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1. LECTURE 1 - THURSDAY 3 MARCH

Definition 1.1 (o-field). Let Q be a non-empty set. Let F be a collection of subsets of 2. We call
F a o-field if

e e F,

e Ac F= A€ F,

e ABeF=AUBeF

If (A;) € F, then U;?;Ajef.

Definition 1.2 (Probability measure). Let P be a function on F satisfying

o If A€ F then P(A) >0,
e P() =1,
o If (47) € F and A; 1 A; = 0, then P (U, 4;) = X232, P(4;),

Jj=1

Then we call P a probability measure on F.

Definition 1.3 (o-field generated by a set). If A is a class of sets, then o(A) is the smallest o-field

that contains A.
Example 1.4. For a set B, o(B) = {0,9Q, B, B°}.

Definition 1.5 (Borel o-field). Let B be the class of all finite unions of intervals of the form (a, b]
on R. The o-field o(B) is called the Borel o-field.

Note that B itself is not a o-field - consider (J;Z, (0, 5 — 5] = (0, 3) ¢ B.

1.1. Constructing extensions of functions to form probability measures.

Lemma 1.6 (Continuity property). Let A be a field of subsets of Q. Assume O € A and that A is
closed under complements and finite unions.
]f Aj € F and Aj+1 C Aj with ﬂ;il Aj = @, then 1imj4)oo P(AJ) = 0.

Theorem 1.7. Let 0(A) be the o-field generated by A. If the continuity property holds, then there
is a unique probability measure on o(A) which is an extension of P, i.e. the measures agree on all

elements of A.

Definition 1.8 (Limits of sets). Let (92, F,P) be a probability space, and assume (4;) € F. Then
define lim sup,, _, .. An as
limsup 4, = m U A, = limA,,

n—oo
n=1m>n

An element w € limA,, if and only if w € A,, for some m > n for all n - that is, w is in infinitely

many of the sets A,,.
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Similarly, define liminf,, ,., A, as

liminf A, = A,, =limA
im inf A, glmgn m = limA,
An element w € limA,, if and only if w is in all but a finite number of sets A,,.
Clearly,
limA,, C limA,

If limA,, and limA,, coincide we write it as lim A4,,.

Lemma 1.9. Assume the continuity property holds. If A, | A then P(A,) | P(A), and if A, T A
then P(A,) T P(A).

Proof. If A, | A, then A,, D A,4q... and ()2, A, = A. We can write A,, = (4, — A) U A. Then

we have
P(A4,) =P(A, — A) + P(A)
P(A,) > P(A)
By the continuity property, P(A4,, — A) — 0, and so P(A,) | P(4). O
2. LECTURE 2 - THURSDAY 3 MARCH

Theorem 2.1.
P(limA4,,) < limP(A4,) < MIP’(AH) < ]P’(MAn)

Proof. We know A,, | limA,,, and so from Lemma @ we have that a. O

Definition 2.2 (Measurable function). Let (2, F,P) be a probability space. Let X : @ — R be
real valued function on . Then X is measurable with respect to F if X ~1(B) is an element of
F for every B in the Borel o-field of R.

Definition 2.3 (Random variable). A random variable is a measurable function from € to R.
Definition 2.4 (Expectation). If [, | X (w)|dP < co then we can define E(X) = [, X (w) dP
Definition 2.5 (Distribution). X induces a probability measure Py on R

Px(B) =P(X%(S)),S € B

Px is called the distribution of X. (R,B,Px) is a probability space. The distribution function
Fx(z) =P({w: X(w) < z}) = Px((—00, z]). We have E(X) = [, #dPx(z) = [ xdFx(x).
2.1. Key results from Measure Theory.

Theorem 2.6 (Monotone convergence theorem). If 0 < X,, T Xa.s then 0 < E(X,,) T E(X) where
E(X) is infinite if E(X,,) 1 oo.
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Theorem 2.7 (Dominated convergence theorem). Iflim X,, = Xa.s. and | X,,| <Y for alln > 1,
with E(]Y]) < oo then imE(X,,) = E(X).

Theorem 2.8 (Fatau’s Lemma). If X,, > Y for all n with E(|Y]) < co then

E(liminf X,,) < liminfE(X,)

Theorem 2.9 (Composition). Let (2, F,P) and (', F") be spaces. Let ® : ¥ — ¥/ be measurable.
Define Pg on F by Pe(M) = P(®~1(M)). Let X' be a measurable function from %' to R. Then
X(w) = X'(®(w)) is a measurable function. Then we have

E(X) = 5 X' dP,

Proof. Suppose X' is an indictor function for A € F’'. Then
X'dp, = [ P, = P,(4) = Be™(4) = E(X)
Qr A
So the result is true for simple functions.
Now, suppose X’ > 0. Then there exists a pointwise increasing sequence of simple functions X/,

such that X/ — X'. By the monotone convergence theorem, we know

lim X, dP, = X' dP,

n—oo [ Q
But X, (w) = X, (®(w)) are also simple functions increasing to X. Hence, we know that lim,,_, . E(X,) =
E(X). O

3. LECTURE 3 - THURSDAY 10 MARCH

Theorem 3.1 (Jensen’s inequality). Let o(x) be a convexr function on R. Let X be a random
variable. Assume E(X) < oo, E(¢(X)) < co. Then

P(E(X)) < E(p(X))

Theorem 3.2 (Holder’s inequality). Let 1 < p < oo and 1% + % = 1. Then we have

E(XY)| < E(IXY]) < (E(X[P)"7 (E(Y]9)"

If p = q =2 we obtain the Cauchy-Swartz inequality E(|XY|) < (IE(|X|2))1/2 (E(|Y\2))1/2,

/Y = 1 then E(|X]) < (E(1X|"))/.
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Proof. Let W be a random variable taking values a; with probability 1/p, as with probability 1/¢,
with 1/p+1/q = 1. Applying Jensen’s inequality with ¢(x) = —log(x) gives

E(—logW) > —log E(W)

1 1 ap | a
—(logai) + —(—logas) > —log(— + —
p( 1) q( 2) (p q)

~log(ar” - /") > ~log(" -+ )

ar
1/P.a;/q§71+72

a
' Poq
Where the inequality is trivial if a; or as is zero.
Setting a; = |z|P and ag = |y|?, we obtain

p q
oyl < B 1"
p q

Let x = W and y = W or take expectations across the inequality, we obtain

E(|XY]) < (E(IX]?))" (E(|y]7))"/*

Example 3.3. If 1 <r < 7 then %/ > 1. Then
E(IX[") < (B((X|")"/m Ve = B(X[7)" T
Theorem 3.4 (Liapounov’s inequality).
(LX) < (B(X] )Y

Corollary 3.5. Thus if E(|X|") < oo then X has all moments of lower order finite i.e. E(|X|P) < oo
foralll<p<r

Theorem 3.6 (Minkowski’s inequality). If p > 1, then
(E(X +Y[P)YP < (EBIXP)YP + E(Y )P
Proof.
E(IX +YP) <E(X|- X + Y~ +E(Y]- X +Y[P7)
= E(IXI")VPE(X + Y[ HD)Y+E(Y ) VPE(X + YD)
Let 1/p+1/q = 1. Then from Hoélder,
E(IX +Y") < (B(X +Y[") /g - (E(X[P)? + E(Y[")"/?

and so
(E(X +YP)YP < (B(XIP)VP + EB(Y )P
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O

3.1. Modes of Convergence. Let (2, F,P) be a probability space and X,,(w),n > 1 is a sequence

of random variables.
Definition 3.7 (Almost surely convergence). We say X,, converges almost surely if
P({w| X, (w) has a limit}) =1
We write X,, “3" X where X denotes the limiting random variable.
Definition 3.8 (Convergence in probability). X, converges in probability to X
X, B X

if for all € > 0,
PHw][Xn(w) = X(w)[ > €}) = 0

or alternatively,
P(|X, —X|>¢) —0

Definition 3.9 (Convergence in mean). X,, converges to X in mean of order p (or in LP) if
E(|X, - XP) =0
We write X, L X. We note that for convergence of order LP, we need E(]X,|?) < 0.
Theorem 3.10. If X, LLX then X, 5 X for any p > 0.
4. LECTURE 4 - THURSDAY 10 MARCH
Lemma 4.1. Let C1,Ca,... be sets in F and Y., P(Cy) < co. Then P(imC,,) = 0
Proof. Since imCy, = (72, U,,,>,, Cim, we have

P(ImC,) < P({J Cm) < D P(Cn) =0

m>n m<n

Theorem 4.2. If there exists a sequence of positive constants {e,} with )", €, < oo and

D P(|Xpi1 — Xn| > €) < 00
n

then X, converges almost surely to some limit X.

Proof. Let A,, = {|Xn4+1 — Xn| > €,. So from the above Lemma, P(limA,,) = 0. We also have
that w € limA4,, if and only if w is in infinitely many A,,. For w ¢ limA,,, then there is a last set
containing w. Define N(w) =nif w € U5, Am — Usp Am, and zero if w € (Um > 14,,)°.
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For w ¢ limA,,, we have > °7 | X,,11(w) — X,,(w) exists as 3 €, < co. Since
Xn(w) = Xi(w) + (Xa(w) — X1 (W) + -+ + (Xn(w) — Xn_1(w))
we know lim X, (w) exists - i.e. P(lim X,,(w)) exists) = 1. O
Theorem 4.3. FEvery sequence of random variables X,, that converges almost surely converges in

probability. Conversely, if X, = X then there exists a subsequence {X,, } which converges almost

surely.

Proof. Assume X,, “3 X. Let ¢ > 0. Consider limP(|X,, — X| > €) < P(limsup{|X,, — X| > ¢}) by
a previous theorem (Theorem 2 in Lecture Notes). We have
limsup{|X,, — X| > ¢} = {w]||Xn(w) — X(w)| > € infinitely often}
C {w] lim Xa(w) # X (@)}
Hence, we have
PIlim|X, — X| >€) <1 - P(lim X, (w) = X(w)) =0 as X, 3 X

since limP(| X,, — X| > ¢) = 0.

Conversely, assume X, 2> X. Given ¢ > 0, consider P(|X,, — X,,| > €) < P(|X — X,,,| >
€2+ P(|X — X,| > €/2) (If | X — X,| < €¢/2 and | X — X| < €/2, then | X, — X,;| < € by the
triangle inequality). Thus, P(|X,, — X,| > €) — 0 as m and n — 0. Set ny = 1 and define n; to be
the smallest integer N > n;_; such that

P(|X, - X4 >277)<27' whenr,s>N
Then apply Theorem @, and as

S P( Xy, — Xy | >27) <> 277 =1< 00
J

we know that X,,; converges almost surely.
d

Example 4.4. We now construct an example where X,, 20 but X,, does not converge almost
surely to 0.

Let Q@ = [0,1],F the Borel o-field, and P the Lebesgue measure. Let @r; = Ijj_1/x /) for
j=1,...;kand k=1,2,....

Let X7 = 11, Xo = @21, X3 = a9, etc. For any p > 0,

E(|Xn|p) = /Xn dP = []n - 1/knvjn/kn] —0

and so X, L—p> 0.
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However, for each w € Q and each k there are some j such that ¢g;(w) = 1. Thus X, (w) =1
infinitely often. Similarly X, (w) = 0 infinitely often. Hence X,, does not converge almost surely to
0.

5. LECTURE 5 - THURSDAY 17 MARCH

Following from the previous lecture, we now modify the examples to show convergence in prob-
ability does not imply convergence in LP even when E(|X,,|P) < co.

From @, replace ¢r; by k'/P¢y;. Then
P(|X,| > 0) = 1/ky, — 0
as n — co. Similar,y
E(|Xn[P) = (ky/P)PP(X, #0) = 1
and so

lim E(|X,|7) =1

n—oQ

and thus X,, does not converge in LP to zero. Thus convergence in probability does not imply
convergence in LP.
Next define X7 = 11, X, = <pn1n1/p. Then

Xn(w) —0
for w > 0 so X, “3°0. We also have

E(|XalP) = (n!/?P)P~ =1

1
n

and so X, does not converge in LP to zero.

Definition 5.1 (Uniform integrability). A sequence {X,} is uniformly integrable if
lim sup/ | Xn|dP =0
[ Xn|>y

Theorem 5.2 (Convergence in probability and uniform integrability imply convergence in L?). If
X, 5 X and {|X,|} is uniformly integrable, then X, B x.

Definition 5.3 (Independence). Let (2, F,P) be a probability space. Let Ay, Ao, ..., A, € F The
events are said to be independent if
P(A;,,..., A;) =P(4;) ... P(A;)

forall 1 <iy <---<ip<n, k=23,...,n.
In the infinite case, let {Ay,« € I}, I an index set, is a set of independent events if each finite

subset is independent.
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Definition 5.4 (Independence of random variables). Let Xj,...,X, be random variables on
(Q,F,P). X;,...,X, are independent if A; = {X; € S;} are independent for every set of Borel
sets, S; € B.

Alternatively, let X and Y be random variables. Let By be the Borel o-field on R, Z(w) =
(X (w),Y (w)) is then a map form € to R2. Z is Borel measurable if

zZ Y8 e F

for all S € By. Px y is the induced measure on Bs, and Fx y is the joint distribution of (X,Y).
Let

Fxy(z,y) = Pxy((—00,2], (=00, 9]) = P({w : X(w) <2,Y(w) <y})
Theorem 5.5. If X and Y are independent then
Fxy(z,y) = Fx(z)Fy(y)
Theorem 5.6. Let X and Y be independent, with E(|X]|) < oo and E(|Y) < co. Then
E(XY) = E(X)E(Y)

Proof. Start with simple functions. Then
X(w) =3 aila, )
i=1

with {A;} disjoint. Let

with {B;} disjoint.
Independence implies P(A;B;) = P(A;)P(B;).
Then

by independence.
Now extend to non-negative random variables X, Y by constructing sequences of simple functions

using monotone convergence theorem. Let

1
Xn = — i 5 | =
W) =5z o on
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and zero if X (w) > n.

For simple functions, we have

and so by the monotone convergence theorem,

E(XY) = E(X)E(Y)

Theorem 5.7. Let X and Y be independent random variables. Then
E(|X+Y]|") <0

if and only if
E(|X]|") < 0o and E(|Y|") < o0

for any r > 0.

Lemma 5.8 (¢, inequality). We have
[z +y|" < e (lz]" + [y]")

for x,y real, ¢, constant, r > 0.

Proof. If r = 0, trivial.
If r = 1, we obtain the triangle inequality.
If » > 1, we have
|z 4+ y|" < [2max([z], [y])]"
= 2" max(|z[", [y[")
<2"(|z|", |y|")
and setting ¢, = 2" proves for r > 1.
If0 < r < 1, consider f(t) = 1 +t" — (1 +¢t)", with f(0) = 0. Differentiating, we have
f't)=rt"=t —r(14+¢)""1 >0 for t > 0. Thus f(t) is increasing for ¢t > 0. Hence
f#)>f(0)=0
1+t"> 1+

Using t = we obtain

ER

(2l + TyD)"™ < fal” + [yl"
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6. LECTURE 6 - THURSDAY 17 MARCH

Lemma 6.1. For any o > 0 and distribution function F,

/O T dF () = o /O T 20 = F(a)] da

Proof. Consider. Integrating by parts, we have that this is equal to

b b
/Ox dF(x):f/O z*d(1 — F(x))
b
— [—2®)(1 - F@)[} + / az® (1 - F(z)) de

b
=—b*(1— F(b)) +/0 az® (1 - F(x))dx

We also have

0 < b1 — F(b)) < /Oo 2 dF(z)
b

If the LHS converges then limy_,o [;° 2® dF(z) — 0. Thus the term b*(1 — F(b)) is squeezed to
zero.

Conversely,

Lébx“dﬁxx)glébaxawlFﬂﬂ)dw
and so
/Oooaxa_l(l — F(x))dr < 0o = /OooxadF(x) < 00.

Theorem 6.2. Let X,Y independent and r > 0. Then

E(|X +Y]") < o0 <= E(|X]|")oo, E(]Y]") < o0

Proof. T E(]X|") < o0, E(|Y|") < 00. Then
E(X +Y]") < e (B(X]") + E(JY])") < 00
Assume E(|X +Y|") < oo. Assume X and Y have median 0 (without loss of generality). Then

1
P(X<0)> 2 P(X20)> 5

DN =

Similarly for Y.
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Now,

P(X|>t)=P(X < —t)+P(X >1t),t>0

P(X <Y <0) P(X>tY>0)
P(Y <0) P(Y >0)

—2P(X +Y < —t) +2P(X + Y > t)

—2P(|X +Y|>t)

by independence.

Using the previous lemma, we have
E(|X|T)/ " dF (z) = 7‘/ 2" P(|X]| > x) dx
0 0
< 27“/ " TPX 4Y| > 2)de
0
=2rE(|X +Y|").

So E(JX +Y|") < 0o = E(|X|") < co. Similarly for E(|Y]") < .
O

Theorem 6.3. If X and Y are independent with distribution functions F' and G respectively, then
mX+Y§m:/F@—wa)
R
~ [ Gta-wirw)
R
Proof. This is just a simple statement of Fubini’s theorem. O

Corollary 6.4. Suppose that X has an absolutely continuous distribution function
x
F(z) = / f(u)du

for some density function f with [, f(x)dez =1 and f > 0.
Let'Y be independent of X. Then X +Y has an absolutely continuous distribution with density

/R f(z - y) dG(y)

Thus we have

HX+Y§@A/$ﬂtyﬂwﬂw

[ [ s ica
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Definition 6.5. A distribution function F' that can be represented in the form
F(z) = bl 00 ()
J
with a; real, b; > 0, -, = 1is called discrete.

If a distribution function is continuous then it may be:

(1) Absolutely continuous, in which case there is a density function f > 0 such that F(b) —
F(a) = [? f(u) du. fis called the density.
(2) Singular, in which case F'(z) exists and equal zero almost everywhere with respect to the

Lebesgue measure (see Chung §1.3)

Theorem 6.6. Any distribution function F can be written uniquely as a conver combination of
a discrete, an absolutely continuous, and a singular distribution. By convex, we mean a linear

combination with non-negative coefficients summing to one.

Theorem 6.7 (Chebyshev’s inequality). Let X be a random variable and g an increasing, non-
negative function. If g(a) > 0, then

Proof. We have

X
P(IX —E(X)| > a) < V“;(Q )
Let g(x) = e*. Then
cX
P(X > a) S E(e ) — efcaE(ecX)
eca

Let g(z) = |z|*,k > 0. Then
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7. LECTURE 7 - THURSDAY 24 MARCH

Definition 7.1 (Weak law of large numbers). Let Xi,...,X,, ... be IID random variables with
E(X;) = p,Var(X;) = 02 < co. Then

X, 5 X
Proof.
¥ E(X, — p)?
P(X,) < =2
2
o gn 0

€

as n — 00.
We have
E([ X0 — uf2) = 0%/n — 0

and so X,, converges to ju in L? O

We can relax the assumptions to E(|X) < co (no need to have finite variance). See Chung (1974)
p-109, Theorem 5.2.2.

Theorem 7.2. Let X; be uncorrelated, and E(X;) = p;, Var(X;) = 02 < oo with

then we have

n
i=1

Proof.

n 1 n

P(|Xn**ZNZ|>€):P(E (Xi — i) > )
i=1 i=1
< Var(% ?:;(Xi i) -0
€

as Y n*> 07 = 0. O

Theorem 7.3 (Borel-Cantelli lemma). Let Aj,... be events in a probability space. Let B =
limsup 4,, = ﬂnZl Umz” A,,. Then

(i) >, P(A,) < oo then P(B) = 0.

(it) If A; are independent and ), P(Ay) — oo then P(B) = 1.
For (ii) we need independence. Consider A; = A where P(A) = . Then

B =limsup A4, = A
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and P(B) = 1

Proof. Preliminary lemma - if 0 < 2 < 1, then log(l — z) < —z. We can then show that if
>, G — 00 then [, (1 —a,) = 0.

(1)

and so P(B) = 0.
(ii) We will prove P(U,,>, Am) =1 for all n. Take K > n. Then

K
m>n Kmfn
= P((|J 40
=P( 45)

as y P(A,) = 0o as K — co. Thus

for all m, and so P(B) = 1.
(]

Theorem 7.4 (Strong law of large numbers). Let X1, ... be IID random variables. Let E(X1) = p,
E(X{) <oo. Let S, =375, X;. Then

Proof.

B - ) = Y B -t +6(3 )
=nE(X; — p)* +3n(n —1)o?

< Cn?.
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From Chebyshev, we have

E(S, —un)*

P — < — = 7
(‘S’ﬂ /M’l| > en) = )(en)4
cn? k
=t T2

and so
ZP(|Sn —npl > ne) < oo,

and so P(limsup{|% — p| > €}) = 0. Letting A, = {|S7—f — p > €}. Then

S7L
P(|? — 1] does not converge to zero) = P(U Aik)
k

< g P(Ai)
%
=0

by Borel-Cantelli. O

8. LECTURE 8 - THURSDAY 24 MARCH

Let Xi,... be IID random variables with mean p. Then
Sn
P(lim —=p)=1

n—oo nN

Conversely, if E(]X|) does not exist, then
S
P(limsup|?"\ =0)=1
Theorem 8.1. If F(X?) < oo, and u =0 (WLOG),

2
P(‘n—asn| > E) < E(Sn)

— n2a€2

=nl22/2 0

provided S > %,n_aSn 2.

Theorem 8.2 (Hausdorff (1913)). |S,| = O(nz1¢) a.s for any ¢ > 0.
Assumes E(|X;|") < oo forr=1,2,....

Proof. Previously, we showed E(S2) < Cn? for some C' > 0. Then we can extend this to

E(S2F) < epnf bk =1,2,. ..
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Then
—a ckn’“
_ cka—ank(1—2a)
and so

ZP(n*a|Sn| >a) < 00
if k(1 —2a) > —1ie a>1+ 4.
By Borel-Cantelli, P(|S,| > an®i.0.) =0 if a > & + 5. O
Theorem 8.3 (Hardy and Littlewood (1914)). |S,,| = O(y/nlogn) a.s.

Lemma 8.4. Suppose |X;| < M a.s. (X; is bounded). Then for any x € [0, 2], we have

2 2
E(e*5n) < exp[mj

(1+aM)]
Proof. The random variables e~ are independent, so E(e*5) = [E(e®X1)] ". We can then evaluate

> ,TXlk
>

k=0

E(e"*) =E

> IIZXlk
:1+0+x202/2+IE(Z( k!) )

k=3

ok k-2 2
9 9 "M o
Sl+x0’/2+§ T
k=3

% _kark
<1+42%0%/2+ 0> M72/31) %
k=3
(xM/3)°
(1—2xM/3)
o?Ma?
6(1—aM/3)’

=1+2%0%/2+0*M2/6

=1+2%2%/2 =
If 0 <z <2/M, we have
E(e®*1) <1+ o%2?/2 + o%2?/2(x M)
=1+ 0%2%/2(1 + M)
< exp(o?x?/2(1 + xM))

Corollary 8.5. For 0 < a < 2‘]’\;”, under the conditions of the above Lemma,

M

E2 a
P(S, >a) < e )73
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Proof.
E xSy
P(S, > a) < 2
e(lil/‘
2.2 2
< exp( (14+2zM) — ax) 0<m§M
Put z = -%;. THen
a? aM a?
P(S, >a) < exp(——(1= —2) — —
(S 2 @) < exp(2n02( naQ) ncr?)
—a? aM
= — 1 —_——,——
exp/ 2no? ( no? )
U
We can now prove the Hardy-Littlewood result. If |X;| < M almost surely then |S,| =
O(v/nlogn) as.
Proof. Put a = cy/nlogn. Then
c?logn Mec/logn
P(S,, > cy/nlogn) < exp( 552 (1- Jino? )
/207 Mc? logny/logn
=n exp(—F————")
204 Vn
If ¢ > 202 then Y, P(S, > cy/nlogn) < co. By Borel-Cantelli, we then have
P(S,, > cy/nlogni.o.) =0
Now apply the argument to —X;. Then
P(—S, > cy/nlogni.o.) =0
(]

Theorem 8.6 (Khintchine (1923)). |S,| = O(v/nloglogn) a.s.
Theorem 8.7 (Khintchine (1924)). Let X; = £1 with probability 1. Then

lim sup ————— = V2a.s.

9. LECTURE 9 - THURSDAY 31 MARCH

Definition 9.1 (Induced o-field). Let (€2, F,P) be a probability space. Let Y be a set of random
variables on (€2, F). Then o(Y') is the smallest o-field contained in F with respect to which each
X €Y is measurable.

That is, for each B € B, the Borel o-field on R, we have

X YB)eoY)



MSH2 - PROBABILITY THEORY 20

Thus o(Y) is the intersection of all o-fields which contain every set of the form X ~*(B) for all
BeB,XeY.

Definition 9.2 (Independent o-fields). If X;,... are independent random variables and A; €
o(X;), then

P((4) =[] P) (*)
1=1 =1

If 1, Fa,... are o-fields contained in F and (x) holds for any A; € F; then we sa the o-fields are

independent.

Theorem 9.3. Let Fy, Fi,... be independent o-fields and let G be o-fields generated by any subset
of F1,Fa,.... Then Fy is independent of G.

Proof. Outline. Take G to be the smallest o-field containing Fi, Fo, . ...
If Ae Fy, B € G, then we need to show

P(ANB)=P(A)P(B).
(1) Assume P(A) > 0.
(2) If B=A; N Az...A, then the result is true.

(3) Let G, be the class of finite unions of B. Then G, is a finitely additive field, and G € G, can
be written as G = Ule G; where G; has the form of B above. Then

k
PANG)=P(|JAnG)
i=1

=Y P(ANG) =3 P(ANGNG)) +...

= P(A)P(G)

by the inclusion-exclusion formula and independence of A and G;.
(4) Now, let P4(B) = PE;}QJ)B). Then P4 and P are measures on F, and P and P4 agree on G,.
Thus by the extension theorem they agree on the o-field generated by G, which includes G.

O
Definition 9.4 (Tail o-field). Let X3, Xo,... be a sequence of random variables and let
Fo = o({Xn, Xus1, )
be the o field generated by X,,, X;,+1. Then
Fo 2 Fpy1 2 Fpio...

and let
T = ﬂ nFn
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be the tail o-field.
T is the collection of events defined in terms of X7, Xo,... not affected by altering a finite

number of the random variables.

Theorem 9.5 (The 0 — 1 law). Any set belonging to the tail o-field of a sequence of independent

random variables has probability 0 or 1.

Proof. We have o(X,,) is independent of o({X,t1, Xni2,...}) = Fny1 2 T and so T is inde-
pendent of o(X,,) for every n. By the previous theorem, it follows that F is independent of
G=0({X1,Xs,...}) but as T C G, we know that 7 is independent of itself. Thus, for any A € T,

P(ANA)=P(A)P(A)
and so P(A)=0or 1. O
9.1. Martingales.

Definition 9.6 (Martingale). Let (9, F,P) be a probability space. Let {F,,} be an increasing
sequence of o-fields.
Fn CFpnp1 € CF.
Let {S,} be a sequence of random variables on Q. Then {S,} is a martingale with respect to
{Fn}if
(1) S, is measurable with respect to F,.
(2) E(|S,]) < 0.
(3) E(Sy, | Fm) = Sm almost surely for all m < n.

10. LECTURE 10 - THURSDAY 31 MARCH

Definition 10.1 (Supermartingale). {S,} is a supermartingale with respect to {F,} if

(1) S, is measurable with respect to F,.
(2) E(|Sy]) < 0.
(3) E(Sn | Fm) < Sy, almost surely for all m < n.

Definition 10.2 (Submartingale). {S,} is a submartingale with respect to {F,} if

(1) S, is measurable with respect to F,.
(2) E(IS,) < oo.
(3) E(S, | Fm) > Sy almost surely for all m < n.

Definition 10.3 (Regular martingale). Let X is a random variable E(|X|) < oo, S, = E(X | Fy,)
and assume {5, } is a martingale with respect to {F,}.

If a martingale can be written in this way for some X then it is regular.

Not every martingale is a regular martingale.
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Example 10.4. Assume P(X; = 1) =p, P(X; = —1) =1—p, and let S, = > | X;. If p # 1

then

S.
] _ n
( 1[ )

is a martingale with respect to F,, = o0(X1,...,X,,), since

1 — p\ SntXn
E(Yn ‘fn—l) =E ((pp) |]:n—1>

s ~1
L-p\™"|(1=-p L—p
(55|50 (52) o
p p p
= In-1
10.1. Conditional expectations. If G C F then
L*(G) = {X |E(X?) < 00, X is G-measurable}
If Y € L? define Z = E(Y | G) to be the projection of Y onto L*(G), where
E(YY - 2)?= inf E(Y —-U)?
UeL?(G)

Then Y — Z will be orthogonal to the elements of L?(G). That is,
/(Y —Z)XdP =0

for all X € L?(G). If A € G, then letting X = 14, we have

/ YdP:/E(Y|g)dP
A A
If Y > 0 construct {Y,,} with Y,, € L? such that Y,, 1 Y. Define

E(Y|G) = lim E(Y,|G).

The limit exists as
E(Y,|G) > E(Yn|G),n>m.
We still have

(1) E(Y |G) is G-measurable, and
(2) Forall Ae g,

AYM:AMHQM

/]E(Y|g)dP: lim /E(Yn|g)dP: lim YndP:/YdP
A =00 J A A A

as

n— oo

by the monotone convergence theorem.
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IfY € L', defining Y =Y+ — Y, we define
EY|G)=EY™"|G) -EXY|9g).
10.2. Stopping times.
Definition 10.5. A map
v:Q—-N=1{0,1,2,...,00}
is called a stopping time with respect to {F,,}, an increasing sequence of o-fields, if
{v=n}eF,.
and thus
{v<n}{v>n}eF,
Theorem 10.6 (Properties of stopping times). Let Foo = V21 Fp, the o-field generated by all F,,.
Then we have

(1) For all stopping times v, v is Foo-measurable.
{v=n}eF,,{v=o00} = {U{v =n}}° € Fuo

(2) The minimum and mazimum of a countable sequence of stopping times is a stopping time. To

prove this, let {vi} be a sequence of stopping times. Then

{ml?ka <n}= O{Uk <n}eF,

{mkin v >n} = O{vk >n}eF,

Lemma 10.7. Let {Y,!} and {Y,?} be two positive supermartingales with respect to {F,}, an

increasing sequence of o-fields. Let v be a stopping time. If Y, > Y2 on [v = n], then
Zn = Ynl]-{l/>n} + Yan{ugn}

s a positive supermartingale.

Proof. We have that Z,, is F,-measurable and positive. We then have
E(Zn | Fo1) = E(Y, Lisny + YViliucny | Fao1)
= E(Ynl]-{u>n—1} - Ynll{l/:n} + Ynz]-{ygn—l} + Yn21{y=n} | Fn—l)
<Y lpsno1y + Yilpen1y + BV = Y,)1iu—ny [ Fao1)
S anl

as Y2 - Y, <0on {v=n}. O
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11. LECTURE 11 - THURSDAY 7 APRIL

Theorem 11.1 (Maximal inequality for positive supermartingales). Let {Y,,} be a positive super-

martingale with respect to {F,}. Then

supY, < ooa.s
n

on [Yy < o0] and
Y.
P(supY,, > a|Fy) < min(l, ;0)

Proof. Fix a > 0 and let v, = inf{n :Y,, > a} = oo if sup,, ¥,, < a. Then the sequence Y,,(2) = a is
a positive supermartingale, and so
Zn = Yolgy,>ny +aliy,<n)

is a positive supermartingale by the previous lemma. Then we have

Yo Yo<a
E(Z,|Fo) < Zy =
a Yy>a

Thus Z,, > al{yagn} and so
aP(va < n|Fy) < min(Yp, a)

for all a. THus v
P(supY;, > a|Fy) = P(vy < 0| Fp) < min(1, ;O)

Write
P(Yy < oo,st:Lp Y > a) = E(1{y,<co} Lisup, v, >a})
= E(L{vy<oo})E(L{sup, v, >a} | Fo)
< / min(1, E) dP
Yo<oo a

—0

as a — oo by the dominated convergence theorem.
Thus, we have
P(Yy < 00,sup Y, < o0) = la.s.
n
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Fix a < b € R. For any process Y,,, define the following random variables
vy =min(n > 0,Y, <a)
vy =min(n > v1,Y, > b)
v3 = min(n > v,,Y, <a)
and so on. If any v; is undefined it is subsequently set to infinity.
Define S, = max p: vvg, < 00, equal to the number of upcrossings of (a,b) by Y,. We have

Bap = o0 if and only if liminfy, < a < b < limsupy,. We also have Y,, converges if and only if

Bap < oo for all rationals a,b, a < b.

Theorem 11.2 (Dubin’s inequality). If Y, is a positive supermartingale, then Bqp(w) are random

variables and for each integer k > 1, we have

Y,
PBuy > k| Fo) < (%)kmin(l, ;0),0 <a<b.

Proof. The vy, defined above are stopping times with respect to F,,, as

n—1
vap =1l = | [vap—1 = m, Yigs < b, Yooy <D.Y, > 1)

m=0
and as vy is a stopping time, we then use induction.
We then have [B4p > k] = [v2r < o0]. Then define

I S
Zn = lo<n<iy + Z(g)k_lfl{yzk—lﬁnﬁl’%}
k=1

b\" b\ "
+ (a) Lo <n<vaei} + (a> Lin>van i1}

by K
E) 1{V21< <n}-
We now apply the previous lemma to show {Z,,} is a positive supermartingale. We have

()

are positive supermartingales. On [v; = n], we have 1 > % On [ver—1 = n] we have

9 k;71> é kqﬁ
a —\a a

k—1 k
On the even stopping times, we have (3) % > (3) . Thus

ie. Ljocnen) + 221 S0 <vo+ Elp,cncugy + o (

E(Z,|Fo) < Zp

as Z, is a positive supermartingale. d
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. K
Since Z, > g 11, <n}, we have

K Y
Pl <n|Fo) < min(l, =)
a
Letting n — oo, we have
P(Bab > k|f0) :P(I/Qk < OO|]:0)

< (%)K min(1, %).

12. LECTURE 12 - THURSDAY 7 APRIL

Theorem 12.1. Let {Y,} be a positive supermartingale. Then there exists a random varaible Yo,
such that Y, “3 Yoo and E(Ya | Fp) <Y, for all n.

Proof. From Durbin’s inequality,
k
P(Bab Z k) S (%)

By Borel-Cantelli, as we have a summable sequence of probabilities, B, < oo almost surely. Hence

P(Y,, converges) = P m Bap <00 | =1
a<b

a,beQ
Let limy, 00 Yy = Yoo. If p < n, then
E ( ir;f Yn|]-'p) <E(Y,|F) <Y,.
m>n

Furthermore, inf,,>, ¥, 1 Y so by the monotone convergence theorem, we have

BV |7) = fin B uf ¥ ) <,

Theorem 12.2. Let Z be a positive random variable with EZP < oo, p > 1. Then
Yo =E(Zn | Fo)“S, BE(Z| Fao),

Note that almost sure convergence does not, in general, imply LP convergence, although they both

imply convergence in probability.

Proof. Suppose Z < a almost surely. Then there exists Yo such that Y, “3 Y, (as Y,, are positive
martingales). Fix n and let B € F,,. Then

lim Ym4ndP = / ZdP
B B

n—oo
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by definition of conditional expectation. Now 0 < Y,, < a so by the dominated convergence theorem,

/YoodP:/ZdP
B B

Yoo =E(Z| Fo)

and hence

and so the random variable Y, can be identified as the conditional expectation.
Since |Y,| < a, the {Y?} are uniformly integrable, and so Y, L—p>Yoo. This follows from noting
that Y, 3 Yo, and using that if X,, > X and {|X»|P} is uniformly integrable then X, K x.
Now remove the assumption that Z < a. Taking the LP norm of the conditional expectations
gives
I1E(Z| Fn) = E(Z | Foo)llp S NE(Z Na| Fa) = E(Z Na| Foo)llp +20(Z = a) " ||,
Now we know that [|[(Z — a)*t||, — 0 as a — o0, as E(Z?) < co. Hence we have

Y, BE(Z| Fu).

By uniqueness of limits, we obtain our required result. O

a.s. LP

Corollary 12.3. If Z € L? and Y, = E(Z|F,) then Y, =, S E(Z | Feo)

Theorem 12.4. Martingale convergence theorem

(a) If {Y,} is an integrable submartingale and sup,, E(Y,T) < co then there exists an integrable Yoo
such that
Y, 3 Yoo

(b) If {Y,} is an integrable martingale satisfying sup,, E|Y,| < oo then there exists an integrable
Y. such that

a.s.

Y, = Y.

Proof.
(a) {Y,F} is a positive submartingale as
E(Y, 1 | Fa) 2 BV | Fa) 2 Yy
If p > n, then

E(Y, 51 [ Fn)

E(E(Y, 1 | Fp) | Fn)

Hence M,, = lim,,_,o E(Y,' | F,,) as we have a monotone sequence.
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Now,

= lim ]E(Y;') < 00

p—o0

so M, is positive and integrable. M, is a martingale as
p—00
7 +
= phﬁn;o E(Y," | F.) MCT
=M,

Let Z,, = M,,—Y,. Then Z, is integrable as M Y,, are, and Z,, is a positive supermartingale,

as
E(Zn-H |fn) = E(Mn—H |]:n) - ]E(Yn+1 |Fn)
<M, -Y, asY, issubmartingale
and so Z, is a positive supermartingale. Note that M,, > Y, and so

Mn_Yn:Mn_(YJF_Yi)ZYnJr_(YJr—Yi):Yi

Thus Z,, and M,, converge almost surely to Z., and M, respectively, and so
Yo=M, = 2,3 Mo — Zoo =Yoo € L".
(b) Note that |Y,,| = 2Y,F — Y, and if {V,,} is a martingale, then
E|Y,| = 2EY, — EY,,
2EY,F — EY,

and so sup EY," < oo if and only if sup,, E|Y,,| < oco.

Theorem 12.5 (Martingale convergence theorem (restated)). Let {Y,,} be an integrable (sub/super)

martingale, that is, sup, E|Y,| < co. Then there exists an almost sure limit

lim V; =Y,

n—o0

and Yo is an integrable random variable.
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13. LECTURE 13, 14 - THURSDAY 14 APRIL

Definition 13.1 (Reverse martingale). {Y,,,G,} is a reverse martingale if {G,} is a decreasing
sequence of o-fields,
gn 2 gn+1
Y, is G,-measurable, E(|Y,|) < oo, and
E(Y,|Gn) =Y asform>n

Proposition 13.2. We have

E(|Yn|) = E(E(|Ya| | Gnt1))
> E([E(Yy | Gnt1)])
=E([Y541])

and so E(|Y,|) < E(|Yo|) for all n, and
Y, = E(Yy | Gn).

Theorem 13.3. If {Y,,} is a reverse martingale with respect to {G,}, then there exists a random
variable Yoo such that

Y, Y, Y B Yo = E(Y0 | Goo)

where Goo = () Gn-
Proof. We have Y,, = E(Yy|G,) and so {V,} is uniformly integrable. Hence if V;, 3 Y, it also

converges in L'. Let
Z, =E(Y;"|Gn) — Ya.
Note that Z,, > 0. Then
E(Zn | Gnt1) = Znsa
and so we only need to consider convergence for positive reverse martingales.
Let 65"1)) be the number of upcrossings of [a,b] by {Yp,Y1,...,Y,}. Applying Dubin’s inequality
to the martingale
{Yo,Yog1,..., Y1, Y0}

Then
a k

P8 2 k1Ga) < (5)

which is independent of n, and thus

P 2 k16e) < (3)'

for all n, and so
a

P(Bap > k|Gso) < (*)k-
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where S, is the number of upcrossings for {Y,,}, which implies
Bap < 00a.s.

Arguing as in the positive supermartingale case, we have {Y,,} converges almost surely, and we

have Y., = limsupY,, is G,, measurable for all n and so is G, measurable. O

Theorem 13.4 (Strong law of large numbers). Let X1, Xo,... be IID with E(|X1]) < co. Let

E(Xy)=p. Let S, = > | X;. Then

1, as
—S, = u.
n

Proof. Let G, = 0{Sn, Sn+1,Sn+2,.--} = 0{Sn, Xn+1, Xn+2,... }. We then have G, 2 G, 11. We

have

1
n

1 n
-~ ;E(Xz‘ [Gn)
= E(Xl |gn);
as
E(X1|Gn) =E(X2|Gn) =...E(X,|Gn)
by IID/symmetry.

Thus %Sn is a reverse martingale with respect to {G,}. From above, we have have
1 _ 1
=5, =Xa ", Ly E(X | Goo)-

We have lim,_,o .-, X; is in the tail o-field of the sequence of {X,,} and X; are IID and so
the limiting random variable is degenerate.
Consider X, = E(X |Gw)- By the Kolmogorov 0-1 law, we have

P{Xs <a})=0or 1.
Thus X, is a constant with probability one. Since
E(X1|Gn) © E(X1 | Goo)

we have

lim E(-5,) = E(E(X | 6-0)) = E(X1) = g

Thus X = p almost surely, that is,

1

S, 3 = U

S|
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13.1. Characteristic functions. Following Fallow Volume 2.

Definition 13.5 (Characteristic function). Let X be a random variable. Then the characteristic
function is defined by
p(t) = E(e"Y).
p(t) is always defined (unlike moment generating function (MGF'), probability generating func-
tion (PGF)).

Proof. Let ¢(t) be the characteristic function of the random variable X. Then

(1) le(®)] <E(le"¥]) =1 = ¢(0).
(i) p(—t) =E(e™"¥) = ().
(iii) If X is symmetric about 0 then ¢(t) is real.
)

(iv) (t) is uniformly continuous in ¢.
Proof.
lo(t+h) —o(t) = ‘/ei(Hh)X — "X dF(x)
_ ‘ / X (X _ 1) 4P (2)
< / ’eihX — 1| dF (z)
_ / \Jcos? (wh — 1) + sin? (ah) dF ()
= / V2 = 2cos hx dF (z) — 0

as h — 0 by the dominated convergence theorem. O

(v) If X and Y are independent random variables with characteristic functions ¢ and 1 respec-

tively, then X + Y has characteristic function

(vi) If X has a characteristic function ¢ then aX + b has a characteristic function ey (at).

(vii) If ¢ is a characteristic function the so is |¢|?.

Proof. Let X and Y have the same distribution, with X independent of Y. Then Z = X —Y
has a characteristic function p(t)p(—t) = |p(t)|*. O

(viii) Let X have a MGF M (t). Then ¢(t) = M(it).
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Example 13.6. (i) Let X ~ N(0,1). Then

(i) Let Y ~ N(u,02). Then

asY = p+oZ with Z ~ N(0,1).
(iii) Let X ~ Poisson(A) Then
plt) = A0,

(iv) Let P(X =1) = 1 = P(X = —1). Then

o=

1, . ,
o(t) = 3 (e" + e~ ") = cost.
(v) Let X ~ Exp(A). Then

@(t)z/ et \e N dx
0

o0
:/ e PO gy
0

A
A—it

Theorem 13.7 (Parseval’s relation). Let F' and G be distribution functions with associate char-

acteristic functions ¢ and . Then

[ el21d6e) = [ -t dre

/ =i o(2) dG(z) = / ezt ( / it dF(at)) dG(2)
= / / @) qF (z) dG(z)

= / (/ e#@=t) dG(z)) dF(z) by Fubini’s theorem

Proof.

~ [ vle - HaF()
O

Corollary 13.8. If G is the distribution function of a N(0, %) random variable. Then ¥(t) =

1 2
JR - . .
e 222" | and so the above relationship becomes

/eiZtQO(Z) \/%67%2202 dz = /B_ﬁ(‘”_t)z dF(z).
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Rearranging, we obtain
1 ist 1.2 2 / 1 _L( —t)2

— [ e p(2)e 2% 7 dz = e 2.2\ dF(z
2 | <) Nores (@)

Then the right hand side is the density of the convolution of F and a N(t,0?) distribution. Call

the convolution distribution F,. Then

F,(B) — Fy(a) = /a ’ <217T / e p(2)em 27 dz) dt

2 o —izf _ —iza
F(B) — F(a) = lim L /go(z)ef%z N (%)

foraso—0, F, = F.

Since a function has only countably many points of discontinuity, we can then derive the following

theorem.

Theorem 13.9. Let X be a random variable with distribution function F' and characteristic function

. Assume

/|<p(t)|dt < .

Then F' has a bounded, continuous density f given by

f(z) = / e (1) dt

T or

Proof. From (x) apply DCT. Then

c—0 J, 2

_ /j (;ﬂ/e”tgo(z) dz) dt

Corollary 13.10. If ¢(t) is non-negative and integrable continuous function associated with a

distribution function F. Then % s a density function with characteristic function };28

F(8) — F(a) = F(8) — F(a) = lim ’ ( = /(p(z)e_%zz”z dz) dt

O

Proof. We have

1 .
Fl(x) = o e "*Tp(2)dz
1

= f/ cos(zz)p(z)dz as p(z) is real
T Jo
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Thus
/ 1 e
F'(0)=— (z)dz
™ Jo
P / (2)d
oF (0yr | TV
and thus

14. LECTURE 14 - THURSDAY 14 APRIL
15. LECTURE 15 - THURSDAY 21 APRIL

Example 15.1. X has density f(z) = Le~*l. Then

1
o(t) == /e’t’” —ll gy

:/ costre™

1 ’Lt{E —itx —T
= d
2 +e ) e x

(E

:}/ ez (=it) L —z(1+it) g,
2 0
1[ -1 IR 7%
_ = —x(1+it) —x(1+it)
2{1—%6 iral .
_ 1
C1+e2

Thus ¢(t) = ﬁ which is a non-negative, integrable characteristic function. Thus,

pt) 1

2w f(0)  w(1+¢2)
which is the Cauchy distribution. We then know that the characteristic function of the Cauchy

distribution is

_ ) _ fl@) — ol

"0 =F0) = Fo)

from Corollary .

Theorem 15.2 (Moment theorem). Let F' be the distribution function of X. Assume X has finite
moments up to order n, i.e. E(|X|™) < oco. Then the characteristic function o(t) has uniformly

continuous derivatives up to order n, and

e ®() = FE(X|Y), k= 1,2,....n
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and i
- it
ety =1+ ]E(X’“)% + o(t™)
k=1 :
ast — 0.

Conversely, if ¢ can be written as

) =1+ ay ( ]z? + o(t")
k=1 ’

as t — 0, then the associated density function has finite moments up to order n if n is even, and
up to order n — 1 if n is odd, with ar = E(]X¥).

Proof.

Lemma 15.3. For anyt € R,

Proof. Taylor’s Theorem. O

Suppose E(|X|¥) < oo for k =1,2,...,n. Then

|xkeita:| < |{E|k

/zke”z dF(x)

_ i(t+h)e _ itw
LR =pl) | [ et

, SO

exists. Now

h

elhm 1

- ‘ / et =L ()

from Lemma .

So by DCT,

and thus

Using induction, we obtain

o) (1) = ik /xkeim dF(x)
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and ¥ (0) = i*E(X*) for k = 1,2,...,n.
Arguing as in the proof of characteristic functions uniform continuity.

Expanding ¢(t) about ¢ = 0 in a Taylor series, we have

n k

t)=1 Wlk! L (1), > 0.

o(t) +;w (0); Tk + Ru (1), > 0
with
tn
Ra(t) = [90(") (0t) — gp(")(())] 0<6<1.
We then have
Rn(t) Si/|1‘|n|620tzfl|dF($)
tm n!

N

2 n
and so by the DCT,

lim
t—0

:0’

R (1) ‘
tTL
and thus R, (t) = o(t™).

Conversely, suppose ¢ has an expansion up to order 2k. Then ¢ has a finite derivative of order
2k at t =0 Then

_ iy PR = 20(0) — o(=h)
—?(0) = - Jim, E

1—cosh
= lim 2/&@?(@
h—0 x

1 —coshx
> im ————
>2 / }111_% 2 dF(z) by Fatau

= /l‘zdF(:Z:) = E(X?)

and so ) (0) < 0o = E(X?) < oo.
Using induction, assume finite 2(k — 1)*" derivative at 0 = E(X2?*~1) < co. Then from the
first part,

()0(2(]6—2))(75) — (_1)k—1/x2k—26itz dF(I)
Suppose p?*(0) < oo. Then let

G = [ A an(y),

— 00
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SO g((;)) is a distribution function with characteristic function
1 . _
w(t) = m /ettwl,?k 2dF(.’L')
(71)k71¢(2k72)(t)

G(0)

As (F=2)(t) is twice differentiable at t = 0. So

2 2 272dF(y)
w()(O)Z/yy’“ (o0

and thus E(X?*) < co. as required. 0

16. LECTURE 16 THURSDAY 21 APRIL

Corollary 16.1. Let ¢ be a characteristic function associated with a random variable X. Then ¢

has continuous derivatives of all orders if and only if X has finite moments of all orders.

Corollary 16.2. The function ¢(t) = e~1!1” is not a characteristic function if o > 2. Note that

a =1 was the Cauchy distribution, o = 2 is the Normal distribution.
Proof. If a« > 2 then
lim oD () =0=>E(X?) =0
which implies X is degenerate. But if X is degenerate at b, then
o(t) = et £ e ItI"
Thus by uniqueness of characteristic functions, e~1!l” is not a characteristic function. O

16.1. Lattice distributions.

Theorem 16.3 (Lattice distributions). Let X be a random variable with distribution function F,

characteristic function @. If ¢ # 0 then the following are equivalent.

(i) X has a lattice distribution whose range is continued in 0,+b, £2b,..., b = 27”

(it) o(t +nc) = p(t) for n = £1,£2,..., that is, ¢ is periodic with period c.
(iii) o(c) = 1.
Proof. (1) = (2).

o(t) = i P(X = kb)e't*®

k=—o0

Z P(X _ kb)eQﬂ'itk/c

k=—o0
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which implies
p(t +nc) = o(t)
as e2minck/e — 1,
(2) = (3). Simply set t =0,n = 1. Then ¢(0) = p(c) = 1.
3) = ().

1—E(coscX)=0
E(1—coseX)=0

but as 1 — coscX > 0, X must have probability components on points where coscX = 1, that is,
cX takes on the values 0, =7, 427, .. .. O

Corollary 16.4. X is degenerate if and only if |p(t)| = 1 for all t.

Proof. If P(X = b) = 1, then o(t) = €**, and so |p(t)| = 1 for all ¢.
If |o(c)| = 1 for ¢ # 0, then ¢(c) = € for some 0. Let ¢1(t) = @(t)e """/ is characteristic
function of X — %. Then ¢ (c) = 1, thus X — % is a lattice taking values in 0, :I:%”, :l:%r, e
Now, pick some b € R with 2 irrational. Then [p(b)| = 1, and then X — as is a lattice taking
values in 0, :I:QT”, :t%”, .... Then
(i) |o(t)] <1 for t # 0 (e.g. Normal, e~ 2").
(ii) |e(A)] =1and |p(t)] <1lon0 <t <A (e.g. discrete 1, cost).
(iii) |p(t)| = 1Vt, degenerate distributions.

O
Example 16.5. We can construct 3 nontrivial distribution functions ¢1, 2, @3 such that
(i) p1(t) = @a(t),Vt € [-1,1].
(i) [e(®)] = les(®)], vi.
Counsider g(z) = 1 — |z|,z € [-1,1]. This has characteristic function ¢(t) = w But the

characteristic function is positive and integrable, and so

T—t] [t <1
e1(t) =
0 [t] > 1
is the characteristic function of the density
1—cosz
)= ——55—.
fla)=—2

We can express ¢1(t) as the trigonometric series,

1 o0
pr(t) =1t =5 + ; ax cos(kmt)
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with

! 22 kodd
ay = 2/ (1 —t)cos(kmt)dt =< "
0 0 k even

We can thus write
[ oo 4
t)==|2 — 2k — 1)mt.
p1(t) 1] + 321 I cos( s

Let V be a random variable, with

1 2
PV =0)= §,P(V =v) = —,v=+m, £3m, £57,...
v
Then V is a lattice distribution, with characteristic function

() 1 + 4 ‘4 cos 3mt + cos bt +
= —+ —|cosm
w2 w2 9 2%

2
and thus 1(t) = @a(t) on [—1,1], but have different density functions.

Finally, let U be a lattice random variable with distribution

2k + 1)m 4

5 )=

PU =4+ =
v m2(2k + 1)2’

k=0,1,2,...
Then U has a characteristic function ¢3(t) = 2 [¢2(%) — 3]. Thus
lo3(t)] = la(t)] V2.

17. LECTURE 17 - THURSDAY 5 MAY

17.1. Sequences of characteristic functions.

Lemma 17.1 (Helly selection theorem). Given a sequence of distribution functions {F,} then there

exists a sequence {ny} and a non decreasing right continuous function F such that
at all continuity points x of F.

Proof. First order the rationals to get a sequence {r;}. From {F,(r1)} we choose a subsequence
{Fpn,, (r1)} which converges.
Now from the sequence {nj)} choose a subsequence {ngr} such that {F),,, (r2)} converges, etc.
Now let ny = ngr. Then for each rational number r, the limit F,, (r) exists as n — oo.
Define L(R) = lim F,,, (r),r € Q. Then L(r) is non-decreasing and takes values in [0,1]. Let
F(z) = inf,<; L(r). Then F is non-decreasing, and right continuous, and F),, () — F'(z) for all
x € Q and at all points of continuity of F. O

Lemma 17.2 (Extended Helly-Bragg theorem). If a sequence of distribution functions {F,} con-

verges to a function F' at all continuity points of F' and g is a bounded, continuous, real valued
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/ gdF, — / gdF
R R
Proof. Let M = sup,, |g(x)|, and let a,b be continuity points of F. Then

b b b b
/ngn/ng‘ < /ngn,/ gdF, / ngn—/ gdF / ngf/ng
R R R a a a a R

b b
< M[Fy(a) — Fp(—00) + Fp(o0) — Fr(b)] + / ngn—/ gdF

Sfunction then

+ +

+ M[F(a) — F(—00) + F(c0) — F(b)]

Since
F,(a) = F(a), F,(b) — F(b)
as a, b are continuity points, we can choose a,b large enough to make the 3rd term small (< § for
arbitrary € > 0), and then N large enough to make the first term small.
Now we deal with the middle term. Let a = zony < 218 < --+ < 2, v = b be a sequence of

subdivisions of [a,b], such that A, — 0 (partition width) as n — co. Then

N
gN(‘T) = Z g(xlja N)l{a:y_lvNSszy_’N}
v=1

Then sup,¢q [9n(2) — g(z)| — 0 as N — oo (as g is bounded and continuous.) Then by DCT we

have
b b
/ gdF, = lim / gn dF,
a N—oo a

b b
/ gdF = lim / gy dF
a N—oo J,

b b
lim gNan:/ gy dF

n—oo a

Next, we will show

Let x, n be continuity points of F so
Fn(mu,N) - Fn(xy—l,N) — F(CCV,N) - F(«Iu—l,N)~

Hence

B VN

nh—>ng<> y gN(.T) dF, = nh—>n;<> Zlg(xu,N)(Fn(mu,N) - Fn(xufl,N))

- / " g (@) dF ()
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If My = sup,epq l9n (2) — g(2)], then

b b
/ngN,/ gdF

b
+/ 19— gn| dF

b b
/gnanf/gNdF
b

/gNan

+ My[F(b) - F(a)]

b
S/ |9*9n|anJr

S MN[Fn(b) - Fn(a)] +

b
/ gn dF
a

Since My — 0 as N — co. Then choosing N large enough to make My small enough, for a large

b b
€
/ g, dF, —/ g, dF 9

The result then follows. O

N fixed, N5 say, we have

<

Lemma 17.3. Let {F,} be a sequence of distribution functions with associated characteristic
function {pn}. Assume o (t) = p(t) as n — oo for all t € R. Then there exists a non-decreasing
right continuous function F such that F,(xz) — F(z) at all continuity points x of F.

Proof. From Lemma there exists a subsequence {n;} and a non-decreasing continuous function
F such that F),, () — F(z) at all continuity points of F'. Using Parseval’s relation on {F,, , ¢n, },
we have

1 1 1 (et

— [ e %y, (2 e~30°% dz:/ e~ (55 )* dF,, (x
ol S [ = (@)

Let kK — oo. Then the LHS becomes
1

i _1,2,2
. e ZZth(Z)e 30727 s
2w R

by the dominated convergence theorem.

The RHS becomes
[ e ar@
e o
R V21

by an application of Lemma . Thus ¢ determines F' uniquely (as before), so the limit F' must

be the same for all convergent subsequences. O

Theorem 17.4 (Continuity theorem). Let {F,} be a sequence of distribution functions converging
to a distribution function F at all continuity points x of F. This happens if and only if ¢, (t) — ¢
pointwise and ¢ is continuous in the neighbourhood of the origin. If this is the case then ¢ is the

characteristic function associated with F, and is continuous everywhere.

Proof. 1f {F,} converges to F', use Lemma , with g(z) = cos(xt) + sin(xt). O
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18. LECTURE 18 - THURSDAY 12 MAY

Theorem 18.1. Assume F,, — F at continuity points of F', and associated characteristic function
Y — @ pointwise. If o, — ¢ and ¢ is continuous in a neighbourhood of 0, then F,, — F and F is

distribution function associated with .

Proof. From previous lemma, there exists a non-decreasing, right continuous non-negative function
F such that F,, = F. We need to show F' is a distribution function, that is F(+o00) — F(—c0) > 1.

By Parseval’s relation, we have

_mgo(z)e_%"?z2 dz = /Re_%(%ﬂ) dF(x) < F(400) — F(—00)

o / .
V2T Jr
The left hand side is equal to
E(e™™'p(Ny))
where N, ~ N(0, ). Since
}efiztso(t)‘ S 1
Assume ¢ is continuous on |t| < A. Then
E(e™™"p(No)) = E(e™ ' o(Ny) | INo| > A) - P(IN,| > A)
+E(e” N o(N,) | [Ny | < A)P(|INs| < A).

The first term tends to zero as 0 — o0, as P(|N,| > A) — 0 on |N,| < A. Then the distribution

function tends to

0 <0
G(x) =
1 >0
as o — 00.
lim ——— / e*iZtgo(z)e*%"%2 dz = / e Fo(2)dG(z) = 1
T—00 21 R R
by the extended Helly-Bragg theorem. O

Corollary 18.2. If X,, has distribution function F,, and characteristic function ¢,, and X has
distribution function F and characteristic function . Then the following are equivalent.
i) Fo(x) — F(x) at all continuity points x of F.
(t) —

1) pn(t) = @(t) for all t,
iit) E(g(Xn)) — E(g(X)) for all real, bounded, continuous functions g.

In these cases we write X, 4 x (X, converges in distribution to X )

Corollary 18.3. Suppose X, 4 X. If h is any continuous real valued function, then h(X,,) 4 h(X).
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Proof. X, 4 X ifand only if E(g(X,)) — E(g(X)). Then g(h(x)) is real, bounded, and continuous.
Then
E(g(h(Xn))) = E(g(h(X))) = h(Xn) S h(x)

for all g real, bounded, continuous. O

Theorem 18.4 (Slutsky’s theorem). IF X, 4 X and Y, % a, then

X, +Y, 5X ta

Proof. Given € > 0, choose z such that z,z — a &+ € are continuity points of F(z) = P(X < x).
Then
P(X,+Y,<a2)=P(Xp+Yy <z |V —a|>e)+ P(Xp+ Yy <, |V) —a| <e)
<P(|Y,—a|>e)+P(X, <x—a+e)
PX,<z—a—€)=PX,<z—a—¢€l|Y,—a|>e)+ P(X, <z—a—¢lY, —a| <e¢)
<P(Y,—a|l>e)+P(X,+Y, <ux)
Taking limits as n — oo, we have

PX<z—a—¢€ < lim P(X,+Y,<2)<PX<z—a+e)
n—oo
Since x — a £ € are continuity points of F, we have
lim P(X —n+Y, <z)=P(X <z-—a). O
n—oo

18.1. Central limit theorem.

Note (Notation). Let X7, X5,... are independent random variables with characteristic functions
©1,¢2,... and distribution functions Fy, Fy,.... Let E(X;) = 0, Var(X;) = 07 < 00, i = 1,2,....
Let

S :ZXi, —Var Za

Then the Lindeberg condition is

Ve>0, Lp(e) >0 asn— oo



MSH2 - PROBABILITY THEORY 44

Example 18.6. Assume E(|X;|?) < co. Then

Theorem 18.7 (Liapounov’s condition).

1 n
8—32E(|X7|3) —0 asn— oo

From above, Liapounov’s condition implies Lindeberg’s condition.

Theorem 18.8 (Central limit theorem). If for all € > 0, L,(¢) — 0 as n — oo, then

Sn 4 N(0,1)

Sn
Proof. Preliminaries.

(i) If Jag] << 1and |bg| <1 for all k, then

_ﬁbi < Zn:|ai—bi\
i=1 i=1

as ajas — biby = (a1 — by)as — b1(a; — be) and use induction.
(ii) |e* — 1 — 2| < d|z|,0 > 0, for |z| sufficiently small.

It is sufficient to prove

142

¥sS, /sn H t/sn e 2

for all ¢t.
Now
ita ite
fon(t/sa) =11 = | [(€5 1= Phan)| - as B =0
< / L3053 dFy(x)
1 aﬁ 9
Now

o = B(X31{1x, 1 <us,}) + B x, 5 us,})
< (usn)2 + SiLn(u)
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Hence
UI% 2
— <ut+ Ly (u)

n
and since there are no k on the RHS, we have

2

—< L
g S )

By Lindenberg’s condition, we have L, (u) — 0 as n — oo, and as u was arbitrary, we have
2
o
max —& — 0
k<n S7

From Assignment 5, we know
exp(pr(t) — 1)

is a characteristic function. Let § — 0. Then

(L (pu(t/3n) = 1) = [L outt/50 < fer 0T —pnt/sa)| by (1)
k=1 k=1 k=1

<6 lpk(t/sn) — 1] by (ii)
k=1
5% = 07

STZT% by (%)
o .
- if n is sufficiently large

By (1), we must show

n

S (orlt/sn) = 1)+ 3£ =0

k=1
that is,
n 2 2
itx/sn _ 1— Zti 1tz dF, =0
;/( ) R - (h
The modulus of the integral in (1) is bounded by

1|tz |® |t|32?
6 | sy 652
if |z| < us,, and
222 2?2
252 2s2

when |z| > us,. Hence the integral of (1) is bounded above by

ult]? 12 & ult]?

22 dFy(v) = —— + Ly, (u)t?
6 82 Z/|a:|>usn 6

n k=1
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as the integral is the Lindeberg’s condition.
"Itl < &, and Ny large enough such that L, (u)t? < £ for
O

Given t,e > 0, choose u such that
n > Ny. So the left hand side of (f) is bounded above by €, and so the result follows

Theorem 18.9 (Partial converse of the central limit theorem). Suppose that s,, — 0o and 2= — 0

as n — 0o. Then the Lindeberg condition is necessary for
Sn
2 4 N(0, 1).

Sn

Proof. By assumption, given € > 0 there exists N7 > 0 such that
o o
Zk < k <e€

On Ok

for Ny <k <nas s? < si(k <n). We also have

Tk e k=1,2,...,N;
Sn
for n > Np as s2 — oco. Hence
max -£ -0
1<k<n Sg
as n — o0o. Assume f—: i>N(O7 1). If (5) holds then this convergence is equivalent to (1) <=
(3)(= (4)) as (1) <= (3) requiring (5), to ensure
4
-1
o) -1
can be made uniformly small.
The real part of (4),
= t a2t . at 2?12
> dFy(x) > ) /|x> (cos(sn) ~1+ 25%) dFy(x)
k=1 n

-4). Continuing, we have

ZT
Y14 S
Z/ (Cos(sn T
k=1

n 2t2
- Z‘/ﬂc|>us (252 N 2) 4Fi(z)

—2>0if |x] > us, (i.e t* >

k=1
" 2212 x2
> /|> <282 — 2u252> dFk(ilJ)
ke | >us, n
1 < )
- Z x* dFy(x)
Sn =1 |z|>usn

t
(2 u2> o
Thus L,(u) — 0 as n — oo, that is, Lindeberg’s condition holds
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Corollary 18.10. Let X1, Xa,... IID with E(X;) = 0, Var(X1) = 0. Then
Sn

no

_ 5 N(0,1)

Let Xk = S

n
n "

Proof. We have s2 = no?. For € > 0, we have

n

1
Ly(e) = oy E(XP1{x, > covm})
1

e
1 2
= SEXTLx>e0ymy) = 0

as n — oo as E(X?) < oo. O

19. LECTURE 19 - THURSDAY 19 MAY

The central limit theorem is about distribution functions. It is not an automatic consequence
that the derivatives (densities) converge.

If f—: has density f,(z) we need further conditions to ensure f,(x) — \/%e*%“j as n — 0o.

Theorem 19.1. If X, are IID with characteristic functions ¢(t) and |@(t)| is integrable then

Example 19.2 (Densities not converging). Let X; have density
C 1

=—— — O<z<-=.

/(@) z(log x)? TS

Then E(X?) < oo but Y. | X; has an unbounded density on (0, 1).

19.1. Stable Laws.

Definition 19.3 (Stable distribution). A distribution F' is said to be stable if it is not concentrated
at one point, and when X; and X, are independent with distribution function F' and a1, ay are
arbitrary constants there exists some « > 0, 8 such that
aXi+aXe—f
@

has distribution function F.
Example 19.4. If X; has a characteristic function ¢(t) then
aXz + = a1 X1 + a2 X>

e''p(at) = p(art)p(ast)
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If o(t) = e~ °" 0 < v < 2, then

olart)p(agt) = e~ clarl Hlazl e
As these distributions are symmetric, we have 8 = 0, and so setting o = (|a1|” +|az|”). Thus dis-

7c\t|'7

tributions with characteristic functions of the form e are stable. Hence the Cauchy distribution

is stable (7 = 1), and the normal distribution is stable (v = 2).

Theorem 19.5. If ¢ is the characteristic function of a symmetric random variable (Xi - X)
with a stable distribution then o(t) = e=“I!" for some ¢ > 0, v € (0,2].
Recall that a distribution is symmetric if and only if ¢ is real.
Partial. o(t)e(t) = p(at) used to show that ¢(t) # 0. (Since ¢(0) = 1 and ¢(t) is continuous).
Then build up properties of . O

Theorem 19.6 (Levy). Let X1, Xo,... be independent and identically distributed random variables
with distribution functions G. Let S, = Z?zl X;. Suppose that there exists a sequence of constants
(an, by) with b, > 0, such that

Snl:an i}X

where X is not a constant. Then X is stable.

Definition 19.7 (Domain of attraction). If X has distribution function F' then we say G is in the

domain of attraction of F.

Corollary 19.8. If X has finite variance then G is in the domain of attraction of the normal

distribution.

Corollary 19.9. If G satisfies lim,_, o (1 — G(x)) = ¢ > 0 then G is in the domain of attraction
of the Cauchy distribution, that is,
zP(X >z) —c.
A necessary and sufficient condition to be in the domain of attraction for the Cauchy distribution
18 L
- G@) = P(X, > 2) = 2@
x
where L(x) is a slowly varying function. L(z) is a slowly varying function if for all C > 0,
L
lim (C)
z—oo L(x)

=1.

For example, L(x) = 1, L(z) = logx are slowly varying functions.

Theorem 19.10. All stable laws are absolutely continuous and the distribution functions have

derivatives of all orders.

Theorem 19.11. The normal distribution is the only stable law with finite variance.
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Theorem 19.12. [t can be shown that the canonical form of the characteristic function of a stable

law s
LBt
o(t) = exp [i'yt —c|t]” {1 + Z@w(t, a)}]
where

tan ¥ a#1
vyEeR,a€(0,2],¢>0,|8] <1,w(t,a)=
Zloglt] a=1

If ¢ is real, then B =~ = 0.

20. LECTURE 20 - THURSDAY 19 MAY

20.1. Infinitely divisible distributions. Consider a triangular array {X,x}}_, where for each
n, Xni,Xn2,--., Xnn are independent random variables. We assume that the distribution are

identically distributed for each n.

X1
Xo1 Xoo
X311 Xz X33

Example 20.1. Let X, ~ B(1,p,). Then S,, = ZZ=1 Xnk ~ B(n,p,). We know that if np, — A
as n — 0o, then
S, L POISSON(A).

Note that the Poisson distribution is not continuous, nor is it stable. Consider X7, X5 Poisson
distributed, and let Y = 2X; + 3X5. Then Y is not in the Poisson family as P(Y = 1) = 0.

Definition 20.2 (Infinitely divisible). A distribution function F is infinitely divisible if for every

positive integer k, F' is the k-fold convolution of some distribution G with itself.

Example 20.3. (1) The Poisson distribution is infinitely divisible, as
olt) = XD = [ere )"

(2) Symmetric stable laws are infinitely divisible, as
[e3 c [e3 k
o) = eIt = (efm )

Lemma 20.4. Assume X, > X, Y, %Y, {X,},{Y,} independent. Then

X, +Y, 5X+Y.
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Proof. X, has a characteristic function ¢, (t) = ¢(t). Y, has characteristic function ¢ (t) — ¥(t).
Then

en()Pn(t) = o()P(1).
O

Theorem 20.5. Given the array {X,i}, letting S, = p_y Xnk. If P(S, <) — F(x) then F is
infinitely divisible.

Proof. Fix k. We must show that F is the k-fold convolution of some Gy. Let n’ = mk, m =1,2,...,
and let
Y™ = X iotymar - Xovims 1= 1,k
Then
and Yf(m) are 11ID.
If P(Yl(m) <) — Gi(x) as m — oo then
GiF=F
So we need to show that G, is a well defined distribution. We have Yl(m) is the sum of m iid random
variables, and
Hy(z) = P(Y{™ < ).
We need to ensure “no probability escapes to infinity.” Given a convergent subsequence of distri-
bution functions, we know that the limit satisfies G (x), Gi right continuous, non-decreasing. We

need to show G(+o00) = 1. Suppose that there exits € > 0 such that for any M > 0 we can find a

subsequence m!, such that
PUY™ | > M) > ¢
There is a subsequence of {m. }, {m!'} say, such that

PY™ > M) > % or P(Y"™ < —M)>

N

So

1" 17 k
P+ 4+ Y, > kM) > (%)

and so F(km) <1-— (;)k (modulo choosing continuity points kM of F'). Now, since we know that
our limiting distribution F' is a proper distribution function, we obtain our contradiction (no such
€ > 0 exists).

Hence Gy, is a proper distribution function, and so Gi* = F. O

Definition 20.6 (Compound Poisson distribution). Let X1, X3,... IID random variables. and let
N ~ Po1ssoN(A). Then let Sy = X7 +---+ Xun. Then Sy has a compound Poisson distribution.
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If X has characteristic function ¢, then Sy has characteristic function

E(e"5%) = Y "E(e"N | N = n)P(N =n)
n=0
> A"

_ n_—A\

= ;%’(t) e T

— e v

— M1,

The compound Poisson distribution is clearly infinitely divisible.

Theorem 20.7. A distribution function F is infinitely divisible if and only if it is the weak limit

of a sequence of distributions, each of which is compound Poisson.

21. LECTURE 21 - THURSDAY 26 MAY
Theorem 21.1. A distribution function is infinitely divisible if and only if it is the weak limit
(limit in distribution) of a sequence of distribution functions each of which is compound Poisson.

Lemma 21.2. The weak limit of a sequence of infinitely divisible distributions is infinitely divisible.

Proof. Let F,(x) be a sequence of distribution functions that are infinitely divisible with

at all continuity points « of F'. Form an array {X,}7_, where for a given n, Xp1, Xy2,..., Xun
are IID with distribution function ,, F},(z), the n'* root of F,,. Then

k=1

has distribution function Fj,.
We know F,,(z) — F(x) so from the previous result F is infinitely divisible as it is the limit of

the row sums of a triangular arrow of row-wise infinitely divisible random variables. O
Lemma 21.3. The characteristic function of an infinitely divisible distribution is never zero.

Proof. If ¢(0) = 1 and ¢ is continuous, without loss of generality assume ¢ is real (if not, consider
|o|> = ¢ which is real and infinitely divisible.)
Let o5 (t)* = o(t). Assume ¢(t) > 0 for |[t| < a. Then for t € (—a,a), pi(t) = 1 as k — oo.
Now note that

L—p(2t) <4(1 - ¢(t)), (*)
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as

1—p(2t) = /(1 —cos2tx dF(x) as y is real
:/(2—2cos2t:c)dF(x) 0820 = 2cos?f — 1
=2 /(1 —costz)(l + costx) dF(x)
34/(lfcostx)dF(x) 1—costx >0

= 4(1 - (1)

as required.

Then we have 1 — |p(2t)] < 1—p(2t)]2 < 4(1 — |o(t)|?) <8(1 —|p(t)]). If p(t) #0on 0 <t <a
and € > 0 arbitrary, we can find k large enough such that
€
8
which implies 1 — |¢x(2t)] < € and so |p(2t)] # 0 on [t| < a. So ¢k (t)| # 0 on |t| < 2a, and hence
lo(t)] # 0 on || < 2a.

Iterating this argument, we have that |p(t)| > 0 for all . O

L—Jer(t)] <

Lemma 21.4. For each k, let oy be a characteristic function such that ©f(t) = p(t). (t) is a

characteristic function of an infinitely divisible distribution. Then limy_ ook (t) =1 for all t.

Proof. Since ¢ is continuous and ¢(0) = 1, we have

ler(t)] = L)V = 1

as k — oo.
We have karg pi(t) = argp(t) + 275,75 =0,1,...,k — 1. Since
arg o (0) = arg(1) =0 soj=0
arg pp(t) = %arg p(t) =0
as k — oo, and so ¢i(t) — 1 as k — oo. O

Proof of theorem. Let ¢ be the characteristic function of an infinitely divisible distribution F. Let
#4(t) = p(t). Then
log ¢(t) = klog ¢r(t)
= klog(1 — (1 — k(1))
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Since 1 — ¢ (t) — 0 as k — oo, we have

log p(t) = —k[1 — @i (t) + % o]
= K1 - a2

= —k[1 = ()] + o(1)
and so @(t) ~ e~ *(1=¢x(®) which is a compound Poisson characteristic function. (]

Example 21.5. Show that the U([—1, 1]) distribution is not infinitely divisible. This has associated

sint

characteristic function 5. Then ¢(7) = 0, and so the distribution is not infinitely divisible.

22. EXAM MATERIAL

e Borel-Cantelli lemma.
e Martingales, central limit theorems, strong law of large numbers.

e Inequalities of random variables.
Example 22.1 (Q2b) of 2010 Exam). Let (X;) be IID. Then
E|Xi| <0 < P(|X,|>nio)=0

We have

E[Xi| <00 <= > P(X1] >j) < oo
j=1

= Y P(X;[>j) bylID
j=1
— P(X;|>jio)=0

by Borel-Cantelli lemma.

Example 22.2 (Q7 of 2010 Exam). Let {X,,} be a sequence of IID random variables on a proba-
bility space (2, F, P) with
1

P(X;=1)=P(X,=-1)=.

Let F, = 0(X1, Xo,...,X,) and let {B,} be a sequence of events with B,, € F,,, satisfying
B; =Q, lim P(B,)=0,P(limsup B,,) = 1.
n— 00
Define Y7 = 0 and
)/77,—}-1 = Yn(]- + Xn+1) + 1Ban+17n = ]-7 2....

(a) Show that {Y,,} is a martingale.
(b) Show that Y;, converges in probability to 0.
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(¢) Show that limsup B,, C limsup{Y,, # 0} and hence show that {¥;,} does not converge almost

surely.

Proof.
(a) Note that Y7 is Fj-measurable. By induction, we have that Y,, + 1 is F,11-measurable.

We have

E|Y,11] < 2E|Y,|+ P(B,) as|Xp+1 <1

as E|Y1| =0, P(B,) < 1, so by induction, E|Y,| < oo for all n.
Finally,
]E(Yn—H |-7:n) = YnE(l + Xn+1 |]:n) + 1BnE(Xn+1 |‘Fn)
=Y, as E(Xps1|Fn) = E(Xni1) = 0.

Hence Y, is a martingale.
Let € > 0. We must show P(]Y,,| > ¢) — 0 as n — co. Consider P(Y,,41 # 0). We have

P(Yu11 #0) < P(B, occurs or Y, # 0 and X,,11 = 1)
1
= P(B,) + §P(Yn #0).

Hence
lim P(Y,41 #0) <2 lim P(B,)=0
n—o0

n—oo

and so Y, 5 0.
If Y,, “3'Y almost surely then by uniqueness of limits in probability Y = 0 almost surely. We

have
2Y, +1p, Xpy1=1

Xn+1 =-1

YnJrl =
~1p

Hence B, C {w: Y,41(w) # 0}. Thus

limsup B, = () |J Bn €[ U {Yasr # 0}

m n=m m n=m

n

= limsup{Y,, # 0}

Hence 1 = P(limsup B,,) < P(limsup{Y,, # 0}) and so P(Y,, # 0 i.0.) =1, and so Y,, does not
converge almost surely.
]
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