n \uparrow A$ then $\mathbb{P}(A_n) \uparrow \mathbb{P}(A)$.

Proof. If $A_n \downarrow A$, then $A_n \supseteq A_{n+1} \ldots$ and $\bigcap_{n=1}^{\infty} A_n = A$. We can write $A_n = (A_n - A) \cup A$. Then we have

$$\mathbb{P}(A_n) = \mathbb{P}(A_n - A) + \mathbb{P}(A)$$
$$\mathbb{P}(A_n) \ge \mathbb{P}(A)$$

By the continuity property, $\mathbb{P}(A_n - A) \to 0$, and so $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$.

2. Lecture 2 - Thursday 3 March

Theorem 2.1.

$$\mathbb{P}(\underline{\lim}A_n) \le \underline{\lim}\mathbb{P}(A_n) \le \overline{\lim}\mathbb{P}(A_n) \le \mathbb{P}(\overline{\lim}A_n)$$

Proof. We know $A_n \downarrow \underline{\lim} A_n$, and so from Lemma 1.9 we have that a.

Definition 2.2 (Measurable function). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X : \Omega \to \mathbb{R}$ be real valued function on Ω . Then X is **measurable** with respect to \mathcal{F} if $X^{-1}(B)$ is an element of \mathcal{F} for every B in the Borel σ -field of \mathbb{R} .

Definition 2.3 (Random variable). A random variable is a measurable function from Ω to \mathbb{R} .

Definition 2.4 (Expectation). If $\int_{\Omega} |X(\omega)| d\mathbb{P} < \infty$ then we can define $\mathbb{E}(X) = \int_{\Omega} X(\omega) d\mathbb{P}$

Definition 2.5 (Distribution). X induces a probability measure \mathbb{P}_X on \mathbb{R}

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(S)), S \in \mathcal{B}$$

 P_X is called the **distribution** of X. $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$ is a probability space. The distribution function $F_X(x) = \mathbb{P}(\{\omega : X(\omega) \le x\}) = \mathbb{P}_X((-\infty, x])$. We have $\mathbb{E}(X) = \int_{\mathbb{R}} x \, dP_X(x) = \int_{\mathbb{R}} x \, dF_X(x)$.

2.1. Key results from Measure Theory.

Theorem 2.6 (Monotone convergence theorem). If $0 \leq X_n \uparrow Xa.s$ then $0 \leq \mathbb{E}(X_n) \uparrow \mathbb{E}(X)$ where $\mathbb{E}(X)$ is infinite if $\mathbb{E}(X_n) \uparrow \infty$.

Theorem 2.7 (Dominated convergence theorem). If $\lim X_n = Xa.s.$ and $|X_n| \leq Y$ for all $n \geq 1$, with $\mathbb{E}(|Y|) < \infty$ then $\lim \mathbb{E}(X_n) = \mathbb{E}(X)$.

Theorem 2.8 (Fatau's Lemma). If $X_n \ge Y$ for all n with $\mathbb{E}(|Y|) < \infty$ then

 $\mathbb{E}(\liminf X_n) \le \liminf \mathbb{E}(X_n)$

Theorem 2.9 (Composition). Let $(\Omega, \mathcal{F}, \mathbb{P})$ and (Ω', \mathcal{F}') be spaces. Let $\Phi : \Sigma \to \Sigma'$ be measurable. Define \mathbb{P}_{Φ} on \mathcal{F} by $\mathbb{P}_{\Phi}(M) = \mathbb{P}(\Phi^{-1}(M))$. Let X' be a measurable function from Σ' to \mathbb{R} . Then $X(\omega) = X'(\Phi(\omega))$ is a measurable function. Then we have

$$\mathbb{E}(X) = \int_{\Omega'} X' \, d\mathbb{P}_{\varphi}$$

Proof. Suppose X' is an indictor function for $A \in \mathcal{F}'$. Then

$$\int_{\Omega'} X' d\mathbb{P}_{\varphi} = \int_{A} d\mathbb{P}_{\varphi} = \mathbb{P}_{\varphi}(A) = \mathbb{P}(\varphi^{-1}(A)) = \mathbb{E}(X)$$

So the result is true for simple functions.

Now, suppose $X' \ge 0$. Then there exists a pointwise increasing sequence of simple functions X'_n such that $X'_n \to X'$. By the monotone convergence theorem, we know

$$\lim_{n \to \infty} \int_{\Omega'} X'_n \, d\mathbb{P}_{\varphi} = \int_{\Omega'} X' \, d\mathbb{P}_{\varphi}$$

But $X_n(\omega) = X'_n(\Phi(\omega))$ are also simple functions increasing to X. Hence, we know that $\lim_{n\to\infty} \mathbb{E}(X_n) = \mathbb{E}(X)$.

3. Lecture 3 - Thursday 10 March

Theorem 3.1 (Jensen's inequality). Let $\varphi(x)$ be a convex function on \mathbb{R} . Let X be a random variable. Assume $\mathbb{E}(X) < \infty$, $\mathbb{E}(\varphi(X)) < \infty$. Then

$$\varphi(E(X)) \le \mathbb{E}(\varphi(X))$$

Theorem 3.2 (Hölder's inequality). Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then we have

$$|\mathbb{E}(XY)| \le \mathbb{E}(|XY|) \le \left(\mathbb{E}(|X|^p)\right)^{1/p} \left(\mathbb{E}(|Y|^q)\right)^{1/q}$$

If p = q = 2 we obtain the Cauchy-Swartz inequality $\mathbb{E}(|XY|) \leq (\mathbb{E}(|X|^2))^{1/2} (\mathbb{E}(|Y|^2))^{1/2}$. If Y = 1 then $\mathbb{E}(|X|) \leq (\mathbb{E}(|X|^p))^{1/p}$. *Proof.* Let W be a random variable taking values a_1 with probability 1/p, a_2 with probability 1/q, with 1/p + 1/q = 1. Applying Jensen's inequality with $\varphi(x) = -\log(x)$ gives

$$\mathbb{E}(-\log W) \ge -\log \mathbb{E}(W)$$

$$\frac{1}{p}(\log a_1) + \frac{1}{q}(-\log a_2) \ge -\log(\frac{a_1}{p} + \frac{a_2}{q})$$

$$-\log(a_1^{1/p} \cdot a_2^{1/q}) \ge -\log(\frac{a_1}{p} + \frac{a_2}{q})$$

$$a_1^{1/p} \cdot a_2^{1/q} \le \frac{a_1}{p} + \frac{a_2}{q}$$

Where the inequality is trivial if a_1 or a_2 is zero.

Setting $a_1 = |x|^p$ and $a_2 = |y|^q$, we obtain

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}$$

Let $x = \frac{X}{(\mathbb{E}(|X|^p))^{1/p}}$ and $y = \frac{Y}{(\mathbb{E}(|Y|^q))^{1/q}}$ or take expectations across the inequality, we obtain $\mathbb{E}(|YV|) \leq (\mathbb{E}(|Y|^p))^{1/p} (\mathbb{E}(|V|^q))^{1/q}$

$$\mathbb{E}(|XY|) \le (\mathbb{E}(|X|^p))^{1/p} \left(\mathbb{E}(|Y|^q)\right)^{1/q}$$

		1

Example 3.3. If 1 < r < r' then $\frac{r'}{r} > 1$. Then

$$\mathbb{E}(|X|^r) \le (\mathbb{E}((|X|^r)^{r'/r}))^{1/(r'/r)} = (\mathbb{E}(|X|^{r'}))^{r'/r}$$

Theorem 3.4 (Liapounov's inequality).

$$(\mathbb{E}|X|^r)^{1/r} \le (\mathbb{E}(|X|^{r'}))^{1/r'}$$

Corollary 3.5. Thus if $\mathbb{E}(|X|^r) < \infty$ then X has all moments of lower order finite i.e. $\mathbb{E}(|X|^p) < \infty$ for all $1 \le p \le r$

Theorem 3.6 (Minkowski's inequality). If $p \ge 1$, then

$$(\mathbb{E}(|X+Y|^p))^{1/p} \le (\mathbb{E}(|X|^p))^{1/p} + (\mathbb{E}(|Y|^p))^{1/p}$$

Proof.

$$\mathbb{E}(|X+Y|^p) \le \mathbb{E}(|X| \cdot |X+Y|^{p-1} + \mathbb{E}(|Y| \cdot |X+Y|^{p-1}))$$
$$= \mathbb{E}(|X|^p)^{1/p} (\mathbb{E}(|X+Y|^{p-1})^q)^{1/q} + \mathbb{E}(|Y|^p)^{1/p} (\mathbb{E}(|X+Y|^{p-1})^q)^{1/q})$$

Let 1/p + 1/q = 1. Then from Hölder,

$$\mathbb{E}(|X+Y|^p) \le (\mathbb{E}(|X+Y|^p))^{1/q} \cdot ((\mathbb{E}(|X|^p))^{1/p} + (\mathbb{E}(|Y|^p))^{1/p})^{1/p}$$

and so

$$(\mathbb{E}(|X+Y|^p))^{1/p} \le (\mathbb{E}(|X|^p))^{1/p} + (\mathbb{E}(|Y|^p))^{1/p}$$

3.1. Modes of Convergence. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X_n(\omega), n \ge 1$ is a sequence of random variables.

Definition 3.7 (Almost surely convergence). We say X_n converges almost surely if

$$\mathbb{P}(\{\omega \,|\, X_n(\omega) \text{ has a limit}\}) = 1$$

We write $X_n \stackrel{a.s.}{\to} X$ where X denotes the limiting random variable.

Definition 3.8 (Convergence in probability). X_n converges in probability to X

$$X_n \xrightarrow{p} X$$

if for all $\epsilon > 0$,

$$\mathbb{P}(\{\omega \mid |X_n(\omega) - X(\omega)| > \epsilon\}) \to 0$$

or alternatively,

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0$$

Definition 3.9 (Convergence in mean). X_n converges to X in mean of order p (or in L^p) if

 $\mathbb{E}(|X_n - X|^p) \to 0$

We write $X_n \xrightarrow{L^p} X$. We note that for convergence of order L^p , we need $\mathbb{E}(|X_n|^p) < \infty$.

Theorem 3.10. If $X_n \xrightarrow{L^p} X$ then $X_n \xrightarrow{p} X$ for any p > 0.

4. Lecture 4 - Thursday 10 March

Lemma 4.1. Let C_1, C_2, \ldots be sets in \mathcal{F} and $\sum_n \mathbb{P}(C_n) < \infty$. Then $\mathbb{P}(\overline{\lim}C_n) = 0$

Proof. Since $\overline{\lim} C_n = \bigcap_{n=1}^{\infty} \bigcup_{m \ge n} C_m$, we have

$$\mathbb{P}(\overline{\lim}C_n) \le \mathbb{P}(\bigcup_{m \ge n} C_m) \le \sum_{m \le n} \mathbb{P}(C_m) \to 0$$

Theorem 4.2. If there exists a sequence of positive constants $\{\epsilon_n\}$ with $\sum_n \epsilon_n < \infty$ and

$$\sum_{n} \mathbb{P}(|X_{n+1} - X_n| > \epsilon_n) < \infty$$

then X_n converges almost surely to some limit X.

Proof. Let $A_n = \{|X_{n+1} - X_n| > \epsilon_n$. So from the above Lemma, $\mathbb{P}(\overline{\lim}A_n) = 0$. We also have that $\omega \in \overline{\lim}A_n$ if and only if ω is in infinitely many A_m . For $\omega \notin \overline{\lim}A_n$, then there is a last set containing ω . Define $N(\omega) = n$ if $\omega \in \bigcup_{m \ge n} A_m - \bigcup_{m > n} A_m$, and zero if $\omega \in (\bigcup m \ge 1A_m)^c$.

For $\omega \notin \overline{\lim} A_n$, we have $\sum_{n=1}^{\infty} X_{n+1}(\omega) - X_n(\omega)$ exists as $\sum_n \epsilon_n < \infty$. Since

$$X_n(\omega) = X_1(\omega) + (X_2(\omega) - X_1(\omega)) + \dots + (X_n(\omega) - X_{n-1}(\omega))$$

we know $\lim X_n(\omega)$ exists - i.e. $\mathbb{P}(\lim X_n(\omega))$ exists) = 1.

Theorem 4.3. Every sequence of random variables X_n that converges almost surely converges in probability. Conversely, if $X_n \xrightarrow{p} X$ then there exists a subsequence $\{X_{n_k}\}$ which converges almost surely.

Proof. Assume $X_n \xrightarrow{a.s.} X$. Let $\epsilon > 0$. Consider $\overline{\lim} \mathbb{P}(|X_n - X| > \epsilon) \leq \mathbb{P}(\limsup\{|X_n - X| > \epsilon\})$ by a previous theorem (Theorem 2 in Lecture Notes). We have

$$\limsup\{|X_n - X| > \epsilon\} = \{\omega \mid |X_n(\omega) - X(\omega)| > \epsilon \text{ infinitely often}\}$$
$$\subseteq \{\omega \mid \lim X_n(\omega) \neq X(\omega)\}$$

Hence, we have

$$\mathbb{P}(\overline{\lim}|X_n - X| > \epsilon) \le 1 - P(\lim X_n(\omega) = X(\omega)) = 0 \quad \text{as } X_n \xrightarrow{a.s.} X$$

since $\lim \mathbb{P}(|X_n - X| > \epsilon) = 0.$

Conversely, assume $X_n \xrightarrow{p} X$. Given $\epsilon > 0$, consider $\mathbb{P}(|X_n - X_m| > \epsilon) \leq \mathbb{P}(|X - X_m| > \epsilon/2 + \mathbb{P}(|X - X_n| > \epsilon/2))$ (If $|X - X_n| \leq \epsilon/2$ and $|X - X_m| \leq \epsilon/2$, then $|X_n - X_m| \leq \epsilon$ by the triangle inequality). Thus, $\mathbb{P}(|X_m - X_n| > \epsilon) \to 0$ as m and $n \to 0$. Set $n_1 = 1$ and define n_j to be the smallest integer $N > n_{j-1}$ such that

$$\mathbb{P}(|X_r - X_s| > 2^{-j}) < 2^{-1}$$
 when $r, s > N$

Then apply Theorem 4.2, and as

$$\sum_{j} \mathbb{P}(|X_{n_{j+1}} - X_{n_j}| > 2^{-j}) < \sum 2^{-j} = 1 < \infty$$

we know that X_{n_i} converges almost surely.

Example 4.4. We now construct an example where $X_n \xrightarrow{p} 0$ but X_n does not converge almost surely to 0.

Let $\Omega = [0,1], \mathcal{F}$ the Borel σ -field, and \mathbb{P} the Lebesgue measure. Let $\varphi_{kj} = \mathbb{I}_{[j-1/k,j/k]}$ for $j = 1, \ldots, k$ and $k = 1, 2, \ldots$

Let $X_1 = \varphi_{11}, X_2 = \varphi_{21}, X_3 = \varphi_{22}$, etc. For any p > 0,

$$\mathbb{E}(|X_n|^p) = \int X_n \, d\mathbb{P} = [j_n - 1/k_n, j_n/k_n] \to 0$$

and so $X_n \xrightarrow{L^p} 0$.

However, for each $\omega \in \Omega$ and each k there are some j such that $\varphi_{kj}(\omega) = 1$. Thus $X_n(\omega) = 1$ infinitely often. Similarly $X_n(\omega) = 0$ infinitely often. Hence X_n does not converge almost surely to 0.

5. Lecture 5 - Thursday 17 March

Following from the previous lecture, we now modify the examples to show convergence in probability does not imply convergence in L^p even when $\mathbb{E}(|X_n|^p) < \infty$.

From 4.4, replace φ_{kj} by $k^{1/p}\varphi_{kj}$. Then

$$\mathbb{P}(|X_n| > 0) = 1/k_n \to 0$$

as $n \to \infty$. Similar, y

$$\mathbb{E}(|X_n|^p) = (k_n^{1/p})^p \mathbb{P}(X_n \neq 0) = 1$$

and so

$$\lim_{n \to \infty} \mathbb{E}(|X_n|^p) = 1$$

and thus X_n does not converge in L^p to zero. Thus convergence in probability does not imply convergence in L^p .

Next define $X_1 = \varphi_{11}, X_n = \varphi_{n1} n^{1/p}$. Then

$$X_n(\omega) \to 0$$

for $\omega > 0$ so $X_n \stackrel{a.s.}{\to} 0$. We also have

$$\mathbb{E}(|X_n|^p) = (n^{1/p})^p \frac{1}{n} = 1$$

and so X_n does not converge in L^p to zero.

Definition 5.1 (Uniform integrability). A sequence $\{X_n\}$ is uniformly integrable if

$$\lim_{y \to \infty} \sup_{n} \int_{|X_n| \ge y} |X_n| \, d\mathbb{P} = 0$$

Theorem 5.2 (Convergence in probability and uniform integrability imply convergence in L^p). If $X_n \xrightarrow{p} X$ and $\{|X_n|\}$ is uniformly integrable, then $X_n \xrightarrow{L^p} X$.

Definition 5.3 (Independence). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$ The events are said to be independent if

$$\mathbb{P}(A_{i_1},\ldots,A_{i_k})=\mathbb{P}(A_{i_1})\ldots\mathbb{P}(A_{i_k})$$

for all $1 \le i_1 < \dots < i_k \le n, \ k = 2, 3, \dots, n$.

In the infinite case, let $\{A_{\alpha}, \alpha \in I\}$, I an index set, is a set of independent events if each finite subset is independent.

Definition 5.4 (Independence of random variables). Let X_1, \ldots, X_n be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. X_1, \ldots, X_n are independent if $A_i = \{X_i \in S_i\}$ are independent for every set of Borel sets, $S_i \in \mathcal{B}$.

Alternatively, let X and Y be random variables. Let \mathcal{B}_2 be the Borel σ -field on \mathbb{R}^2 . $Z(\omega) = (X(\omega), Y(\omega))$ is then a map form Ω to \mathbb{R}^2 . Z is Borel measurable if

$$Z^{-1}(S) \in \mathcal{F}$$

for all $S \in \mathcal{B}_2$. $\mathbb{P}_{X,Y}$ is the induced measure on B_2 , and $F_{X,Y}$ is the joint distribution of (X,Y). Let

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x],(-\infty,y]) = \mathbb{P}(\{\omega : X(\omega) \le x, Y(\omega) \le y\})$$

Theorem 5.5. If X and Y are independent then

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

Theorem 5.6. Let X and Y be independent, with $\mathbb{E}(|X|) < \infty$ and $\mathbb{E}(|Y) < \infty$. Then

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Proof. Start with simple functions. Then

$$X(\omega) = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}(\omega)$$

with $\{A_i\}$ disjoint. Let

$$Y(\omega) = \sum_{j=1}^{m} b_j \mathbf{1}_{B_j}(\omega)$$

with $\{B_j\}$ disjoint.

Independence implies $\mathbb{P}(A_i B_j) = \mathbb{P}(A_i)\mathbb{P}(B_j)$.

Then

$$\mathbb{E}(XY) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \mathbb{E}(\mathbf{1}_{A_i} \mathbf{1}_{B_j})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \mathbb{P}(A_i B_j)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \mathbb{P}(A_i) \mathbb{P}(B_j)$$

by independence.

Now extend to non-negative random variables X, Y by constructing sequences of simple functions using monotone convergence theorem. Let

$$X_n(\omega) = \frac{i}{2^n}$$
 if $\frac{i}{2^n} < X(\omega) \le \frac{i+1}{2^n}, i = 0, 1, \dots, n2^n$

and zero if $X(\omega) > n$.

For simple functions, we have

$$\mathbb{E}(X_n Y_n) = \mathbb{E}(X_n)\mathbb{E}(Y_n)$$

and so by the monotone convergence theorem,

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

11

Theorem 5.7. Let X and Y be independent random variables. Then

$$\mathbb{E}(|X+Y|^r) < \infty$$

if and only if

$$\mathbb{E}(|X|^r) < \infty \text{ and } \mathbb{E}(|Y|^r) < \infty$$

for any r > 0.

Lemma 5.8 (c_r inequality). We have

$$|x+y|^r \le c_r (|x|^r + |y|^r)$$

for x, y real, c_r constant, $r \ge 0$.

Proof. If r = 0, trivial.

If r = 1, we obtain the triangle inequality.

If r > 1, we have

$$|x + y|^{r} \leq [2\max(|x|, |y|)]^{r}$$

= 2^r max(|x|^r, |y|^r)
 $\leq 2^{r}(|x|^{r}, |y|^{r})$

and setting $c_r = 2^r$ proves for r > 1.

If 0 < r < 1, consider $f(t) = 1 + t^r - (1 + t)^r$, with f(0) = 0. Differentiating, we have $f'(t) = rt^{r-1} - r(1 + t)^{r-1} \ge 0$ for t > 0. Thus f(t) is increasing for t > 0. Hence

$$f(t) > f(0) = 0$$
$$1 + t^r \ge (1+t)^r.$$

Using $t = \frac{|y|}{|x|}$, we obtain

$$(|x| + |y|)^r \le |x|^r + |y|^r$$

Lemma 6.1. For any $\alpha > 0$ and distribution function F,

$$\int_0^\infty x^\alpha \, dF(x) = \alpha \int_0^\infty x^{\alpha - 1} [1 - F(x)] \, dx$$

Proof. Consider. Integrating by parts, we have that this is equal to

$$\int_0^b x^{\alpha} dF(x) = -\int_0^b x^{\alpha} d(1 - F(x))$$

= $[-x^{\alpha}](1 - F(x))|_0^b + \int_0^b \alpha x^{\alpha - 1}(1 - F(x)) dx$
= $-b^{\alpha}(1 - F(b)) + \int_0^b \alpha x^{\alpha - 1}(1 - F(x)) dx$

We also have

$$0 \le b^{\alpha}(1 - F(b)) \le \int_{b}^{\infty} x^{\alpha} \, dF(x)$$

If the LHS converges then $\lim_{b\to\infty} \int_0^\infty x^\alpha dF(x) \to 0$. Thus the term $b^\alpha(1-F(b))$ is squeezed to zero.

Conversely,

$$\int_0^b x^\alpha \, dF(x) \le \int_0^b \alpha x^{\alpha - 1} (1 - F(x)) \, dx$$
$$\alpha x^{\alpha - 1} (1 - F(x)) \, dx < \infty \Rightarrow \int_0^\infty x^\alpha \, dF(x) < \infty$$

and so

$$\int_0^\infty \alpha x^{\alpha-1} (1 - F(x)) \, dx < \infty \Rightarrow \int_0^\infty x^\alpha \, dF(x) < \infty.$$

Theorem 6.2. Let X, Y independent and r > 0. Then

$$\mathbb{E}(|X+Y|^r) < \infty \iff \mathbb{E}(|X|^r)\infty, \mathbb{E}(|Y|^r) < \infty$$

Proof. If $\mathbb{E}(|X|^r) < \infty$, $\mathbb{E}(|Y|^r) < \infty$. Then

$$\mathbb{E}(|X+Y|^r) \le c_r(\mathbb{E}(|X|^r) + \mathbb{E}(|Y|)^r) < \infty$$

Assume $\mathbb{E}(|X+Y|^r) < \infty$. Assume X and Y have median 0 (without loss of generality). Then

$$\mathbb{P}(X \le 0) \ge \frac{1}{2}, \mathbb{P}(X \ge 0) \ge \frac{1}{2}$$

Similarly for Y.

Now,

$$\begin{split} \mathbb{P}(|X| > t) &= P(X < -t) + P(X > t), t > 0 \\ &= \frac{P(X < -t, Y \le 0)}{P(Y \le 0)} + \frac{P(X > t, Y \ge 0)}{P(Y \ge 0)} \\ &= 2P(X + Y \le -t) + 2P(X + Y > t) \\ &= 2P(|X + Y| > t) \end{split}$$

by independence.

Using the previous lemma, we have

$$\begin{split} \mathbb{E}(|X|^r)\int_0^\infty x^r\,dF(x) &= r\int_0^\infty x^{r-1}P(|X|>x)\,dx\\ &\leq 2r\int_0^\infty x^{r-1}P(|X+Y|>x)\,dx\\ &= 2r\mathbb{E}(|X+Y|^r). \end{split}$$

So $\mathbb{E}(|X+Y|^r) < \infty \Rightarrow \mathbb{E}(|X|^r) < \infty$. Similarly for $\mathbb{E}(|Y|^r) < \infty$.

Theorem 6.3. If X and Y are independent with distribution functions F and G respectively, then

$$P(X + Y \le x) = \int_{\mathbb{R}} F(x - y) \, dG(y)$$
$$= \int_{\mathbb{R}} G(x - y) \, dF(y)$$

Proof. This is just a simple statement of Fubini's theorem.

Corollary 6.4. Suppose that X has an absolutely continuous distribution function

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$

for some density function f with $\int_{\mathbb{R}} f(x) dx = 1$ and $f \ge 0$.

Let Y be independent of X. Then X + Y has an absolutely continuous distribution with density

$$\int_{\mathbb{R}} f(x-y) \, dG(y)$$

Thus we have

$$P(X + Y \le x) = \int_{\mathbb{R}} \int_{-\infty}^{x} f(t - y) dt dG(y)$$
$$= \int_{-\infty}^{x} \int_{\mathbb{R}} f(t - y) dG(y) dt$$

Definition 6.5. A distribution function F that can be represented in the form

$$F(x) = \sum_{j} b_j \mathbf{1}_{[a_j,\infty]}(x)$$

with a_j real, $b_j \ge 0$, $\sum_{b_j} = 1$ is called **discrete**.

If a distribution function is continuous then it may be:

- (1) Absolutely continuous, in which case there is a density function $f \ge 0$ such that $F(b) F(a) = \int_a^b f(u) \, du$. f is called the density.
- (2) **Singular**, in which case F'(x) exists and equal zero almost everywhere with respect to the Lebesgue measure (see Chung §1.3)

Theorem 6.6. Any distribution function F can be written uniquely as a convex combination of a discrete, an absolutely continuous, and a singular distribution. By convex, we mean a linear combination with non-negative coefficients summing to one.

Theorem 6.7 (Chebyshev's inequality). Let X be a random variable and g an increasing, nonnegative function. If g(a) > 0, then

$$P(X \ge a) \le \frac{\mathbb{E}(g(X))}{g(a)}.$$

Proof. We have

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}} g(x) \, dF(x)$$
$$\geq \int_{a}^{\infty} g(x) \, dF(x)$$
$$\geq g(a) \int_{a}^{\infty} dF(x)$$
$$= g(a) P(X \ge a)$$

Corollary 6.8. Let $g(x) = x^2$. Then

$$P(|X - \mathbb{E}(X)| > a) \le \frac{Var(X)}{a^2}$$

Let $g(x) = e^{ax}$. Then

$$P(X \ge a) \le \frac{\mathbb{E}(e^{cX})}{e^{ca}} = e^{-ca}\mathbb{E}(e^{cX})$$

Let $g(x) = |x|^k, k > 0$. Then

$$P(|X| \ge a) \le \frac{\mathbb{E}(|X|^k)}{a^k}$$

7. Lecture 7 - Thursday 24 March

Definition 7.1 (Weak law of large numbers). Let $X_1, \ldots, X_n \ldots$ be IID random variables with $\mathbb{E}(X_i) = \mu$, $\operatorname{Var}(X_i) = \sigma^2 < \infty$. Then

 $\overline{X}_n \overset{p}{\to} X$

Proof.

$$P(|\overline{X}_n) \le \frac{\mathbb{E}(\overline{X}_n - \mu)^2}{\epsilon^2}$$
$$= \frac{\sigma^2/n}{\epsilon^2} \to 0$$

as $n \to \infty$.

We have

$$\mathbb{E}(|\overline{X}_n - \mu|^2) = \sigma^2/n \to 0$$

and so \overline{X}_n converges to μ in L^2

We can relax the assumptions to $E(|X) < \infty$ (no need to have finite variance). See Chung (1974) p.109, Theorem 5.2.2.

Theorem 7.2. Let X_i be uncorrelated, and $\mathbb{E}(X_i) = \mu_i$, $Var(X_i) = \sigma_i^2 < \infty$ with

$$\frac{1}{n^2}\sum_{i=1}^n\sigma_i^2\to 0$$

then we have

$$\overline{X}_n - \frac{1}{n} \sum_{i=1}^n \mu_i \xrightarrow{p} 0$$

Proof.

$$P(|\overline{X}_n - \frac{1}{n}\sum_{i=1}^n \mu_i| > \epsilon) = P(\frac{1}{n}\sum_{i=1}^n (X_i - \mu_i)| > \epsilon)$$
$$\leq \frac{\operatorname{Var}(\frac{1}{n}\sum_{i=1}^n (X_i - \mu_i))}{\epsilon^2} \to 0$$

as $\sum_{1} n^2 \sum_{i=1}^n \sigma_i^2 \to 0$.

Theorem 7.3 (Borel-Cantelli lemma). Let A_1, \ldots be events in a probability space. Let $B = \lim \sup A_n = \bigcap_{n \ge 1} \bigcup_{m \ge n} A_m$. Then

(i) $\sum_{n} P(A_n) < \infty$ then P(B) = 0.

(ii) If A_i are independent and $\sum_n P(A_n) \to \infty$ then P(B) = 1.

For (ii) we need independence. Consider $A_i = A$ where $P(A) = \frac{1}{3}$. Then

$$B = \limsup A_n = A$$

and $P(B) = \frac{1}{3}$

Proof. Preliminary lemma - if 0 < x < 1, then $\log(1-x) < -x$. We can then show that if $\sum_n a_n \to \infty$ then $\prod_n (1-a_n) \to 0$.

$$P(B) \le P(\bigcup_{m \ge n} A_n) \le \sum_{m \ge n} P(A_m) \to 0$$

and so P(B) = 0.

(ii) We will prove $P(\bigcup_{m \ge n} A_m) = 1$ for all n. Take K > n. Then

$$1 - P(\bigcup_{m \ge n} A_m) \le 1 - P(\bigcup_{m=n}^{K} A_m)$$
$$= P((\bigcup_{m=n}^{K} A_n)^c)$$
$$= P(\bigcup_{m=n}^{K} A_m^c)$$
$$= \prod_{m=n}^{K} (1 - P(A_m)) \text{ by independence}$$
$$\to 0$$

as $\sum_{n} P(A_n) \to \infty$ as $K \to \infty$. Thus

$$P(\bigcup_{m \ge n} A_m) = 1$$

for all m, and so P(B) = 1.

-	-	-	۰.	
L			L	
L			L	
L			л	

Theorem 7.4 (Strong law of large numbers). Let X_1, \ldots be IID random variables. Let $\mathbb{E}(X_1) = \mu$, $\mathbb{E}(X_1^4) < \infty$. Let $S_n = \sum_{j=1}^n X_j$. Then

$$\overline{X}_n = \frac{1}{n} S_n \stackrel{a.s.}{\to} \mu$$

Proof.

$$\mathbb{E}(\sum_{i=1}^{n} (X_i - \mu))^4 = \sum_{i=1}^{n} E(X_i - \mu)^4 + 6\binom{n}{2}\sigma^4$$

= $n\mathbb{E}(X_1 - \mu)^4 + 3n(n-1)\sigma^4$
 $\leq Cn^2.$

From Chebyshev, we have

$$P(|S_n - \mu n| > \epsilon n) \le \frac{E(S_n - \mu n)^4}{(\epsilon n)^4}$$
$$\le \frac{cn^2}{\epsilon^4 n^4} = \frac{k}{n^2}$$

and so

$$\sum_{n} P(|S_n - n\mu| > n\epsilon) < \infty,$$

and so $P(\limsup\{|\frac{S_n}{n} - \mu| > \epsilon\}) = 0$. Letting $A_{\epsilon} = \{|\frac{S_n}{n} - \mu| > \epsilon\}$. Then $P(|\frac{S_n}{n} - \mu| \text{ does not converge to zero}) = P(\bigcup_k A_{1/k})$ $\leq \sum_k P(A_{1/k})$ = 0

by Borel-Cantelli.

8. Lecture 8 - Thursday 24 March

Let X_1, \ldots be IID random variables with mean μ . Then

$$P(\lim_{n \to \infty} \frac{S_n}{n} = \mu) = 1$$

Conversely, if $\mathbb{E}(|X|)$ does not exist, then

$$P(\limsup|\frac{S_n}{n}| = \infty) = 1$$

Theorem 8.1. If $E(X^2) < \infty$, and $\mu = 0$ (WLOG),

$$P(|n^{-\alpha}S_n| \ge \epsilon) \le \frac{E(S_n^2)}{n^{2\alpha}\epsilon^2} = n^{1-2\alpha}\sigma^2/\epsilon^2 \to 0$$

provided $S \ge \frac{1}{2}, n^{-\alpha}S_n \xrightarrow{p} 0.$

Theorem 8.2 (Hausdorff (1913)). $|S_n| = \mathcal{O}(n^{\frac{1}{2}+\epsilon})$ a.s for any $\epsilon > 0$. Assumes $\mathbb{E}(|X_i|^r) < \infty$ for r = 1, 2, ...

Proof. Previously, we showed $\mathbb{E}(S_n^4) \leq Cn^2$ for some C > 0. Then we can extend this to

$$\mathbb{E}(S_n^{2k}) \le c_k n^k, k = 1, 2, \dots$$

Then

$$P(n^{-\alpha}|S_n| > a) \ge \frac{c_k n^k}{(an^{\alpha})^{2k}}$$
$$= c_k a^{-2k} n^{k(1-2\alpha)}$$

and so

$$\sum P(n^{-\alpha}|S_n| > a) < \infty$$

 $\begin{array}{l} \text{if } k(1-2\alpha)>-1 \text{ i.e. } \alpha \geq \frac{1}{2}+\frac{1}{2k}.\\ \text{By Borel-Cantelli, } P(|S_n|>an^{\alpha}\,i.o.)=0 \text{ if } \alpha>\frac{1}{2}+\frac{1}{2k}. \end{array}$

Theorem 8.3 (Hardy and Littlewood (1914)). $|S_n| = \mathcal{O}(\sqrt{n \log n})$ a.s.

Lemma 8.4. Suppose $|X_i| \leq M$ a.s. (X_i is bounded). Then for any $x \in [0, \frac{2}{M}]$, we have

$$\mathbb{E}(e^{xS_n}) \le \exp[\frac{nx^2\sigma^2}{2}(1+xM)]$$

Proof. The random variables e^{xX_i} are independent, so $\mathbb{E}(e^{xS_n}) = \left[\mathbb{E}(e^{xX_1})\right]^n$. We can then evaluate

$$\begin{split} \mathbb{E}(e^{xX_1}) &= \mathbb{E}\left[\sum_{k=0}^{\infty} \frac{(xX_1)^k}{k!}\right] \\ &= 1 + 0 + x^2 \sigma^2 / 2 + \mathbb{E}(\sum_{k=3}^{\infty} \frac{(xX_1)^k}{k!}) \\ &\leq 1 + x^2 \sigma^2 / 2 + \sum_{k=3}^{\infty} \frac{x^k M^{k-2} \sigma^2}{k!} \\ &\leq 1 + x^2 \sigma^2 / 2 + \sigma^2 M^{-2} / 3! \sum_{k=3}^{\infty} \frac{x^k M^k}{3^{k-3}} \\ &= 1 + x^2 \sigma^2 / 2 + \sigma^2 M^{-2} / 6 \frac{(xM/3)^3}{(1 - xM/3)} \\ &= 1 + x^2 \sigma^2 / 2 = \frac{\sigma^2 M x^3}{6(1 - xM/3)}. \end{split}$$

If $0 \le x \le 2/M$, we have

$$\mathbb{E}(e^{xX_1}) \le 1 + \sigma^2 x^2 / 2 + \sigma^2 x^2 / 2(xM)$$

= $1 + \sigma^2 x^2 / 2(1 + xM)$
 $\le \exp(\sigma^2 x^2 / 2(1 + xM))$

г			
н			
н			
-		_	

Corollary 8.5. For $0 < a < \frac{2\sigma^2 n}{M}$, under the conditions of the above Lemma,

$$P(S_n \ge a) \le e^{-\frac{a^2}{2n\sigma^2}(1 - \frac{Ma}{n\sigma^2})}$$

Proof.

$$P(S_n \ge a) \le \frac{E(e^{xS_n})}{e^{ax}}$$
$$\le \exp(\frac{n\sigma^2 x^2}{2}(1+xM) - ax) \quad 0 < x \le \frac{2}{M}$$

Put $x = \frac{a}{n\sigma^2}$. Then

$$P(S_n \ge a) \le \exp(\frac{a^2}{2n\sigma^2}(1 = \frac{aM}{n\sigma^2}) - \frac{a^2}{n\sigma^2})$$
$$= \exp(\frac{-a^2}{2n\sigma^2}(1 - \frac{aM}{n\sigma^2}))$$

We can now prove the Hardy-Littlewood result. If $|X_i| \leq M$ almost surely then $|S_n| = O(\sqrt{n \log n})$ a.s.

Proof. Put $a = c\sqrt{n \log n}$. Then

$$P(S_n \ge c\sqrt{n\log n}) \le \exp(\frac{c^2\log n}{2\sigma^2}(1 - \frac{Mc\sqrt{\log n}}{\sqrt{n\sigma^2}}))$$
$$= n^{-c^2/2\sigma^2}\exp(\frac{Mc^3}{2\sigma^4}\frac{\log n\sqrt{\log n}}{\sqrt{n}})$$

If $c^2>2\sigma^2$ then $\sum_n P(S_n>c\sqrt{n\log n})<\infty.$ By Borel-Cantelli, we then have

$$P(S_n > c\sqrt{n\log n \, i.o.}) = 0$$

Now apply the argument to $-X_i$. Then

$$P(-S_n > c\sqrt{n\log n} \, i.o.) = 0$$

Theorem 8.6 (Khintchine (1923)). $|S_n| = \mathcal{O}(\sqrt{n \log \log n})$ a.s. **Theorem 8.7** (Khintchine (1924)). Let $X_i = \pm 1$ with probability $\frac{1}{2}$. Then

$$\limsup \frac{|S_n|}{\sqrt{n \log \log n}} = \sqrt{2}a.s.$$

9. Lecture 9 - Thursday 31 March

Definition 9.1 (Induced σ -field). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let Y be a set of random variables on (Ω, \mathcal{F}) . Then $\sigma(Y)$ is the smallest σ -field contained in \mathcal{F} with respect to which each $X \in Y$ is measurable.

That is, for each $B \in \mathcal{B}$, the Borel σ -field on \mathbb{R} , we have

$$X^{-1}(B) \in \sigma(Y)$$

Thus $\sigma(Y)$ is the intersection of all σ -fields which contain every set of the form $X^{-1}(B)$ for all $B \in \mathcal{B}, X \in Y$.

Definition 9.2 (Independent σ -fields). If X_1, \ldots are independent random variables and $A_i \in \sigma(X_i)$, then

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i) \tag{(\star)}$$

If $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are σ -fields contained in \mathcal{F} and (\star) holds for any $A_i \in \mathcal{F}_i$ then we sat the σ -fields are independent.

Theorem 9.3. Let $\mathcal{F}_0, \mathcal{F}_1, \ldots$ be independent σ -fields and let \mathcal{G} be σ -fields generated by any subset of $\mathcal{F}_1, \mathcal{F}_2, \ldots$. Then \mathcal{F}_0 is independent of \mathcal{G} .

Proof. Outline. Take \mathcal{G} to be the smallest σ -field containing $\mathcal{F}_1, \mathcal{F}_2, \ldots$

If $A \in \mathcal{F}_0$, $B \in \mathcal{G}$, then we need to show

$$P(A \cap B) = P(A)P(B).$$

- (1) Assume P(A) > 0.
- (2) If $B = A_1 \cap A_2 \dots A_n$ then the result is true.
- (3) Let \mathcal{G}_a be the class of **finite** unions of B. Then \mathcal{G}_a is a finitely additive field, and $G \in \mathcal{G}_a$ can be written as $G = \bigcup_{i=1}^k G_i$ where G_i has the form of B above. Then

$$P(A \cap G) = P(\bigcup_{i=1}^{k} A \cap G_i)$$

= $\sum P(A \cap G_i) = \sum_{i=j} P(A \cap G_i \cap G_j) + \dots$
= $P(A)P(G)$

by the inclusion-exclusion formula and independence of A and G_i .

(4) Now, let $P_A(B) = \frac{P(A \cap B)}{P(A)}$. Then P_A and P are measures on \mathcal{F} , and P and P_A agree on \mathcal{G}_a . Thus by the extension theorem they agree on the σ -field generated by \mathcal{G}_a which includes \mathcal{G} .

Definition 9.4 (Tail σ -field). Let X_1, X_2, \ldots be a sequence of random variables and let

$$\mathcal{F}_n = \sigma(\{X_n, X_{n+1}, \dots\})$$

be the σ field generated by X_n, X_{n+1} . Then

 $\mathcal{F}_n \supseteq F_{n+1} \supseteq F_{n+2} \dots$

and let

 $\mathcal{T} = \bigcap n \mathcal{F}_n$

be the tail σ -field.

 \mathcal{T} is the collection of events defined in terms of X_1, X_2, \ldots not affected by altering a finite number of the random variables.

Theorem 9.5 (The 0-1 law). Any set belonging to the tail σ -field of a sequence of independent random variables has probability 0 or 1.

Proof. We have $\sigma(X_n)$ is independent of $\sigma(\{X_{n+1}, X_{n+2}, ...\}) = \mathcal{F}_{n+1} \supseteq \mathcal{T}$ and so \mathcal{T} is independent of $\sigma(X_n)$ for every n. By the previous theorem, it follows that \mathcal{F} is independent of $\mathcal{G} = \sigma(\{X_1, X_2, ...\})$ but as $\mathcal{T} \subseteq \mathcal{G}$, we know that \mathcal{T} is independent of itself. Thus, for any $A \in \mathcal{T}$,

$$P(A \cap A) = P(A)P(A)$$

and so P(A) = 0 or 1.

9.1. Martingales.

Definition 9.6 (Martingale). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\{\mathcal{F}_n\}$ be an increasing sequence of σ -fields.

$$\mathcal{F}_n \subseteq \mathcal{F}_{n+1} \subseteq \cdots \subseteq \mathcal{F}.$$

Let $\{S_n\}$ be a sequence of random variables on Ω . Then $\{S_n\}$ is a **martingale** with respect to $\{\mathcal{F}_n\}$ if

- (1) S_n is measurable with respect to \mathcal{F}_n .
- (2) $\mathbb{E}(|S_n|) < \infty$.
- (3) $\mathbb{E}(S_n | \mathcal{F}_m) = S_m$ almost surely for all $m \leq n$.

10. Lecture 10 - Thursday 31 March

Definition 10.1 (Supermartingale). $\{S_n\}$ is a supermartingale with respect to $\{\mathcal{F}_n\}$ if

(1) S_n is measurable with respect to \mathcal{F}_n .

(2) $\mathbb{E}(|S_n|) < \infty$.

(3) $\mathbb{E}(S_n | \mathcal{F}_m) \leq S_m$ almost surely for all $m \leq n$.

Definition 10.2 (Submartingale). $\{S_n\}$ is a submartingale with respect to $\{\mathcal{F}_n\}$ if

- (1) S_n is measurable with respect to \mathcal{F}_n .
- (2) $\mathbb{E}(|S_n|) < \infty$.
- (3) $\mathbb{E}(S_n | \mathcal{F}_m) \ge S_m$ almost surely for all $m \le n$.

Definition 10.3 (Regular martingale). Let X is a random variable $\mathbb{E}(|X|) < \infty$, $S_n = \mathbb{E}(X | \mathcal{F}_n)$ and assume $\{S_n\}$ is a martingale with respect to $\{F_n\}$.

If a martingale can be written in this way for some X then it is **regular**.

Not every martingale is a regular martingale.

Example 10.4. Assume $P(X_i = 1) = p$, $P(X_i = -1) = 1 - p$, and let $S_n = \sum_{i=1}^n X_i$. If $p \neq \frac{1}{2}$ then

$$Y_n = \left(\frac{1-p}{p}\right)^{S_n}$$

is a martingale with respect to $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, since

$$\mathbb{E}(Y_n \mid \mathcal{F}_{n-1}) = \mathbb{E}\left(\left(\frac{1-p}{p}\right)^{S_n + X_n} \mid \mathcal{F}_{n-1}\right)$$
$$= \left(\frac{1-p}{p}\right)^{S_n} \left[\left(\frac{1-p}{p}\right)p + \left(\frac{1-p}{p}\right)^{-1}(1-p)\right]$$
$$= Y_{n-1}$$

10.1. Conditional expectations. If $\mathcal{G} \subseteq \mathcal{F}$ then

$$L^{2}(\mathcal{G}) = \{X \mid \mathbb{E}(X^{2}) < \infty, X \text{ is } \mathcal{G}\text{-measurable}\}\$$

If $Y \in L^2$ define $Z = \mathbb{E}(Y \mid \mathcal{G})$ to be the projection of Y onto $L^2(\mathcal{G})$, where

$$\mathbb{E}(Y-Z)^2 = \inf_{U \in L^2(\mathcal{G})} \mathbb{E}(Y-U)^2$$

Then Y - Z will be orthogonal to the elements of $L^2(\mathcal{G})$. That is,

$$\int (Y-Z)X\,dP = 0$$

for all $X \in L^2(\mathcal{G})$. If $A \in \mathcal{G}$, then letting $X = \mathbf{1}_A$, we have

$$\int_{A} Y \, dP = \int_{A} \mathbb{E}(Y \,|\, \mathcal{G}) \, dP$$

If $Y \ge 0$ construct $\{Y_n\}$ with $Y_n \in L^2$ such that $Y_n \uparrow Y$. Define

$$\mathbb{E}(Y \,|\, \mathcal{G}) = \lim_{n \to \infty} \mathbb{E}(Y_n \,|\, \mathcal{G})$$

The limit exists as

$$\mathbb{E}(Y_n \,|\, \mathcal{G}) \ge \mathbb{E}(Y_m \,|\, \mathcal{G}), n \ge m$$

We still have

- (1) $\mathbb{E}(Y | \mathcal{G})$ is \mathcal{G} -measurable, and
- (2) For all $A \in \mathcal{G}$,

$$\int_{A} Y \, dP = \int_{A} \mathbb{E}(Y \,|\, \mathcal{G}) \, dP$$

 as

$$\int_{A} \mathbb{E}(Y \mid \mathcal{G}) \, dP = \lim_{n \to \infty} \int_{A} \mathbb{E}(Y_n \mid \mathcal{G}) \, dP = \lim_{n \to \infty} \int_{A} Y_n \, dP = \int_{A} Y \, dP$$

by the monotone convergence theorem.

If $Y \in L^1$, defining $Y = Y^+ - Y^-$, we define

$$\mathbb{E}(Y \,|\, \mathcal{G}) = \mathbb{E}(Y^+ \,|\, \mathcal{G}) - \mathbb{E}(Y^- \,|\, \mathcal{G}).$$

10.2. Stopping times.

Definition 10.5. A map

$$\nu: \Omega \to \mathbb{N} = \{0, 1, 2, \dots, \infty\}$$

is called a **stopping time** with respect to $\{\mathcal{F}_n\}$, an increasing sequence of σ -fields, if

$$\{\nu = n\} \in \mathcal{F}_n.$$

and thus

$$\{\nu \leq n\}, \{\nu > n\} \in \mathcal{F}_n$$

Theorem 10.6 (Properties of stopping times). Let $\mathcal{F}_{\infty} = \bigvee_{n=1}^{\infty} \mathcal{F}_n$, the σ -field generated by all \mathcal{F}_n . Then we have

(1) For all stopping times ν , ν is \mathcal{F}_{∞} -measurable.

$$\{\nu = n\} \in \mathcal{F}_n, \{\nu = \infty\} = \{\bigcup_n \{v = n\}\}^c \in \mathcal{F}_\infty$$

(2) The minimum and maximum of a countable sequence of stopping times is a stopping time. To prove this, let $\{v_k\}$ be a sequence of stopping times. Then

$$\{\max_{k} v_{k} \le n\} = \bigcap_{k} \{v_{k} \le n\} \in \mathcal{F}_{n}$$
$$\{\min_{k} v_{k} > n\} = \bigcap_{k} \{v_{k} > n\} \in \mathcal{F}_{n}$$

Lemma 10.7. Let $\{Y_n^1\}$ and $\{Y_n^2\}$ be two positive supermartingales with respect to $\{\mathcal{F}_n\}$, an increasing sequence of σ -fields. Let ν be a stopping time. If $Y_n^1 \geq Y_n^2$ on $[\nu = n]$, then

$$Z_n = Y_n^1 \mathbf{1}_{\{\nu > n\}} + Y_n^2 \mathbf{1}_{\{\nu \le n\}}$$

is a positive supermartingale.

Proof. We have that Z_n is \mathcal{F}_n -measurable and positive. We then have

$$\mathbb{E}(Z_{n} | \mathcal{F}_{n-1}) = \mathbb{E}(Y_{n}^{1} \mathbf{1}_{\{\nu > n\}} + Y_{n}^{2} \mathbf{1}_{\{\nu \le n\}} | \mathcal{F}_{n-1})$$

$$= \mathbb{E}(Y_{n}^{1} \mathbf{1}_{\{\nu > n-1\}} - Y_{n}^{1} \mathbf{1}_{\{\nu = n\}} + Y_{n}^{2} \mathbf{1}_{\{\nu \le n-1\}} + Y_{n}^{2} \mathbf{1}_{\{\nu = n\}} | \mathcal{F}_{n-1})$$

$$\leq Y_{n}^{1} \mathbf{1}_{\{\nu > n-1\}} + Y_{n}^{2} \mathbf{1}_{\{\nu \le n-1\}} + \mathbb{E}((Y_{n}^{2} - Y_{n}^{1}) \mathbf{1}_{\{\nu = n\}} | \mathcal{F}_{n-1})$$

$$\leq Z_{n-1}$$

as $Y_n^2 - Y_n^1 < 0$ on $\{\nu = n\}$.

Theorem 11.1 (Maximal inequality for positive supermartingales). Let $\{Y_n\}$ be a positive supermartingale with respect to $\{\mathcal{F}_n\}$. Then

$$\sup_{n} Y_n < \infty a.s$$

on $[Y_0 < \infty]$ and

$$P(\sup_{n} Y_n > a \,|\, \mathcal{F}_0) \le \min(1, \frac{Y_0}{a})$$

Proof. Fix a > 0 and let $\nu_a = \inf\{n : Y_n > a\} = \infty$ if $\sup_n Y_n \le a$. Then the sequence $Y_n(2) = a$ is a positive supermartingale, and so

$$Z_n = Y_n \mathbf{1}_{\{\nu_a > n\}} + a \mathbf{1}_{\{\nu_a \le n\}}$$

is a positive supermartingale by the previous lemma. Then we have

$$\mathbb{E}(Z_n \,|\, \mathcal{F}_0) \le Z_0 = \begin{cases} Y_0 & Y_0 \le a \\ a & Y_0 > a \end{cases}$$

Thus $Z_n \ge a \mathbf{1}_{\{\nu_a \le n\}}$ and so

$$aP(va \le n \mid \mathcal{F}_0) \le \min(Y_0, a)$$

for all a. THus

$$P(\sup_{n} Y_n > a \,|\, \mathcal{F}_0) = P(\nu_a < \infty \,|\, \mathcal{F}_0) \le \min(1, \frac{Y_0}{a})$$

- L		

Write

$$P(Y_0 < \infty, \sup_n Y_n > a) = \mathbb{E}(\mathbf{1}_{\{Y_0 < \infty\}} \mathbf{1}_{\{\sup_n Y_n > a\}})$$
$$= \mathbb{E}(\mathbf{1}_{\{Y_0 < \infty\}}) \mathbb{E}(\mathbf{1}_{\{\sup_n Y_n > a\}} | \mathcal{F}_0)$$
$$\leq \int_{Y_0 < \infty} \min(1, \frac{Y_0}{a}) dP$$
$$\to 0$$

as $a \to \infty$ by the dominated convergence theorem.

Thus, we have

$$P(Y_0 < \infty, \sup_n Y_n < \infty) = 1a.s.$$

Fix $a < b \in \mathbb{R}$. For any process Y_n , define the following random variables

$$\nu_1 = \min(n \ge 0, Y_n \le a)$$
$$\nu_2 = \min(n > \nu_1, Y_n \ge b)$$
$$\nu_3 = \min(n > \nu_2, Y_n \le a)$$

and so on. If any v_i is undefined it is subsequently set to infinity.

Define $\beta_{ab} = \max p : \nu v_{2p} < \infty$, equal to the number of upcrossings of (a, b) by Y_n . We have $\beta_{ab} = \infty$ if and only if $\liminf y_n \leq a < b \leq \limsup y_n$. We also have Y_n converges if and only if $\beta_{ab} < \infty$ for all rationals a, b, a < b.

Theorem 11.2 (Dubin's inequality). If Y_n is a positive supermartingale, then $\beta_{ab}(\omega)$ are random variables and for each integer $k \ge 1$, we have

$$P(\beta_{ab} \ge k \mid \mathcal{F}_0) \le \left(\frac{a}{b}\right)^k \min(1, \frac{Y_0}{a}), 0 < a < b.$$

Proof. The v_k defined above are stopping times with respect to \mathcal{F}_n , as

$$[\nu_{2p} = n] = \bigcup_{m=0}^{n-1} [\nu_{2p-1} = m, Y_{m+1} \le b, \dots, Y_{n-1} < b, Y_n \ge b]$$

and as ν_1 is a stopping time, we then use induction.

We then have $[\beta_{ab} \ge k] = [\nu_{2k} < \infty]$. Then define

$$Z_{n} = \mathbf{1}_{\{0 \le n < \nu_{1}\}} + \sum_{k=1}^{K} (\frac{b}{a})^{k-1} \frac{Y_{n}}{a} \mathbf{1}_{\{\nu_{2k-1} \le n \le \nu_{2k}\}} + \left(\frac{b}{a}\right)^{k} \mathbf{1}_{\{\nu_{2k} \le n < \nu_{2k+1}\}} + \left(\frac{b}{a}\right)^{K} \mathbf{1}_{\{n \ge \nu_{2K+1}\}}$$

i.e. $\mathbf{1}_{\{0 \le n < \nu_1\}} + \frac{Y_n}{a} \mathbf{1}_{\{\}} \nu_1 \le n < \nu_2 + \frac{b}{a} \mathbf{1}_{\{\nu_2 \le n < \nu_3\}} + \dots + \left(\frac{b}{a}\right)^K \mathbf{1}_{\{\nu_{2K} \le n\}}.$

We now apply the previous lemma to show $\{Z_n\}$ is a positive supermartingale. We have

$$\left(\frac{b}{a}\right)^k, \left(\frac{b}{a}\right)^{k-1}\frac{Y_n}{a}$$

are positive supermartingales. On $[\nu_1 = n]$, we have $1 \ge \frac{Y_n}{a}$. On $[\nu_{2k-1} = n]$ we have

$$\left(\frac{b}{a}\right)^{k-1} \ge \left(\frac{b}{a}\right)^{k-1} \frac{Y_n}{a}$$

On the even stopping times, we have $\left(\frac{b}{a}\right)^{k-1} \frac{Y_n}{a} \ge \left(\frac{b}{a}\right)^k$. Thus

$$\mathbb{E}(Z_n \,|\, \mathcal{F}_0) \le Z_0$$

as Z_n is a positive supermartingale. d

Since $Z_n \geq \frac{b}{a}^K \mathbf{1}_{\{\nu_{2k} \leq n\}}$, we have

$$P(\nu_{2k} \le n \,|\, \mathcal{F}_0) \le \frac{a}{b}^K \min(1, \frac{Y_0}{a})$$

Letting $n \to \infty$, we have

$$P(\beta_{ab} \ge k \,|\, \mathcal{F}_0) = P(\nu_{2k} < \infty \,|\, \mathcal{F}_0)$$
$$\le \left(\frac{a}{b}\right)^K \min(1, \frac{Y_0}{a}).$$

12. Lecture 12 - Thursday 7 April

Theorem 12.1. Let $\{Y_n\}$ be a positive supermartingale. Then there exists a random variable Y_{∞} such that $Y_n \xrightarrow{a.s.} Y_{\infty}$ and $\mathbb{E}(Y_{\infty} | \mathcal{F}_n) \leq Y_n$ for all n.

Proof. From Durbin's inequality,

$$P(\beta_{ab} \geq k) \leq \left(\frac{a}{b}\right)^k$$

By Borel-Cantelli, as we have a summable sequence of probabilities, $\beta_{ab} < \infty$ almost surely. Hence

$$P(Y_n \text{ converges}) = P\left(\bigcap_{\substack{a < b \\ a, b \in \mathbb{Q}}} \beta_{ab} < \infty\right) = 1$$

Let $\lim_{n \to \infty} Y_n = Y_\infty$. If p < n, then

$$\mathbb{E}\left(\inf_{m\geq n}Y_n \,|\, \mathcal{F}_p\right) \leq \mathbb{E}(Y_n \,|\, \mathcal{F}_p) \leq Y_p.$$

Furthermore, $\inf_{m\geq n} Y_m \uparrow Y_\infty$ so by the monotone convergence theorem, we have

$$\mathbb{E}(Y_{\infty} \mid \mathcal{F}_p) = \lim_{n \to \infty} \mathbb{E}\left(\inf_{m \ge n} Y_m \mid \mathcal{F}_p\right) \le Y_p.$$

Theorem 12.2. Let Z be a positive random variable with $\mathbb{E}Z^p < \infty$, $p \ge 1$. Then

$$Y_n = \mathbb{E}(Z_n \,|\, \mathcal{F}_n) \stackrel{a.s.}{\to}, \stackrel{L^p}{\to} \mathbb{E}(Z \,|\, \mathcal{F}_\infty),$$

Note that almost sure convergence does not, in general, imply L^p convergence, although they both imply convergence in probability.

Proof. Suppose $Z \leq a$ almost surely. Then there exists Y_{∞} such that $Y_n \xrightarrow{a.s.} Y_{\infty}$ (as Y_n are positive martingales). Fix n and let $B \in \mathcal{F}_n$. Then

$$\lim_{n \to \infty} \int_B Y_{m+n} \, dP = \int_B Z \, dP$$

$$\int_B Y_\infty \, dP = \int_B Z \, dP$$

and hence

$$Y_{\infty} = \mathbb{E}(Z \,|\, \mathcal{F}_{\infty})$$

and so the random variable Y_{∞} can be identified as the conditional expectation.

Since $|Y_n| \leq a$, the $\{Y_n^p\}$ are uniformly integrable, and so $Y_n \xrightarrow{L^p} Y_\infty$. This follows from noting that $Y_n \xrightarrow{a.s.} Y_\infty$, and using that if $X_n \xrightarrow{p} X$ and $\{|X_n|^p\}$ is uniformly integrable then $X_n \xrightarrow{L^p} X$.

Now remove the assumption that $Z \leq a$. Taking the L^p norm of the conditional expectations gives

$$\|E(Z \mid \mathcal{F}_n) - \mathbb{E}(Z \mid \mathcal{F}_\infty)\|_p \le \|E(Z \land a \mid \mathcal{F}_n) - \mathbb{E}(Z \land a \mid \mathcal{F}_\infty)\|_p + 2\|(Z - a)^+\|_p.$$

Now we know that $||(Z-a)^+||_p \to 0$ as $a \to \infty$, as $\mathbb{E}(Z^p) < \infty$. Hence we have

$$Y_n \xrightarrow{L^p} \mathbb{E}(Z \mid \mathcal{F}_\infty).$$

By uniqueness of limits, we obtain our required result.

Corollary 12.3. If $Z \in L^p$ and $Y_n = \mathbb{E}(Z \mid \mathcal{F}_n)$ then $Y_n \stackrel{a.s.}{\to}, \stackrel{L^p}{\to} \mathbb{E}(Z \mid \mathcal{F}_\infty)$

Theorem 12.4. Martingale convergence theorem

(a) If $\{Y_n\}$ is an integrable submartingale and $\sup_n \mathbb{E}(Y_n^+) < \infty$ then there exists an integrable Y_∞ such that

$$Y_n \stackrel{a.s.}{\to} Y_\infty$$

(b) If $\{Y_n\}$ is an integrable martingale satisfying $\sup_n \mathbb{E}|Y_n| < \infty$ then there exists an integrable Y_{∞} such that

$$Y_n \stackrel{a.s.}{\to} Y_\infty$$

Proof.

(a) $\{Y_n^+\}$ is a positive submartingale as

$$\mathbb{E}(Y_{n+1}^+ \,|\, \mathcal{F}_n) \ge \mathbb{E}(Y_{n+1} \,|\, \mathcal{F}_n) \ge Y_n$$

If p > n, then

$$\mathbb{E}(Y_{p+1}^+ | \mathcal{F}_n) = \mathbb{E}(\mathbb{E}(Y_{p+1}^+ | \mathcal{F}_p) | \mathcal{F}_n)$$
$$\geq \mathbb{E}(Y_{p+} | \mathcal{F}_n).$$

Hence $M_n = \lim_{p \to \infty} \mathbb{E}(Y_p^+ | \mathcal{F}_n)$ as we have a monotone sequence.

Now,

$$\mathbb{E}(M_n) = \mathbb{E}\left(\lim_{p \to \infty} \mathbb{E}(Y_p^+ | \mathcal{F}_n)\right)$$
$$= \lim_{p \to \infty} \mathbb{E}(\mathbb{E}(Y_p^+ | \mathcal{F}_n)) \quad \text{MCT}$$
$$= \lim_{p \to \infty} \mathbb{E}(Y_p^+) < \infty$$

so M_n is positive and integrable. M_n is a martingale as

$$\mathbb{E}(M_{n+1} | \mathcal{F}_n) = \mathbb{E}\left(\lim_{p \to \infty} \mathbb{E}(Y_p^+ | \mathcal{F}_{n+1}) | \mathcal{F}_n\right)$$
$$= \lim_{p \to \infty} \mathbb{E}(Y_p^+ | \mathcal{F}_n) \quad \text{MCT}$$
$$= M_n.$$

Let $Z_n = M_n - Y_n$. Then Z_n is integrable as $M_i Y_n$ are, and Z_n is a positive supermartingale, as

$$\mathbb{E}(Z_{n+1} | \mathcal{F}_n) = \mathbb{E}(M_{n+1} | \mathcal{F}_n) - \mathbb{E}(Y_{n+1} | \mathcal{F}_n)$$
$$\leq M_n - Y_n \quad \text{as } Y_n \text{ is submartingale}$$
$$= Z_n$$

and so Z_n is a positive supermartingale. Note that $M_n \geq Y_n^+$ and so

$$M_n - Y_n = M_n - (Y_n^+ - Y_n^-) \ge Y_n^+ - (Y_n^+ - Y_n^-) = Y_n^-$$

Thus Z_n and M_n converge almost surely to Z_∞ and M_∞ respectively, and so

$$Y_n = M_n - Z_n \stackrel{a.s.}{\to} M_\infty - Z_\infty = Y_\infty \in L^1.$$

(b) Note that $|Y_n| = 2Y_n^+ - Y_n$, and if $\{Y_n\}$ is a martingale, then

$$\mathbb{E}|Y_n| = 2\mathbb{E}Y_n^+ - \mathbb{E}Y_n$$
$$2\mathbb{E}Y_n^+ - \mathbb{E}Y_0$$

and so $\sup \mathbb{E} Y_n^+ < \infty$ if and only if $\sup_n \mathbb{E} |Y_n| < \infty.$

Theorem 12.5 (Martingale convergence theorem (restated)). Let $\{Y_n\}$ be an integrable (sub/super) martingale, that is, $\sup_n \mathbb{E}|Y_n| < \infty$. Then there exists an almost sure limit

$$\lim_{n \to \infty} Y_t = Y_\infty$$

and Y_{∞} is an integrable random variable.

Definition 13.1 (Reverse martingale). $\{Y_n, \mathcal{G}_n\}$ is a reverse martingale if $\{\mathcal{G}_n\}$ is a decreasing sequence of σ -fields,

$$\mathcal{G}_n \supseteq \mathcal{G}_{n+1}$$

 Y_n is \mathcal{G}_n -measurable, $\mathbb{E}(|Y_n|) < \infty$, and

$$\mathbb{E}(Y_n \,|\, \mathcal{G}_n) = Y_m \text{ a.s for } m \ge n$$

Proposition 13.2. We have

$$\mathbb{E}(|Y_n|) = \mathbb{E}(\mathbb{E}(|Y_n| | \mathcal{G}_{n+1}))$$
$$\geq \mathbb{E}(|\mathbb{E}(Y_n | \mathcal{G}_{n+1})|)$$
$$= \mathbb{E}(|Y_{n+1}|)$$

and so $\mathbb{E}(|Y_n|) \leq \mathbb{E}(|Y_0|)$ for all n, and

$$Y_n = \mathbb{E}(Y_0 \,|\, \mathcal{G}_n).$$

Theorem 13.3. If $\{Y_n\}$ is a reverse martingale with respect to $\{\mathcal{G}_n\}$, then there exists a random variable Y_{∞} such that

$$Y_n \stackrel{a.s.}{\to} Y_{\infty}, Y_n \stackrel{L^1}{\to} Y_{\infty} = \mathbb{E}(Y_0 \mid \mathcal{G}_{\infty})$$

where $\mathcal{G}_{\infty} = \bigcap \mathcal{G}_n$.

Proof. We have $Y_n = \mathbb{E}(Y_0 | \mathcal{G}_n)$ and so $\{Y_n\}$ is uniformly integrable. Hence if $Y_n \xrightarrow{a.s.} Y_\infty$ it also converges in L^1 . Let

$$Z_n = \mathbb{E}(Y_0^+ \,|\, \mathcal{G}_n) - Y_n.$$

Note that $Z_n \ge 0$. Then

$$\mathbb{E}(Z_n \,|\, \mathcal{G}_{n+1}) = Z_{n+1}$$

and so we only need to consider convergence for positive reverse martingales.

Let $\beta_{a,b}^{(n)}$ be the number of upcrossings of [a, b] by $\{Y_0, Y_1, \ldots, Y_n\}$. Applying Dubin's inequality to the martingale

$$\{Y_n, Y_{n+1}, \ldots, Y_1, Y_0\}$$

Then

$$P(\beta_{a,b}^{(n)} \ge k \,|\, \mathcal{G}_n) \le \left(\frac{a}{b}\right)^k$$

which is independent of n, and thus

$$P(\beta_{a,b}^{(n)} \ge k \,|\, \mathcal{G}_{\infty}) \le \left(\frac{a}{b}\right)^k$$

for all n, and so

$$P(\beta_{a,b} \ge k \,|\, \mathcal{G}_{\infty}) \le \left(\frac{a}{b}\right)^k$$

where $\beta_{a,b}$ is the number of upcrossings for $\{Y_n\}$, which implies

$$\beta_{a,b} < \infty \text{ a.s.}$$

Arguing as in the positive supermartingale case, we have $\{Y_n\}$ converges almost surely, and we have $Y_{\infty} = \limsup Y_n$ is \mathcal{G}_n measurable for all n and so is \mathcal{G}_{∞} measurable.

Theorem 13.4 (Strong law of large numbers). Let X_1, X_2, \ldots be IID with $\mathbb{E}(|X_1|) < \infty$. Let $\mathbb{E}(X_1) = \mu$. Let $S_n = \sum_{i=1}^n X_i$. Then

$$\frac{1}{n}S_n \stackrel{a.s.}{\to} \mu.$$

Proof. Let $\mathcal{G}_n = \sigma\{S_n, S_{n+1}, S_{n+2}, \dots\} = \sigma\{S_n, X_{n+1}, X_{n+2}, \dots\}$. We then have $\mathcal{G}_n \supseteq \mathcal{G}_{n+1}$. We have

$$\frac{1}{n}S_n = \mathbb{E}(\frac{1}{n}S_n \mid \mathcal{G}_n)$$
$$= \frac{1}{n}\sum_{i=1}^n \mathbb{E}(X_i \mid \mathcal{G}_n)$$
$$= \mathbb{E}(X_1 \mid \mathcal{G}_n),$$

as

$$\mathbb{E}(X_1 | \mathcal{G}_n) = \mathbb{E}(X_2 | \mathcal{G}_n) = \dots \mathbb{E}(X_n | \mathcal{G}_n)$$

by IID/symmetry.

Thus $\frac{1}{n}S_n$ is a reverse martingale with respect to $\{G_n\}$. From above, we have have

$$\frac{1}{n}S_n = \overline{X}_n \stackrel{a.s.}{\to}, \stackrel{L^1}{\to} \mathbb{E}(X \mid \mathcal{G}_{\infty})$$

We have $\lim_{n\to\infty} \sum_{i=1}^{n} X_i$ is in the tail σ -field of the sequence of $\{X_n\}$ and X_i are IID and so the limiting random variable is degenerate.

Consider $\overline{X}_{\infty} = \mathbb{E}(X | \mathcal{G}_{\infty})$. By the Kolmogorov 0-1 law, we have

$$P(\{\overline{X}_{\infty} \le a\}) = 0 \text{ or } 1$$

Thus \overline{X}_{∞} is a constant with probability one. Since

$$\mathbb{E}(X_1 \mid \mathcal{G}_n) \xrightarrow{L^1} \mathbb{E}(X_1 \mid \mathcal{G}_\infty)$$

we have

$$\lim_{n \to \infty} \mathbb{E}(\frac{1}{n}S_n) = \mathbb{E}(\mathbb{E}(X_1 \mid \mathcal{G}_\infty)) = \mathbb{E}(X_1) = \mu.$$

Thus $\overline{X}_{\infty} = \mu$ almost surely, that is,

$$\frac{1}{n}S_n \stackrel{a.s.}{\to}, \stackrel{L^1}{\to} \mu$$

13.1. Characteristic functions. Following Fallow Volume 2.

Definition 13.5 (Characteristic function). Let X be a random variable. Then the characteristic function is defined by

$$\varphi(t) = \mathbb{E}(e^{itX}).$$

 $\varphi(t)$ is always defined (unlike moment generating function (MGF), probability generating function (PGF)).

Proof. Let $\varphi(t)$ be the characteristic function of the random variable X. Then

- (i) $|\varphi(t)| \leq \mathbb{E}(|e^{itX}|) = 1 = \varphi(0).$
- (ii) $\varphi(-t) = \mathbb{E}(e^{-itX}) = \overline{\varphi(t)}.$
- (iii) If X is symmetric about 0 then $\varphi(t)$ is real.
- (iv) $\varphi(t)$ is uniformly continuous in t.

Proof.

$$\begin{aligned} |\varphi(t+h) - \varphi(t) &= \left| \int e^{i(t+h)X} - e^{itX} \, dF(x) \right| \\ &= \left| \int e^{itX} (e^{ihX} - 1) \, dF(x) \right| \\ &\leq \int \left| e^{ihX} - 1 \right| \, dF(x) \\ &= \int \sqrt{\cos^2(xh - 1) + \sin^2(xh)} \, dF(x) \\ &= \int \sqrt{2 - 2\cos hx} \, dF(x) \to 0 \end{aligned}$$

as $h \to 0$ by the dominated convergence theorem.

(v) If X and Y are independent random variables with characteristic functions φ and ψ respectively, then X + Y has characteristic function

$$\chi(t) = \varphi(t) \cdot \psi(t)$$

- (vi) If X has a characteristic function φ then aX + b has a characteristic function $e^{itb}\varphi(at)$.
- (vii) If φ is a characteristic function the so is $|\varphi|^2$.

Proof. Let X and Y have the same distribution, with X independent of Y. Then Z = X - Y has a characteristic function $\varphi(t)\varphi(-t) = |\varphi(t)|^2$.

(viii) Let X have a MGF M(t). Then $\varphi(t) = M(it)$.

Example 13.6. (i) Let $X \sim N(0, 1)$. Then

$$\varphi(t) = e^{-\frac{1}{2}t^2}.$$

(ii) Let $Y \sim N(\mu, \sigma^2)$. Then

$$\varphi(t) = e^{it\mu - \frac{1}{2}\sigma^2 t^2}.$$

as $Y = \mu + \sigma Z$ with $Z \sim N(0, 1)$.

(iii) Let $X \sim \text{Poisson}(\lambda)$ Then

$$\varphi(t) = e^{\lambda(e^{it} - 1)}.$$

(iv) Let $P(X = 1) = \frac{1}{2} = P(X = -1)$. Then

$$\varphi(t) = \frac{1}{2} \left(e^{it} + e^{-it} \right) = \cos t.$$

(v) Let $X \sim \operatorname{Exp}(\lambda)$. Then

$$\varphi(t) = \int_0^\infty e^{itx} \lambda e^{-\lambda x} \, dx$$
$$= \int_0^\infty \lambda e^{-x(\lambda - it)} \, dx$$
$$= \frac{\lambda}{\lambda - it}$$

Theorem 13.7 (Parseval's relation). Let F and G be distribution functions with associate characteristic functions φ and ψ . Then

$$\int e^{-izt}\varphi(z)\,dG(z) = \int \psi(x-t)\,dF(x)$$

Proof.

$$\int e^{-izt} \varphi(z) \, dG(z) = \int e^{-izt} \left(\int e^{izt} \, dF(x) \right) \, dG(z)$$
$$= \int \int e^{iz(x-t)} \, dF(x) \, dG(x)$$
$$= \int \left(\int e^{iz(x-t)} \, dG(z) \right) \, dF(x) \quad \text{by Fubini's theorem}$$
$$= \int \psi(x-t) \, dF(x)$$

Corollary 13.8. If G is the distribution function of a $N(0, \frac{1}{\sigma^2})$ random variable. Then $\psi(t) = e^{-\frac{1}{2\sigma^2}t^2}$, and so the above relationship becomes

$$\int e^{izt}\varphi(z)\frac{\sigma}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2\sigma^2}\,dz = \int e^{-\frac{1}{2\sigma^2}(x-t)^2}\,dF(x).$$

Rearranging, we obtain

$$\frac{1}{2\pi} \int e^{-izt} \varphi(z) e^{-\frac{1}{2}z^2 \sigma^2} \, dz = \int \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-t)^2} \, dF(x)$$

Then the right hand side is the density of the convolution of F and a $N(t, \sigma^2)$ distribution. Call the convolution distribution F_{σ} . Then

$$F_{\sigma}(\beta) - F_{\sigma}(\alpha) = \int_{\alpha}^{\beta} \left(\frac{1}{2\pi} \int e^{-izt} \varphi(z) e^{-\frac{1}{2}z^2 \sigma^2} dz\right) dt$$
$$= \frac{1}{2\pi} \int \varphi(z) e^{-\frac{1}{2}z^2 \sigma^2} \frac{e^{-iz\beta} - e^{-iz\alpha}}{-iz} dz$$

If α and β are continuity points of F, then

$$F(\beta) - F(\alpha) = \lim_{\sigma \to 0} \frac{1}{2\pi} \int \varphi(z) e^{-\frac{1}{2}z^2 \sigma^2} \frac{e^{-iz\beta} - e^{-iz\alpha}}{-iz} dz \tag{(\star)}$$

for as $\sigma \to 0$, $F_{\sigma} \to F$.

Since a function has only countably many points of discontinuity, we can then derive the following theorem.

Theorem 13.9. Let X be a random variable with distribution function F and characteristic function φ . Assume

$$\int |\varphi(t)| \, dt < \infty.$$

Then F has a bounded, continuous density f given by

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \varphi(t) \, dt$$

Proof. From (\star) apply DCT. Then

$$F(\beta) - F(\alpha) = F(\beta) - F(\alpha) = \lim_{\sigma \to 0} \int_{\alpha}^{\beta} \left(\frac{1}{2\pi} \int \varphi(z) e^{-\frac{1}{2}z^2 \sigma^2} dz \right) dt$$
$$= \int_{\alpha}^{\beta} \left(\frac{1}{2\pi} \int e^{-izt} \varphi(z) dz \right) dt$$

Corollary 13.10. If $\varphi(t)$ is non-negative and integrable continuous function associated with a distribution function F. Then $\frac{\varphi(t)}{2\pi F'(0)}$ is a density function with characteristic function $\frac{F'(x)}{F'(0)}$.

Proof. We have

$$F'(x) = \frac{1}{2\pi} \int e^{-izx} \varphi(z) dz$$
$$= \frac{1}{\pi} \int_0^\infty \cos(xz) \varphi(z) dz \quad \text{as } \varphi(z) \text{ is real}$$

Thus

$$F'(0) = \frac{1}{\pi} \int_0^\infty \varphi(z) \, dz$$
$$1 = \frac{1}{2F'(0)\pi} \int \varphi(z) \, dz$$

and thus

 $\frac{F'(x)}{F'(0)} = \int \cos(xz) \frac{\varphi(z)}{2\varphi F'(0)} dz$

- 14. Lecture 14 Thursday 14 April
- 15. Lecture 15 Thursday 21 April

Example 15.1. X has density $f(x) = \frac{1}{2}e^{-|x|}$. Then

$$\begin{split} \varphi(t) &= \frac{1}{2} \int e^{itx} e^{-|x|} \, dx \\ &= \int_0^\infty \cos tx e^{-x} \, dx \\ &= \int_0^\infty \frac{1}{2} \left(e^{itx} + e^{-itx} \right) e^{-x} \, dx \\ &= \frac{1}{2} \int_0^\infty e^{-x(1-it)} + \frac{-x(1+it)}{1+it} \, dx \\ &= \frac{1}{2} \left[\frac{-1}{1-it} e^{-x(1+it)} + \frac{-1}{1+it} e^{-x(1+it)} \right]_0^\infty \\ &= \frac{1}{1+t^2} \end{split}$$

Thus $\varphi(t) = \frac{1}{1+t^2}$ which is a non-negative, integrable characteristic function. Thus,

$$\frac{\varphi(t)}{2\pi f(0)} = \frac{1}{\pi (1+t^2)}$$

which is the Cauchy distribution. We then know that the characteristic function of the Cauchy distribution is

$$\gamma(t) = \frac{F'(x)}{F'(0)} = \frac{f(x)}{f(0)} = e^{-|t|}$$

from Corollary 13.10.

Theorem 15.2 (Moment theorem). Let F be the distribution function of X. Assume X has finite moments up to order n, i.e. $\mathbb{E}(|X|^n) < \infty$. Then the characteristic function $\varphi(t)$ has uniformly continuous derivatives up to order n, and

$$\varphi^{(k)}(t) = i^k \mathbb{E}(|X|^k), k = 1, 2, \dots, n$$

and

$$\varphi(t) = 1 + \sum_{k=1}^{n} \mathbb{E}(X^k) \frac{(it)^k}{k!} + o(t^n)$$

as $t \to 0$.

Conversely, if φ can be written as

$$\varphi(t) = 1 + \sum_{k=1}^{n} a_k \frac{(it)^k}{k!} + o(t^n)$$

as $t \to 0$, then the associated density function has finite moments up to order n if n is even, and up to order n-1 if n is odd, with $a_k = \mathbb{E}(|X|^k)$.

Proof.

Lemma 15.3. For any $t \in \mathbb{R}$,

$$\left| e^{it} - 1 - it \dots - \frac{(it)^{n-1}}{(n-1)!} \right| \le \frac{|t|^n}{n!}$$

Proof. Taylor's Theorem.

Suppose $\mathbb{E}(|X|^k) < \infty$ for k = 1, 2, ..., n. Then

$$|x^k e^{itx}| \le |x|^k$$

, so

$$\int x^k e^{itx} \, dF(x)$$

exists. Now

$$\frac{\varphi(t+h) - \varphi(t)}{h} = \left| \int \frac{e^{i(t+h)x} - e^{itx}}{h} dF(x) \right|$$
$$= \left| \int e^{itx} \cdot \frac{e^{ihx} - 1}{h} dF(x) \right|$$
$$\leq \int |x| dF(x) < \infty$$

from Lemma 15.3.

So by DCT,

$$\varphi'(t) = \lim_{h \to 0} \frac{\varphi(t+h) - \varphi(t)}{h} = i \int x e^{itx} \, dF(x)$$

and thus

$$\varphi'(0) = i\mathbb{E}(X).$$

Using induction, we obtain

$$\varphi^{(k)}(t) = i^k \int x^k e^{itx} \, dF(x)$$

and $\varphi^{(k)}(0) = i^k \mathbb{E}(X^k)$ for k = 1, 2, ..., n.

Arguing as in the proof of characteristic functions uniform continuity.

Expanding $\varphi(t)$ about t = 0 in a Taylor series, we have

$$\varphi(t) = 1 + \sum_{k=1}^{n} \varphi^{(k)}(0) \frac{\left[{}^{k}\right]}{t} k! + R_{n}(t), t > 0.$$

with

$$R_n(t) = \frac{t^n}{n!} \left[\varphi^{(n)}(\theta t) - \varphi^{(n)}(0) \right], 0 < \theta < 1.$$

We then have

$$\left|\frac{R_n(t)}{t^n}\right| \le \frac{1}{n!} \int |x|^n |e^{i\theta tx} - 1| dF(x)$$
$$\le \frac{2}{n!} \int |x|^n dF(x).$$

and so by the DCT,

$$\lim_{t \to 0} \left| \frac{R_n(t)}{t^n} \right| = 0,$$

and thus $R_n(t) = o(t^n)$.

Conversely, suppose φ has an expansion up to order 2k. Then φ has a finite derivative of order 2k at t = 0 Then

$$\begin{split} -\varphi^{(2)}(0) &= -\lim_{h \to 0} \frac{\varphi(h) - 2\varphi(0) - \varphi(-h)}{h^2} \\ &= \lim_{h \to 0} 2 \int \frac{1 - \cos hx}{x^2} \, dF(x) \\ &\geq 2 \int \lim_{h \to 0} \frac{1 - \cos hx}{h^2} \, dF(x) \, \text{by Fatau} \\ &= \int x^2 dF(x) = E(X^2) \end{split}$$

and so $\varphi^{(2)}(0) < \infty \Rightarrow \mathbb{E}(X^2) < \infty$.

Using induction, assume finite $2(k-1)^{\text{th}}$ derivative at $0 \Rightarrow \mathbb{E}(X^{2(k-1)}) < \infty$. Then from the first part,

$$\varphi^{(2(k-2))}(t) = (-1)^{k-1} \int x^{2k-2} e^{itx} dF(x)$$

Suppose $\varphi^{2k}(0) < \infty$. Then let

$$G(x) = \int_{-\infty}^{x} y^{2k-2} \, dF(y).$$

so $\frac{G(x)}{G(\infty)}$ is a distribution function with characteristic function

$$\begin{split} \psi(t) &= \frac{1}{G(\infty)} \int e^{itx} x^{2k-2} \, dF(x) \\ &= \frac{(-1)^{k-1} \varphi^{(2k-2)}(t)}{G(\infty)} \end{split}$$

As $\varphi^{(2k-2)}(t)$ is twice differentiable at t = 0. So

$$\psi^{(2)}(0) \ge \int y^2 y^{2k-2} \frac{dF(y)}{G(\infty)}$$

and thus $\mathbb{E}(X^{2k}) < \infty$. as required.

16. Lecture 16 Thursday 21 April

Corollary 16.1. Let φ be a characteristic function associated with a random variable X. Then φ has continuous derivatives of all orders if and only if X has finite moments of all orders.

Corollary 16.2. The function $\varphi(t) = e^{-|t|^{\alpha}}$ is not a characteristic function if $\alpha > 2$. Note that $\alpha = 1$ was the Cauchy distribution, $\alpha = 2$ is the Normal distribution.

Proof. If $\alpha > 2$ then

$$\lim_{t \to 0} \varphi^{(2)}(t) = 0 \Rightarrow \mathbb{E}(X^2) = 0$$

which implies X is degenerate. But if X is degenerate at b, then

$$\varphi(t) = e^{itb} \neq e^{-|t|^c}$$

Thus by uniqueness of characteristic functions, $e^{-|t|^{\alpha}}$ is not a characteristic function.

16.1. Lattice distributions.

Theorem 16.3 (Lattice distributions). Let X be a random variable with distribution function F, characteristic function φ . If $c \neq 0$ then the following are equivalent.

- (i) X has a lattice distribution whose range is continued in $0, \pm b, \pm 2b, \ldots, b = \frac{2\pi}{c}$.
- (ii) $\varphi(t+nc) = \varphi(t)$ for $n = \pm 1, \pm 2, \ldots$, that is, φ is periodic with period c.
- (*iii*) $\varphi(c) = 1$.

Proof. $(1) \Rightarrow (2)$.

$$\varphi(t) = \sum_{k=-\infty}^{\infty} P(X = kb)e^{itkb}$$
$$= \sum_{k=-\infty}^{\infty} P(X = kb)e^{2\pi itk/c}$$

which implies

$$\varphi(t+nc) = \varphi(t)$$

as $e^{2\pi i n c k/c} = 1$. (2) \Rightarrow (3). Simply set t = 0, n = 1. Then $\varphi(0) = \varphi(c) = 1$. (3) \Rightarrow (1). $1 - \mathbb{E}(\cos c X) = 0$

$$\mathbb{E}(1 - \cos cX) = 0$$

but as $1 - \cos cX \ge 0$, X must have probability components on points where $\cos cX = 1$, that is, cX takes on the values $0, \pm \pi, \pm 2\pi, \ldots$

Corollary 16.4. X is degenerate if and only if $|\varphi(t)| = 1$ for all t.

Proof. If P(X = b) = 1, then $\varphi(t) = e^{itb}$, and so $|\varphi(t)| = 1$ for all t.

If $|\varphi(c)| = 1$ for $c \neq 0$, then $\varphi(c) = e^{i\theta}$ for some θ . Let $\varphi_1(t) = \varphi(t)e^{-i\theta t/c}$ is characteristic function of $X - \frac{\theta}{c}$. Then $\varphi_1(c) = 1$, thus $X - \frac{\theta}{c}$ is a lattice taking values in $0, \pm \frac{2\pi}{c}, \pm \frac{4\pi}{c}, \ldots$

Now, pick some $b \in \mathbb{R}$ with $\frac{b}{c}$ irrational. Then $|\varphi(b)| = 1$, and then $X - a_2$ is a lattice taking values in $0, \pm \frac{2\pi}{b}, \pm \frac{4\pi}{b}, \ldots$ Then

(i) $|\varphi(t)| < 1$ for $t \neq 0$ (e.g. Normal, $e^{-\frac{1}{2}t^2}$).

(ii) $|\varphi(\lambda)| = 1$ and $|\varphi(t)| < 1$ on $0 < t < \lambda$ (e.g. discrete ± 1 , $\cos t$).

(iii) $|\varphi(t)| = 1 \forall t$, degenerate distributions.

Example 16.5. We can construct 3 nontrivial distribution functions
$$\varphi_1, \varphi_2, \varphi_3$$
 such that

- (i) $\varphi_1(t) = \varphi_2(t), \forall t \in [-1, 1].$
- (ii) $|\varphi(t)| = |\varphi_3(t)|, \forall t.$

Consider $g(x) = 1 - |x|, x \in [-1, 1]$. This has characteristic function $\varphi(t) = \frac{2(1-\cos t)}{t^2}$. But the characteristic function is positive and integrable, and so

$$\varphi_1(t) = \begin{cases} 1 - |t| & |t| \le 1\\ 0 & |t| > 1 \end{cases}$$

is the characteristic function of the density

$$f(x) = \frac{1 - \cos x}{\pi x^2}.$$

We can express $\varphi_1(t)$ as the trigonometric series,

$$\varphi_1(t) = 1 - |t| = \frac{1}{2} + \sum_{k=1}^{\infty} a_k \cos(k\pi t)$$

with

$$a_k = 2 \int_0^1 (1-t) \cos(k\pi t) dt = \begin{cases} \frac{4}{k\pi^2} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$

We can thus write

$$\varphi_1(t) = \frac{1}{1} \left[2 + \sum_{k=1}^{\infty} \frac{4}{(2k-1)^2 \pi^2} \cos(2k-1)\pi t \right]$$

Let V be a random variable, with

$$P(V=0) = \frac{1}{2}, P(V=\nu) = \frac{2}{\nu^2}, \nu = \pm \pi, \pm 3\pi, \pm 5\pi, \dots$$

Then V is a lattice distribution, with characteristic function

$$\varphi_2(t) = \frac{1}{2} + \frac{4}{\pi^2} \left(\cos \pi t + \frac{\cos 3\pi t}{9} + \frac{\cos 5\pi t}{25} + \dots \right)$$

and thus $\varphi_1(t) = \varphi_2(t)$ on [-1, 1], but have different density functions.

Finally, let U be a lattice random variable with distribution

$$P(U = \pm \frac{(2k+1)\pi}{2}) = \frac{4}{\pi^2 (2k+1)^2}, k = 0, 1, 2, \dots$$

Then U has a characteristic function $\varphi_3(t) = 2 \left[\varphi_2(\frac{t}{2}) - \frac{1}{2} \right]$. Thus

 $|\varphi_3(t)| = |\varphi_2(t)| \quad \forall t.$

17. Lecture 17 - Thursday 5 May

17.1. Sequences of characteristic functions.

Lemma 17.1 (Helly selection theorem). Given a sequence of distribution functions $\{F_n\}$ then there exists a sequence $\{n_k\}$ and a non decreasing right continuous function F such that

$$F_{n_k}(x) \to F(x)$$

at all continuity points x of F.

Proof. First order the rationals to get a sequence $\{r_k\}$. From $\{F_n(r_1)\}$ we choose a subsequence $\{F_{n_{1k}}(r_1)\}$ which converges.

Now from the sequence $\{n_{1k}\}$ choose a subsequence $\{n_{2k}\}$ such that $\{F_{n_{2k}}(r_2)\}$ converges, etc.

Now let $n_k = n_{kk}$. Then for each rational number r, the limit $F_{n_k}(r)$ exists as $n \to \infty$. Define $L(R) = \lim F_{n_k}(r), r \in \mathbb{Q}$. Then L(r) is non-decreasing and takes values in [0, 1]. Let $F(x) = \inf_{r \leq x} L(r)$. Then F is non-decreasing, and right continuous, and $F_{n_k}(x) \to F(x)$ for all $x \in \mathbb{Q}$ and at all points of continuity of F.

Lemma 17.2 (Extended Helly-Bragg theorem). If a sequence of distribution functions $\{F_n\}$ converges to a function F at all continuity points of F and g is a **bounded**, continuous, real valued

function then

$$\int_{\mathbb{R}} g \, dF_n \to \int_{\mathbb{R}} g \, dF$$

Proof. Let $M = \sup_{x} |g(x)|$, and let a, b be continuity points of F. Then

$$\begin{aligned} \left| \int_{\mathbb{R}} g \, dF_n - \int_{\mathbb{R}} g \, dF \right| &\leq \left| \int_{\mathbb{R}} g \, dF_n - \int_a^b g \, dF_n \right| + \left| \int_a^b g \, dF_n - \int_a^b g \, dF \right| + \left| \int_a^b g \, dF - \int_{\mathbb{R}} g \, dF \right| \\ &\leq M[F_n(a) - F_n(-\infty) + F_n(\infty) - F_n(b)] + \left| \int_a^b g \, dF_n - \int_a^b g \, dF \right| \\ &+ M[F(a) - F(-\infty) + F(\infty) - F(b)] \end{aligned}$$

Since

$$F_n(a) \to F(a), F_n(b) \to F(b)$$

as a, b are continuity points, we can choose a, b large enough to make the 3rd term small ($< \frac{\epsilon}{3}$ for arbitrary $\epsilon > 0$), and then N large enough to make the first term small.

Now we deal with the middle term. Let $a = x_{0N} < x_{1N} < \cdots < x_{\nu_N,N} = b$ be a sequence of subdivisions of [a, b], such that $\Delta_n \to 0$ (partition width) as $n \to \infty$. Then

$$g_N(x) = \sum_{\nu=1}^{\nu_N} g(x_\nu, N) \mathbf{1}_{\{x_{\nu-1,N} \le x \le x_{\nu,N}\}}$$

Then $\sup_{x \in [a,b]} |g_N(x) - g(x)| \to 0$ as $N \to \infty$ (as g is bounded and continuous.) Then by DCT we have

$$\int_{a}^{b} g \, dF_{n} = \lim_{N \to \infty} \int_{a}^{b} g_{N} \, dF_{n}$$
$$\int_{a}^{b} g \, dF = \lim_{N \to \infty} \int_{a}^{b} g_{N} \, dF$$

Next, we will show

$$\lim_{n \to \infty} \int_{a}^{b} g_N \, dF_n = \int_{a}^{b} g_N \, dF$$

Let $x_{\nu,N}$ be continuity points of F so

$$F_n(x_{\nu,N}) - F_n(x_{\nu-1,N}) \to F(x_{\nu,N}) - F(x_{\nu-1,N}).$$

Hence

$$\lim_{n \to \infty} \int_{a}^{B} g_{N}(x) dF_{n} = \lim_{n \to \infty} \sum_{\nu=1}^{\nu_{N}} g(x_{\nu,N}) (F_{n}(x_{\nu,N}) - F_{n}(x_{\nu-1,N}))$$
$$= \int_{a}^{b} g_{N}(x) dF(x)$$

If $M_N = \sup_{x \in [a,b]} |g_N(x) - g(x)|$, then

$$\left| \int_{a}^{b} g \, dF_{N} - \int_{a}^{b} g \, dF \right| \leq \int_{a}^{b} |g - g_{n}| \, dF_{n} + \left| \int_{a}^{b} g_{n} \, dF_{n} - \int_{a}^{b} g_{N} \, dF \right| + \int_{a}^{b} |g - g_{N}| \, dF$$
$$\leq M_{N}[F_{n}(b) - F_{n}(a)] + \left| \int_{a}^{b} g_{N} \, dF_{n} \right|$$
$$\int_{a}^{b} g_{N} \, dF \right| + M_{N}[F(b) - F(a)]$$

Since $M_N \to 0$ as $N \to \infty$. Then choosing N large enough to make M_N small enough, for a large N fixed, N_2 say, we have

$$\left|\int_{a}^{b} g_{N_2} \, dF_n - \int_{a}^{b} g_{N_2} \, dF\right| \le \frac{\epsilon}{9}$$

The result then follows.

Lemma 17.3. Let $\{F_n\}$ be a sequence of distribution functions with associated characteristic function $\{\varphi_n\}$. Assume $\varphi_n(t) \to \varphi(t)$ as $n \to \infty$ for all $t \in \mathbb{R}$. Then there exists a non-decreasing right continuous function F such that $F_n(x) \to F(x)$ at all continuity points x of F.

Proof. From Lemma 17.1 there exists a subsequence $\{n_k\}$ and a non-decreasing continuous function F such that $F_{n_k}(x) \to F(x)$ at all continuity points of F. Using Parseval's relation on $\{F_{n_k}, \varphi_{n_k}\}$, we have

$$\frac{1}{2\pi} \int_{\mathbb{R}} e^{-izt} \varphi_{n_k}(z) e^{-\frac{1}{2}\sigma^2 z^2} \, dz = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-t}{\sigma}\right)^2} \, dF_{n_k}(x)$$

Let $k \to \infty$. Then the LHS becomes

$$\frac{1}{2\pi} \int_{\mathbb{R}} e^{-izt} \varphi(z) e^{-\frac{1}{2}\sigma^2 z^2} \, dz$$

by the dominated convergence theorem.

The RHS becomes

$$\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-t}{\sigma}\right)^2} dF(x)$$

by an application of Lemma 17.2. Thus φ determines F uniquely (as before), so the limit F must be the same for all convergent subsequences.

Theorem 17.4 (Continuity theorem). Let $\{F_n\}$ be a sequence of distribution functions converging to a distribution function F at all continuity points x of F. This happens if and only if $\varphi_n(t) \to \varphi$ pointwise and φ is continuous in the neighbourhood of the origin. If this is the case then φ is the characteristic function associated with F, and is continuous everywhere.

Proof. If $\{F_n\}$ converges to F, use Lemma 17.2, with $g(x) = \cos(xt) + \sin(xt)$.

Theorem 18.1. Assume $F_n \to F$ at continuity points of F, and associated characteristic function $\varphi_n \to \varphi$ pointwise. If $\varphi_n \to \varphi$ and φ is continuous in a neighbourhood of 0, then $F_n \to F$ and F is distribution function associated with φ .

Proof. From previous lemma, there exists a non-decreasing, right continuous non-negative function F such that $F_n \to F$. We need to show F is a distribution function, that is $F(+\infty) - F(-\infty) \ge 1$. By Parseval's relation, we have

$$\frac{\sigma}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-izt} \varphi(z) e^{-\frac{1}{2}\sigma^2 z^2} dz = \int_{\mathbb{R}} e^{-\frac{1}{2}\left(\frac{x-t}{\sigma}\right)} dF(x) \le F(+\infty) - F(-\infty)$$

The left hand side is equal to

$$\mathbb{E}(e^{-iN_{\sigma}t}\varphi(N_{\sigma}))$$

where $N_{\sigma} \sim N(0, \frac{1}{\sigma^2})$. Since

$$\left|e^{-izt}\varphi(t)\right|\leq 1$$

Assume φ is continuous on |t| < A. Then

$$\mathbb{E}(e^{-iN_{\sigma}t}\varphi(N_{\sigma})) = \mathbb{E}(e^{-iN_{\sigma}t}\varphi(N_{\sigma}) \mid |N_{\sigma}| \ge A) \cdot P(|N_{\sigma}| \ge A) + \mathbb{E}(e^{-iN_{\sigma}t}\varphi(N_{\sigma}) \mid |N_{\sigma}| < A)P(|N_{\sigma}| < A).$$

The first term tends to zero as $\sigma \to \infty$, as $P(|N_{\sigma}| \ge A) \to 0$ on $|N_{\sigma}| < A$. Then the distribution function tends to

$$G(x) = \begin{cases} 0 & x < 0\\ 1 & x \ge 0 \end{cases}$$

as $\sigma \to \infty$.

$$\lim_{\sigma \to \infty} \frac{\sigma}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-izt} \varphi(z) e^{-\frac{1}{2}\sigma^2 z^2} \, dz = \int_{\mathbb{R}} e^{-izt} \varphi(z) \, dG(z) = 1$$

by the extended Helly-Bragg theorem.

Corollary 18.2. If X_n has distribution function F_n and characteristic function φ_n , and X has distribution function F and characteristic function φ . Then the following are equivalent.

- i) $F_n(x) \to F(x)$ at all continuity points x of F.
- *ii)* $\varphi_n(t) \to \varphi(t)$ for all t,
- *iii*) $\mathbb{E}(g(X_n)) \to \mathbb{E}(g(X))$ for all real, bounded, continuous functions g.

In these cases we write $X_n \xrightarrow{d} X$ (X_n converges in distribution to X)

Corollary 18.3. Suppose $X_n \xrightarrow{d} X$. If h is any continuous real valued function, then $h(X_n) \xrightarrow{d} h(X)$.

Proof. $X_n \xrightarrow{d} X$ if and only if $\mathbb{E}(g(X_n)) \to \mathbb{E}(g(X))$. Then g(h(x)) is real, bounded, and continuous. Then

$$\mathbb{E}(g(h(X_n))) \to \mathbb{E}(g(h(X))) \Rightarrow h(X_n) \xrightarrow{a} h(x)$$

for all g real, bounded, continuous.

Theorem 18.4 (Slutsky's theorem). IF $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$, then

$$X_n + Y_n \stackrel{d}{\to} X + a$$

Proof. Given $\epsilon > 0$, choose x such that $x, x - a \pm \epsilon$ are continuity points of $F(x) = P(X \le x)$. Then

$$P(X_n + Y_n \le x) = P(X_n + Y_n \le x, |Y_n - a| > \epsilon) + P(X_n + Y_n \le x, |Y_n - a| \le \epsilon)$$

$$\le P(|Y_n - a| > \epsilon) + P(X_n \le x - a + \epsilon)$$

$$P(X_n \le x - a - \epsilon) = P(X_n \le x - a - \epsilon, |Y_n - a| > \epsilon) + P(X_n \le x - a - \epsilon, |Y_n - a| \le \epsilon)$$

$$\le P(|Y_n - a| > \epsilon) + P(X_n + Y_n \le x)$$

Taking limits as $n \to \infty$, we have

$$P(X \le x - a - \epsilon) \le \lim_{n \to \infty} P(X_n + Y_n \le x) \le P(X \le x - a + \epsilon)$$

Since $x - a \pm \epsilon$ are continuity points of F, we have

$$\lim_{n \to \infty} P(X - n + Y_n \le x) = P(X \le x - a).$$

18.1. Central limit theorem.

Note (Notation). Let X_1, X_2, \ldots are independent random variables with characteristic functions $\varphi_1, \varphi_2, \ldots$ and distribution functions F_1, F_2, \ldots . Let $\mathbb{E}(X_i) = 0, \operatorname{Var}(X_i) = \sigma_i^2 < \infty, i = 1, 2, \ldots$. Let

$$S_n = \sum_{i=1}^n X_i, \qquad s_n^2 = \operatorname{Var}(S_n) = \sum_{i=1}^n \sigma_i^2$$

Theorem 18.5 (Lindeberg conditions). Let $\epsilon > 0$. Then

$$L_n(\epsilon) = \frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E} \left(X_i^2 \mathbf{1}_{\{(\}} |X_i| > \epsilon s_n) \right)$$
$$= \frac{1}{s_n^2} \sum_{i=1}^n \int_{|x| > \epsilon s_n} x^2 dF_i(x)$$

Then the Lindeberg condition is

$$\forall \epsilon > 0, \quad L_n(\epsilon) \to 0 \quad as \ n \to \infty$$

Example 18.6. Assume $\mathbb{E}(|X_i|^3) < \infty$. Then

$$L_n(\epsilon) \le \frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E}(X_i^2 \frac{|X_i|}{\epsilon s_n})$$
$$= \frac{1}{\epsilon} \frac{1}{s_n^3} \sum_{i=1}^n \mathbb{E}(|X_i|^3)$$

Theorem 18.7 (Liapounov's condition).

$$\frac{1}{s_n^3} \sum_{i=1}^n \mathbb{E}(|X_i|^3) \to 0 \quad as \ n \to \infty$$

From above, Liapounov's condition implies Lindeberg's condition.

Theorem 18.8 (Central limit theorem). If for all $\epsilon > 0$, $L_n(\epsilon) \to 0$ as $n \to \infty$, then

$$\frac{S_n}{s_n} \xrightarrow{d} N(0,1)$$

Proof. Preliminaries.

(i) If $|a_k| \le 1$ and $|b_k| \le 1$ for all k, then

$$\left| \prod_{i=1}^{n} a_i - \prod_{i=1}^{n} b_i \right| \le \sum_{i=1}^{n} |a_i - b_i|$$

as $a_1a_2 - b_1b_2 = (a_1 - b_1)a_2 - b_1(a_1 - b_2)$ and use induction.

(ii) $|e^z - 1 - z| \le \delta |z|, \delta > 0$, for |z| sufficiently small.

It is sufficient to prove

$$\varphi_{S_n/s_n}(t) = \prod_{k=1}^n \varphi_k(t/s_n) \to e^{-\frac{1}{2}t^2}) \tag{\ddagger}$$

for all t.

Now

$$\begin{aligned} |\varphi_k(t/s_n) - 1| &= \left| \int (e^{\frac{itx}{s_n}} - 1 - \frac{itx}{s_n}) dF_k(x) \right| \quad \text{as } \mathbb{E}(X_k) = 0 \\ &\leq \int \frac{t^2}{x^2} 2s_n^2 dF_k(x) \\ &= \frac{1}{2} \frac{\sigma_k^2}{s_n^2} t^2 \end{aligned} \tag{(\star)}$$

Now

$$\sigma_k^2 = \mathbb{E}(X_k^2 \mathbf{1}_{\{|X_k| \le us_n\}}) + \mathbb{E}(X_k^2 \mathbf{1}_{\{|X_k| > us_n\}})$$

$$\le (us_n)^2 + s_n^2 L_n(u)$$

Hence

$$\frac{\sigma_k^2}{s_n^2} \le u^2 + L_n(u)$$

and since there are no k on the RHS, we have

$$\max_{k \le n} \frac{\sigma_k^2}{s_n^2} \le u^2 + L_n(u)$$

By Lindenberg's condition, we have $L_n(u) \to 0$ as $n \to \infty$, and as u was arbitrary, we have

$$\max_{k\leq n}\frac{\sigma_k^2}{s_n^2}\to 0$$

From Assignment 5, we know

$$\exp(\varphi_k(t) - 1)$$

is a characteristic function. Let $\delta \to 0.$ Then

$$\left| \exp\left(\sum_{k=1}^{n} (\varphi_k(t/s_n)) - 1\right) - \prod_{k=1}^{n} \varphi_k(t/s_n) \right| \le \sum_{k=1}^{n} \left| e^{\varphi_k(t/s_n) - 1} - \varphi_k(t/s_n) \right| \quad \text{by (i)}$$
$$\le \delta \sum_{k=1}^{n} |\varphi_k(t/s_n) - 1| \quad \text{by (ii)}$$
$$\le \frac{\delta t^2}{2} \sum_{k=1}^{n} \frac{\sigma_k^2}{s_n^2} \quad \text{by (}\star)$$
$$= \frac{\delta t^2}{2}. \quad \text{if } n \text{ is sufficiently large}$$

By (\ddagger) , we must show

$$\sum_{k=1}^{n} (\varphi_k(t/s_n) - 1) + \frac{1}{2}t^2 \to 0$$

that is,

$$\sum_{k=1}^{n} \int \left(e^{itx/s_n} - 1 - \frac{itx}{s_n} + \frac{1}{2} \frac{t^2 x^2}{s_n^2} \right) \, dF_k(x) \to 0 \tag{\dagger}$$

The modulus of the integral in (\dagger) is bounded by

$$\frac{1}{6} \left| \frac{tx}{s_n} \right|^3 \le u \frac{|t|^3 x^2}{6s_n^2}$$

if $|x| \leq u s_n$ and

$$\frac{x^2t^2}{2s_n^2} + \frac{x^2t^2}{2s_n^2}$$

when $|x| > us_n$. Hence the integral of (†) is bounded above by

$$\frac{u|t|^3}{6} + \frac{t^2}{s_n^2} \sum_{k=1}^n \int_{|x|>us_n} x^2 \, dF_k(x) = \frac{u|t|^3}{6} + L_n(u)t^2$$

as the integral is the Lindeberg's condition.

Given $t, \epsilon > 0$, choose u such that $\frac{u|t|^3}{6} < \frac{\epsilon}{2}$, and N_0 large enough such that $L_n(u)t^2 < \frac{\epsilon}{2}$ for $n > N_0$. So the left hand side of (†) is bounded above by ϵ , and so the result follows.

Theorem 18.9 (Partial converse of the central limit theorem). Suppose that $s_n \to \infty$ and $\frac{\sigma_n}{s_n} \to 0$ as $n \to \infty$. Then the Lindeberg condition is necessary for

$$\frac{S_n}{s_n} \xrightarrow{d} N(0,1).$$

Proof. By assumption, given $\epsilon > 0$ there exists $N_1 > 0$ such that

$$\frac{\sigma_k}{\sigma_n} < \frac{\sigma_k}{\sigma_k} < \epsilon$$

for $N_1 \leq k \leq n$ as $s_n^2 \leq s_k^2 (k \leq n)$. We also have

$$\frac{\sigma_k}{s_n} < \epsilon, k = 1, 2, \dots, N_1$$

for $n > N_1$ as $s_n^2 \to \infty$. Hence

$$\max_{1\leq k\leq n}\frac{\sigma_k}{s_k}\to 0$$

as $n \to \infty$. Assume $\frac{S_n}{s_n} \xrightarrow{d} N(0,1)$. If (5) holds then this convergence is equivalent to (1) \iff (3)(\Rightarrow (4)) as (1) \iff (3) requiring (5), to ensure

$$\left|\varphi_k(\frac{t}{s_n}) - 1\right|$$

can be made uniformly small.

The real part of (4),

$$\sum_{k=1}^{n} \int \left(\cos(\frac{xt}{s_n}) - 1 + \frac{x^2 t^2}{2s_n^2} \right) \, dF_k(x) \ge \sum_{k=1}^{n} \int_{|x| > us_n} \left(\cos(\frac{xt}{s_n}) - 1 + \frac{x^2 t^2}{2s_n^2} \right) \, dF_k(x)$$

For any u > 0, choose t such that $\frac{x^2t^2}{2s_n^2} - 2 > 0$ if $|x| > us_n$ (i.e. $t^2 > \frac{4}{n^2}$). Continuing, we have

$$\geq \sum_{k=1}^{n} \int_{|x|>us_{n}} \left(\frac{x^{2}t^{2}}{2s_{n}^{2}} - 2\right) dF_{k}(x)$$

$$\geq \sum_{k=1}^{n} \int_{|x|>us_{n}} \left(\frac{x^{2}t^{2}}{2s_{n}^{2}} - 2\frac{x^{2}}{u^{2}s_{n}^{2}}\right) dF_{k}(x)$$

$$= \left(\frac{t^{2}}{2} - \frac{2}{u^{2}}\right) \frac{1}{s_{n}^{2}} \sum_{k=1}^{n} \int_{|x|>us_{n}} x^{2} dF_{k}(x)$$

$$= \left(\frac{t^{2}}{2} - \frac{2}{u^{2}}\right) L_{n}(u)$$

Thus $L_n(u) \to 0$ as $n \to \infty$, that is, Lindeberg's condition holds.

Corollary 18.10. Let $X_1, X_2, ...$ IID with $\mathbb{E}(X_1) = 0$, $Var(X_1) = \sigma^2$. Then

$$\frac{S_n}{\sqrt{n\sigma^2}} \stackrel{d}{\to} N(0,1)$$

Let $\bar{X}_k = \frac{S_n}{n}$.

Proof. We have $s_n^2 = n\sigma^2$. For $\epsilon > 0$, we have

$$L_n(\epsilon) = \frac{1}{n\sigma^2} \sum_{k=1}^n \mathbb{E}(X_k^2 \mathbf{1}_{\{|X_k| > \epsilon\sigma\sqrt{n}\}})$$
$$= \frac{1}{\sigma^2} \mathbb{E}(X_1^2 \mathbf{1}_{\{|X_1| > \epsilon\sigma\sqrt{n}\}}) \to 0$$

as $n \to \infty$ as $\mathbb{E}(X_1^2) < \infty$.

19. Lecture 19 - Thursday 19 May

The central limit theorem is about distribution functions. It is not an automatic consequence that the derivatives (densities) converge.

If $\frac{S_n}{s_n}$ has density $f_n(x)$ we need further conditions to ensure $f_n(x) \to \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$ as $n \to \infty$.

Theorem 19.1. If X_i are IID with characteristic functions $\varphi(t)$ and $|\varphi(t)|$ is integrable then

$$f_n(x) \to \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

Example 19.2 (Densities not converging). Let X_i have density

$$f(x) = \frac{C}{x(\log x)^2}, \quad 0 < x < \frac{1}{2}.$$

Then $\mathbb{E}(X^2) < \infty$ but $\sum_{i=1}^n X_i$ has an unbounded density on $(0, \frac{1}{2})$.

19.1. Stable Laws.

Definition 19.3 (Stable distribution). A distribution F is said to be stable if it is not concentrated at one point, and when X_1 and X_2 are independent with distribution function F and a_1, a_2 are arbitrary constants there exists some $\alpha > 0, \beta$ such that

$$\frac{\alpha_1 X_1 + \alpha X_2 - \beta}{\alpha}$$

has distribution function F.

Example 19.4. If X_1 has a characteristic function $\varphi(t)$ then

$$\alpha X_3 + \beta = a_1 X_1 + a_2 X_2$$
$$e^{i\beta t} \varphi(\alpha t) = \varphi(a_1 t) \varphi(a_2 t)$$

If $\varphi(t) = e^{-c|t|^{\gamma}}$, $0 < \gamma \leq 2$, then

$$\varphi(a_1 t)\varphi(a_2 t) = e^{-c(|a_1|^{\gamma} + |a_2|^{\gamma})|t|^{\gamma}}$$

As these distributions are symmetric, we have $\beta = 0$, and so setting $\alpha = (|a_1|^{\gamma} + |a_2|^{\gamma})$. Thus distributions with characteristic functions of the form $e^{-c|t|^{\gamma}}$ are stable. Hence the Cauchy distribution is stable $(\gamma = 1)$, and the normal distribution is stable $(\gamma = 2)$.

Theorem 19.5. If φ is the characteristic function of a symmetric random variable $(X \stackrel{d}{=} -X)$ with a stable distribution then $\varphi(t) = e^{-c|t|^{\gamma}}$ for some $c > 0, \gamma \in (0, 2]$.

Recall that a distribution is symmetric if and only if φ is real.

Partial. $\varphi(t)\varphi(t) = \varphi(\alpha t)$ used to show that $\varphi(t) \neq 0$. (Since $\varphi(0) = 1$ and $\varphi(t)$ is continuous). Then build up properties of φ .

Theorem 19.6 (Lèvy). Let X_1, X_2, \ldots be independent and identically distributed random variables with distribution functions G. Let $S_n = \sum_{i=1}^n X_i$. Suppose that there exists a sequence of constants (a_n, b_n) with $b_n > 0$, such that

$$\frac{S_n - a_n}{b_n} \stackrel{d}{\to} X$$

where X is not a constant. Then X is stable.

Definition 19.7 (Domain of attraction). If X has distribution function F then we say G is in the domain of attraction of F.

Corollary 19.8. If X has finite variance then G is in the domain of attraction of the normal distribution.

Corollary 19.9. If G satisfies $\lim_{x\to\infty} x(1-G(x)) = c > 0$ then G is in the domain of attraction of the Cauchy distribution, that is,

$$x \mathbb{P}(X > x) \to c.$$

A necessary and sufficient condition to be in the domain of attraction for the Cauchy distribution is

$$1 - G(x) = P(X_1 > x) = \frac{L(x)}{x}$$

where L(x) is a slowly varying function. L(x) is a slowly varying function if for all C > 0,

$$\lim_{x \to \infty} \frac{L(Cx)}{L(x)} = 1.$$

For example, $L(x) = 1, L(x) = \log x$ are slowly varying functions.

Theorem 19.10. All stable laws are absolutely continuous and the distribution functions have derivatives of all orders.

Theorem 19.11. The normal distribution is the only stable law with finite variance.

Theorem 19.12. It can be shown that the canonical form of the characteristic function of a stable law is

$$\varphi(t) = \exp\left[i\gamma t - c|t|^{\gamma}\left\{1 + \frac{i\beta t}{|t|}\omega(t,\alpha)\right\}\right]$$

where

$$\gamma \in \mathbb{R}, \alpha \in (0, 2], c > 0, |\beta| \le 1, \omega(t, \alpha) = \begin{cases} \tan \frac{\pi \alpha}{2} & \alpha \ne 1\\ \frac{2}{\pi} \log |t| & \alpha = 1 \end{cases}$$

If φ is real, then $\beta = \gamma = 0$.

20. Lecture 20 - Thursday 19 May

20.1. Infinitely divisible distributions. Consider a triangular array $\{X_{nk}\}_{k=1}^{n}$ where for each $n, X_{n1}, X_{n2}, \ldots, X_{nn}$ are independent random variables. We assume that the distribution are identically distributed for each n.

$$\begin{array}{ccccc} X_{11} & & \\ X_{21} & X_{22} & \\ X_{31} & X_{32} & X_{33} & \\ \vdots & & \ddots & \end{array}$$

Example 20.1. Let $X_{nk} \sim B(1, p_n)$. Then $S_n = \sum_{k=1}^n X_{nk} \sim B(n, p_n)$. We know that if $np_n \to \lambda$ as $n \to \infty$, then

 $S_n \xrightarrow{d} \text{POISSON}(\lambda).$

Note that the Poisson distribution is not continuous, nor is it stable. Consider X_1, X_2 Poisson distributed, and let $Y = 2X_1 + 3X_2$. Then Y is not in the Poisson family as P(Y = 1) = 0.

Definition 20.2 (Infinitely divisible). A distribution function F is infinitely divisible if for every positive integer k, F is the k-fold convolution of some distribution G_k with itself.

Example 20.3. (1) The Poisson distribution is infinitely divisible, as

$$\varphi(t) = e^{\lambda(e^{it}-1)} = \left[e^{\frac{\lambda}{k}(e^{it}-1)}\right]^k$$

(2) Symmetric stable laws are infinitely divisible, as

$$\varphi(t) = e^{-c|t|^{\alpha}} = \left(e^{-\frac{c}{k}|t|^{\alpha}}\right)^{k}$$

Lemma 20.4. Assume $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} Y$, $\{X_n\}$, $\{Y_n\}$ independent. Then

$$X_n + Y_n \xrightarrow{a} X + Y_n$$

Proof. X_n has a characteristic function $\varphi_n(t) \to \varphi(t)$. Y_n has characteristic function $\psi(t) \to \psi(t)$. Then

$$\varphi_n(t)\psi_n(t) \to \varphi(t)\psi(t).$$

Theorem 20.5. Given the array $\{X_{nk}\}$, letting $S_n = \sum_{k=1}^n X_{nk}$. If $P(S_n \leq x) \to F(x)$ then F is infinitely divisible.

Proof. Fix k. We must show that F is the k-fold convolution of some G_k . Let n' = mk, m = 1, 2, ...,and let

$$Y_i^{(m)} = X_{n',(i-1)m+1} + \dots + X_{n',im}, \quad i = 1, \dots, k$$

Then

$$S_{mn} = Y_1^{(m)} + \dots + Y_k^{(m)}$$

and $Y_f^{(m)}$ are IID. If $P(Y_1^{(m)} \leq x) \to G_k(x)$ as $m \to \infty$ then

$$G_k^{*k} = F$$

So we need to show that G_k is a well defined distribution. We have $Y_1^{(m)}$ is the sum of m iid random variables, and

$$H_m(x) = P(Y_1^{(m)} \le x).$$

We need to ensure "no probability escapes to infinity." Given a convergent subsequence of distribution functions, we know that the limit satisfies $G_k(x), G_k$ right continuous, non-decreasing. We need to show $G(+\infty) = 1$. Suppose that there exits $\epsilon > 0$ such that for any M > 0 we can find a subsequence m'_n such that

$$P(|Y_1^{(m'_n)}| > M) > \epsilon$$

There is a subsequence of $\{m'_n\}, \{m''_n\}$ say, such that

$$P(Y_1^{m''_n} > M) > \frac{\epsilon}{2} \quad \text{or} \quad P(Y_1^{m''_n} < -M) > \frac{\epsilon}{2}$$

So

$$P(Y_1^{m_n''} + \dots + Y_k^{m_n''} > kM) > \left(\frac{\epsilon}{2}\right)^k$$

and so $F(km) \leq 1 - \left(\frac{\epsilon}{2}\right)^k$ (modulo choosing continuity points kM of F). Now, since we know that our limiting distribution F is a proper distribution function, we obtain our contradiction (no such $\epsilon > 0$ exists).

Hence G_k is a proper distribution function, and so $G_k^{*k} = F$.

Definition 20.6 (Compound Poisson distribution). Let X_1, X_2, \ldots IID random variables. and let $N \sim \text{POISSON}(\lambda)$. Then let $S_N = X_1 + \cdots + X_N$. Then S_N has a compound Poisson distribution.

If X has characteristic function φ , then S_N has characteristic function

$$\mathbb{E}(e^{itS_N}) = \sum_{n=0}^{\infty} \mathbb{E}(e^{itS_N} | N = n)P(N = n)$$
$$= \sum_{n=0}^{\infty} \varphi(t)^n e^{-\lambda} \frac{\lambda^n}{n!}$$
$$= e^{-\lambda} e^{\lambda\varphi(t)}$$
$$= e^{\lambda(\varphi(t)-1)}$$

The compound Poisson distribution is clearly infinitely divisible.

Theorem 20.7. A distribution function F is infinitely divisible if and only if it is the weak limit of a sequence of distributions, each of which is compound Poisson.

21. Lecture 21 - Thursday 26 May

Theorem 21.1. A distribution function is infinitely divisible if and only if it is the weak limit (limit in distribution) of a sequence of distribution functions each of which is compound Poisson.

Lemma 21.2. The weak limit of a sequence of infinitely divisible distributions is infinitely divisible.

Proof. Let $F_n(x)$ be a sequence of distribution functions that are infinitely divisible with

$$F_n(x) \to F(x)$$

at all continuity points x of F. Form an array $\{X_{nk}\}_{k=1}^n$ where for a given $n, X_{n1}, X_{n2}, \ldots, X_{nn}$ are IID with distribution function ${}_nF_n(x)$, the n^{th} root of F_n . Then

$$S_n = \sum_{k=1}^n X_{nk}$$

has distribution function F_n .

We know $F_n(x) \to F(x)$ so from the previous result F is infinitely divisible as it is the limit of the row sums of a triangular arrow of row-wise infinitely divisible random variables.

Lemma 21.3. The characteristic function of an infinitely divisible distribution is never zero.

Proof. If $\varphi(0) = 1$ and φ is continuous, without loss of generality assume φ is real (if not, consider $|\varphi|^2 = \varphi \overline{\varphi}$ which is real and infinitely divisible.)

Let $\varphi_k(t)^k = \varphi(t)$. Assume $\varphi(t) > 0$ for $|t| \le a$. Then for $t \in (-a, a)$, $\varphi_k(t) \to 1$ as $k \to \infty$. Now note that

$$1 - \varphi(2t) \le 4(1 - \varphi(t)),\tag{(\star)}$$

as

$$1 - \varphi(2t) = \int (1 - \cos 2tx \, dF(x) \quad \text{as } \varphi \text{ is real}$$
$$= \int (2 - 2\cos^2 tx) \, dF(x) \quad \cos 2\theta = 2\cos^2 \theta - 1$$
$$= 2 \int (1 - \cos tx)(1 + \cos tx) \, dF(x)$$
$$\leq 4 \int (1 - \cos tx) \, dF(x) \quad 1 - \cos tx \ge 0$$
$$= 4(1 - \varphi(t))$$

as required.

Then we have $1 - |\varphi(2t)| \le 1 - \varphi(2t)|^2 \le 4(1 - |\varphi(t)|^2) \le 8(1 - |\varphi(t)|)$. If $\varphi(t) \ne 0$ on 0 < t < a and $\epsilon > 0$ arbitrary, we can find k large enough such that

$$1 - |\varphi_k(t)| < \frac{\epsilon}{8}$$

which implies $1 - |\varphi_k(2t)| < \epsilon$ and so $|\varphi_k(2t)| \neq 0$ on |t| < a. So $\varphi_k(t)| \neq 0$ on |t| < 2a, and hence $|\varphi(t)| \neq 0$ on |t| < 2a.

Iterating this argument, we have that $|\varphi(t)| > 0$ for all t.

Lemma 21.4. For each k, let φ_k be a characteristic function such that $\varphi_k^k(t) = \varphi(t)$. $\varphi(t)$ is a characteristic function of an infinitely divisible distribution. Then $\lim_{k\to\infty}\varphi_k(t) = 1$ for all t.

Proof. Since φ is continuous and $\varphi(0) = 1$, we have

$$|\varphi_k(t)| = |\varphi(t)|^{1/k} \to 1$$

as $k \to \infty$.

We have $k \arg \varphi_k(t) = \arg \varphi(t) + 2\pi j, j = 0, 1, \dots, k-1$. Since

$$\arg \varphi_k(0) = \arg(1) = 0 \quad \text{so } j = 0$$

 $\arg \varphi_k(t) = \frac{1}{k} \arg \varphi(t) \to 0$

as $k \to \infty$, and so $\varphi_k(t) \to 1$ as $k \to \infty$.

Proof of theorem. Let φ be the characteristic function of an infinitely divisible distribution F. Let $\varphi_k^k(t) = \varphi(t)$. Then

$$\log \varphi(t) = k \log \varphi_k(t)$$
$$= k \log(1 - (1 - \varphi_k(t)))$$

Since $1 - \varphi_k(t) \to 0$ as $k \to \infty$, we have

$$\log \varphi(t) = -k[1 - \varphi_k(t) + \frac{(1 - \varphi_k(t))^2}{2} + \dots]$$

= $-k[1 - \varphi_k(t)](1 + \frac{1 - \varphi_k(t)}{2} + \dots)$
= $-k[1 - \varphi_k(t)] + o(1)$

and so $\varphi(t) \sim e^{-k(1-\varphi_k(t))}$ which is a compound Poisson characteristic function.

Example 21.5. Show that the U([-1, 1]) distribution is not infinitely divisible. This has associated characteristic function $\frac{\sin t}{t}$. Then $\varphi(\frac{\pi}{2}) = 0$, and so the distribution is not infinitely divisible.

22. EXAM MATERIAL

- Borel-Cantelli lemma.
- Martingales, central limit theorems, strong law of large numbers.
- Inequalities of random variables.

Example 22.1 (Q2b) of 2010 Exam). Let (X_i) be IID. Then

$$\mathbb{E}|X_1| < \infty \iff \mathbb{P}(|X_n| \ge n \text{ i.o }) = 0$$

We have

$$\mathbb{E}|X_1| < \infty \iff \sum_{j=1}^{\infty} \mathbb{P}(|X_1| \ge j) < \infty$$
$$\iff \sum_{j=1}^{\infty} \mathbb{P}(|X_j| \ge j) \quad \text{by IID}$$
$$\iff \mathbb{P}(|X_j| \ge j \text{ i.o }) = 0$$

by Borel-Cantelli lemma.

Example 22.2 (Q7 of 2010 Exam). Let $\{X_n\}$ be a sequence of IID random variables on a probability space (Ω, \mathcal{F}, P) with

$$P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}.$$

Let $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$ and let $\{B_n\}$ be a sequence of events with $B_n \in \mathcal{F}_n$, satisfying

$$B_1 = \Omega$$
, $\lim_{n \to \infty} P(B_n) = 0$, $P(\limsup B_n) = 1$.

Define $Y_1 = 0$ and

$$Y_{n+1} = Y_n(1+X_{n+1}) + \mathbf{1}_{B_n}X_{n+1}, n = 1, 2...$$

- (a) Show that $\{Y_n\}$ is a martingale.
- (b) Show that Y_n converges in probability to 0.

(c) Show that $\limsup B_n \subseteq \limsup \{Y_n \neq 0\}$ and hence show that $\{Y_n\}$ does not converge almost surely.

Proof.

(a) Note that Y_1 is \mathcal{F}_1 -measurable. By induction, we have that $Y_n + 1$ is \mathcal{F}_{n+1} -measurable. We have

$$\mathbb{E}|Y_{n+1}| \le 2\mathbb{E}|Y_n| + P(B_n) \quad \text{as } |X_{n+1} \le 1$$

as $\mathbb{E}|Y_1| = 0$, $P(B_n) \le 1$, so by induction, $\mathbb{E}|Y_n| < \infty$ for all n. Finally,

$$\mathbb{E}(Y_{n+1} \mid \mathcal{F}_n) = Y_n \mathbb{E}(1 + X_{n+1} \mid \mathcal{F}_n) + \mathbf{1}_{B_n} \mathbb{E}(X_{n+1} \mid \mathcal{F}_n)$$
$$= Y_n \quad \text{as } \mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = \mathbb{E}(X_{n+1}) = 0.$$

Hence Y_n is a martingale.

(b) Let $\epsilon > 0$. We must show $P(|Y_n| > \epsilon) \to 0$ as $n \to \infty$. Consider $P(Y_{n+1} \neq 0)$. We have

$$P(Y_{n+1} \neq 0) \le P(B_n \text{ occurs or } Y_n \neq 0 \text{ and } X_{n+1} = 1)$$

= $P(B_n) + \frac{1}{2}P(Y_n \neq 0).$

Hence

$$\lim_{n \to \infty} P(Y_{n+1} \neq 0) \le 2 \lim_{n \to \infty} P(B_n) = 0$$

and so $Y_n \xrightarrow{p} 0$.

(c) If $Y_n \stackrel{a.s.}{\to} Y$ almost surely then by uniqueness of limits in probability Y = 0 almost surely. We have

$$Y_{n+1} = \begin{cases} 2Y_n + \mathbf{1}_{B_n} & X_{n+1} = 1\\ -\mathbf{1}_{B_n} & X_{n+1} = -1 \end{cases}$$

Hence $B_n \subseteq \{\omega : Y_{n+1}(\omega) \neq 0\}$. Thus

$$\limsup B_n = \bigcap_m^{\infty} \bigcup_{n=m}^{\infty} B_n \subseteq \bigcap_m^{\infty} \bigcup_{n=m}^{\infty} \{Y_{n+1} \neq 0\}$$
$$= \limsup \{Y_n \neq 0\}$$

Hence $1 = P(\limsup B_n) \le P(\limsup \{Y_n \neq 0\})$ and so $P(Y_n \neq 0 \text{ i.o.}) = 1$, and so Y_n does not converge almost surely.