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1. Lecture 1 - Thursday 3 March

Definition 1.1 (σ-field). Let Ω be a non-empty set. Let F be a collection of subsets of Ω. We call
F a σ-field if

• ∅ ∈ F ,
• A ∈ F ⇒ Ac ∈ F ,
• A,B ∈ F ⇒ A ∪B ∈ F
• If (Ai) ∈ F , then

∪∞
j=1Aj ∈ F .

Definition 1.2 (Probability measure). Let P be a function on F satisfying

• If A ∈ F then P(A) ≥ 0,
• P (Ω) = 1,
• If (Aj) ∈ F and Ai ∩Aj = ∅, then P

(∪∞
j=1Aj

)
=
∑∞

j=1 P(Aj).

Then we call P a probability measure on F .

Definition 1.3 (σ-field generated by a set). If A is a class of sets, then σ(A) is the smallest σ-field
that contains A.

Example 1.4. For a set B, σ(B) = {∅,Ω, B,Bc}.

Definition 1.5 (Borel σ-field). Let B be the class of all finite unions of intervals of the form (a, b]

on R. The σ-field σ(B) is called the Borel σ-field.
Note that B itself is not a σ-field - consider

∪∞
j=1(0,

1
2 − 1

j ] = (0, 12 ) /∈ B.

1.1. Constructing extensions of functions to form probability measures.

Lemma 1.6 (Continuity property). Let A be a field of subsets of Ω. Assume ∅ ∈ A and that A is
closed under complements and finite unions.

If Aj ∈ F and Aj+1 ⊂ Aj with
∩∞

j=1Aj = ∅, then limj→∞ P(Aj) = 0.

Theorem 1.7. Let σ(A) be the σ-field generated by A. If the continuity property holds, then there
is a unique probability measure on σ(A) which is an extension of P, i.e. the measures agree on all
elements of A.

Definition 1.8 (Limits of sets). Let (Ω,F ,P) be a probability space, and assume (Ai) ∈ F . Then
define lim supm→∞An as

lim sup
n→∞

An =
∞∩

n=1

∪
m≥n

Am = limAn

An element ω ∈ limAn if and only if ω ∈ Am for some m ≥ n for all n - that is, ω is in infinitely
many of the sets Am.
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Similarly, define lim infm→∞An as

lim inf
n→∞

An =
∞∪

n=1

∩
m≥n

Am = limAn

An element ω ∈ limAn if and only if ω is in all but a finite number of sets Am.
Clearly,

limAn ⊆ limAn

If limAn and limAn coincide we write it as limAn.

Lemma 1.9. Assume the continuity property holds. If An ↓ A then P(An) ↓ P(A), and if An ↑ A
then P(An) ↑ P(A).

Proof. If An ↓ A, then An ⊇ An+1 . . . and
∩∞

n=1An = A. We can write An = (An −A) ∪A. Then
we have

P(An) = P(An −A) + P(A)

P(An) ≥ P(A)

By the continuity property, P(An −A) → 0, and so P(An) ↓ P(A). �

2. Lecture 2 - Thursday 3 March

Theorem 2.1.
P(limAn) ≤ limP(An) ≤ limP(An) ≤ P(limAn)

Proof. We know An ↓ limAn, and so from Lemma 1.9 we have that a. �

Definition 2.2 (Measurable function). Let (Ω,F ,P) be a probability space. Let X : Ω → R be
real valued function on Ω. Then X is measurable with respect to F if X−1(B) is an element of
F for every B in the Borel σ-field of R.

Definition 2.3 (Random variable). A random variable is a measurable function from Ω to R.

Definition 2.4 (Expectation). If
∫
Ω
|X(ω)| dP <∞ then we can define E(X) =

∫
Ω
X(ω) dP

Definition 2.5 (Distribution). X induces a probability measure PX on R

PX(B) = P(X−1(S)), S ∈ B

PX is called the distribution of X. (R,B,PX) is a probability space. The distribution function
FX(x) = P({ω : X(ω) ≤ x}) = PX((−∞, x]). We have E(X) =

∫
R x dPX(x) =

∫
R x dFX(x).

2.1. Key results from Measure Theory.

Theorem 2.6 (Monotone convergence theorem). If 0 ≤ Xn ↑ Xa.s then 0 ≤ E(Xn) ↑ E(X) where
E(X) is infinite if E(Xn) ↑ ∞.
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Theorem 2.7 (Dominated convergence theorem). If limXn = Xa.s. and |Xn| ≤ Y for all n ≥ 1,
with E(|Y |) <∞ then limE(Xn) = E(X).

Theorem 2.8 (Fatau’s Lemma). If Xn ≥ Y for all n with E(|Y |) <∞ then

E(lim infXn) ≤ lim infE(Xn)

Theorem 2.9 (Composition). Let (Ω,F ,P) and (Ω′,F ′) be spaces. Let Φ : Σ → Σ′ be measurable.
Define PΦ on F by PΦ(M) = P(Φ−1(M)). Let X ′ be a measurable function from Σ′ to R. Then
X(ω) = X ′(Φ(ω)) is a measurable function. Then we have

E(X) =

∫
Ω′
X ′ dPφ

Proof. Suppose X ′ is an indictor function for A ∈ F ′. Then∫
Ω′
X ′ dPφ =

∫
A

dPφ = Pφ(A) = P(φ−1(A)) = E(X)

So the result is true for simple functions.
Now, suppose X ′ ≥ 0. Then there exists a pointwise increasing sequence of simple functions X ′

n

such that X ′
n → X ′. By the monotone convergence theorem, we know

lim
n→∞

∫
Ω′
X ′

n dPφ =

∫
Ω′
X ′ dPφ

ButXn(ω) = X ′
n(Φ(ω)) are also simple functions increasing toX. Hence, we know that limn→∞ E(Xn) =

E(X). �

3. Lecture 3 - Thursday 10 March

Theorem 3.1 (Jensen’s inequality). Let φ(x) be a convex function on R. Let X be a random
variable. Assume E(X) <∞, E(φ(X)) <∞. Then

φ(E(X)) ≤ E(φ(X))

Theorem 3.2 (Hölder’s inequality). Let 1 < p <∞ and 1
p + 1

q = 1. Then we have

|E(XY )| ≤ E(|XY |) ≤ (E(|X|p))1/p (E(|Y |q))1/q

If p = q = 2 we obtain the Cauchy-Swartz inequality E(|XY |) ≤
(
E(|X|2)

)1/2 (E(|Y |2)
)1/2.

If Y = 1 then E(|X|) ≤ (E(|X|p))1/p.
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Proof. Let W be a random variable taking values a1 with probability 1/p, a2 with probability 1/q,
with 1/p+ 1/q = 1. Applying Jensen’s inequality with φ(x) = − log(x) gives

E(− logW ) ≥ − logE(W )

1

p
(log a1) +

1

q
(− log a2) ≥ − log(a1

p
+
a2
q
)

− log(a1/p1 · a1/q2 ) ≥ − log(a1
p

+
a2
q
)

a
1/p
1 · a1/q2 ≤ a1

p
+
a2
q

Where the inequality is trivial if a1 or a2 is zero.
Setting a1 = |x|p and a2 = |y|q, we obtain

|xy| ≤ |x|p

p
+

|y|q

q
.

Let x = X
(E(|X|p))1/p and y = Y

(E(|Y |q))1/q or take expectations across the inequality, we obtain

E(|XY |) ≤ (E(|X|p))1/p (E(|Y |q))1/q

�

Example 3.3. If 1 < r < r′ then r′

r > 1. Then

E(|X|r) ≤ (E((|X|r)r
′/r))1/(r

′/r) = (E(|X|r
′
))r

′/r

Theorem 3.4 (Liapounov’s inequality).

(E|X|r)1/r ≤ (E(|X|r
′
))1/r

′

Corollary 3.5. Thus if E(|X|r) <∞ then X has all moments of lower order finite i.e. E(|X|p) <∞
for all 1 ≤ p ≤ r

Theorem 3.6 (Minkowski’s inequality). If p ≥ 1, then

(E(|X + Y |p))1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p

Proof.

E(|X + Y |p) ≤ E(|X| · |X + Y |p−1 + E(|Y | · |X + Y |p−1)

= E(|X|p)1/p(E(|X + Y |p−1)q)1/q + E(|Y |p)1/p(E(|X + Y |p−1)q)1/q

Let 1/p+ 1/q = 1. Then from Hölder,

E(|X + Y |p) ≤ (E(|X + Y |p))1/q · ((E(|X|p))1/p + (E(|Y |p))1/p

and so
(E(|X + Y |p))1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p
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�

3.1. Modes of Convergence. Let (Ω,F ,P) be a probability space and Xn(ω), n ≥ 1 is a sequence
of random variables.

Definition 3.7 (Almost surely convergence). We say Xn converges almost surely if

P({ω |Xn(ω) has a limit}) = 1

We write Xn
a.s.→ X where X denotes the limiting random variable.

Definition 3.8 (Convergence in probability). Xn converges in probability to X

Xn
p→X

if for all ϵ > 0,
P({ω | |Xn(ω)−X(ω)| > ϵ}) → 0

or alternatively,
P(|Xn −X| > ϵ) → 0

Definition 3.9 (Convergence in mean). Xn converges to X in mean of order p (or in Lp) if

E(|Xn −X|p) → 0

We write Xn
Lp

→X. We note that for convergence of order Lp, we need E(|Xn|p) <∞.

Theorem 3.10. If Xn
Lp

→X then Xn
p→X for any p > 0.

4. Lecture 4 - Thursday 10 March

Lemma 4.1. Let C1, C2, . . . be sets in F and
∑

n P(Cn) <∞. Then P(limCn) = 0

Proof. Since limCn =
∩∞

n=1

∪
m≥n Cm, we have

P(limCn) ≤ P(
∪

m≥n

Cm) ≤
∑
m≤n

P(Cm) → 0

�

Theorem 4.2. If there exists a sequence of positive constants {ϵn} with
∑

n ϵn <∞ and∑
n

P(|Xn+1 −Xn| > ϵn) <∞

then Xn converges almost surely to some limit X.

Proof. Let An = {|Xn+1 − Xn| > ϵn. So from the above Lemma, P(limAn) = 0. We also have
that ω ∈ limAn if and only if ω is in infinitely many Am. For ω /∈ limAn, then there is a last set
containing ω. Define N(ω) = n if ω ∈

∪
m≥nAm −

∪
m>nAm, and zero if ω ∈ (

∪
m ≥ 1Am)c.
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For ω /∈ limAn, we have
∑∞

n=1Xn+1(ω)−Xn(ω) exists as
∑

n ϵn <∞. Since

Xn(ω) = X1(ω) + (X2(ω)−X1(ω)) + · · ·+ (Xn(ω)−Xn−1(ω))

we know limXn(ω) exists - i.e. P(limXn(ω)) exists) = 1. �

Theorem 4.3. Every sequence of random variables Xn that converges almost surely converges in
probability. Conversely, if Xn

p→X then there exists a subsequence {Xnk
} which converges almost

surely.

Proof. Assume Xn
a.s.→ X. Let ϵ > 0. Consider limP(|Xn −X| > ϵ) ≤ P(lim sup{|Xn −X| > ϵ}) by

a previous theorem (Theorem 2 in Lecture Notes). We have

lim sup{|Xn −X| > ϵ} = {ω | |Xn(ω)−X(ω)| > ϵ infinitely often}

⊆ {ω | limXn(ω) ̸= X(ω)}

Hence, we have

P(lim|Xn −X| > ϵ) ≤ 1− P (limXn(ω) = X(ω)) = 0 as Xn
a.s.→ X

since limP(|Xn −X| > ϵ) = 0.
Conversely, assume Xn

p→X. Given ϵ > 0, consider P(|Xn − Xm| > ϵ) ≤ P(|X − Xm| >
ϵ/2 + P(|X − Xn| > ϵ/2) (If |X − Xn| ≤ ϵ/2 and |X − Xm| ≤ ϵ/2, then |Xn − Xm| ≤ ϵ by the
triangle inequality). Thus, P(|Xm −Xn| > ϵ) → 0 as m and n→ 0. Set n1 = 1 and define nj to be
the smallest integer N > nj−1 such that

P(|Xr −Xs| > 2−j) < 2−1 when r, s > N

Then apply Theorem 4.2, and as∑
j

P(|Xnj+1 −Xnj | > 2−j) <
∑

2−j = 1 <∞

we know that Xnj converges almost surely.
�

Example 4.4. We now construct an example where Xn
p→ 0 but Xn does not converge almost

surely to 0.
Let Ω = [0, 1],F the Borel σ-field, and P the Lebesgue measure. Let φkj = I[j−1/k,j/k] for

j = 1, . . . , k and k = 1, 2, . . . .
Let X1 = φ11, X2 = φ21, X3 = φ22, etc. For any p > 0,

E(|Xn|p) =
∫
Xn dP = [jn − 1/kn, jn/kn] → 0

and so Xn
Lp

→ 0.



MSH2 - PROBABILITY THEORY 9

However, for each ω ∈ Ω and each k there are some j such that φkj(ω) = 1. Thus Xn(ω) = 1

infinitely often. Similarly Xn(ω) = 0 infinitely often. Hence Xn does not converge almost surely to
0.

5. Lecture 5 - Thursday 17 March

Following from the previous lecture, we now modify the examples to show convergence in prob-
ability does not imply convergence in Lp even when E(|Xn|p) <∞.

From 4.4, replace φkj by k1/pφkj . Then

P(|Xn| > 0) = 1/kn → 0

as n→ ∞. Similar,y
E(|Xn|p) = (k1/pn )pP(Xn ̸= 0) = 1

and so
lim
n→∞

E(|Xn|p) = 1

and thus Xn does not converge in Lp to zero. Thus convergence in probability does not imply
convergence in Lp.

Next define X1 = φ11, Xn = φn1n
1/p. Then

Xn(ω) → 0

for ω > 0 so Xn
a.s.→ 0. We also have

E(|Xn|p) = (n1/p)p
1

n
= 1

and so Xn does not converge in Lp to zero.

Definition 5.1 (Uniform integrability). A sequence {Xn} is uniformly integrable if

lim
y→∞

sup
n

∫
|Xn|≥y

|Xn| dP = 0

Theorem 5.2 (Convergence in probability and uniform integrability imply convergence in Lp). If
Xn

p→X and {|Xn|} is uniformly integrable, then Xn
Lp

→X.

Definition 5.3 (Independence). Let (Ω,F ,P) be a probability space. Let A1, A2, . . . , An ∈ F The
events are said to be independent if

P(Ai1 , . . . , Aik) = P(Ai1) . . .P(Aik)

for all 1 ≤ i1 < · · · < ik ≤ n, k = 2, 3, . . . , n.
In the infinite case, let {Aα, α ∈ I}, I an index set, is a set of independent events if each finite

subset is independent.
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Definition 5.4 (Independence of random variables). Let X1, . . . , Xn be random variables on
(Ω,F ,P). X1, . . . , Xn are independent if Ai = {Xi ∈ Si} are independent for every set of Borel
sets, Si ∈ B.

Alternatively, let X and Y be random variables. Let B2 be the Borel σ-field on R2. Z(ω) =

(X(ω), Y (ω)) is then a map form Ω to R2. Z is Borel measurable if

Z−1(S) ∈ F

for all S ∈ B2. PX,Y is the induced measure on B2, and FX,Y is the joint distribution of (X,Y ).
Let

FX,Y (x, y) = PX,Y ((−∞, x], (−∞, y]) = P({ω : X(ω) ≤ x, Y (ω) ≤ y})

Theorem 5.5. If X and Y are independent then

FX,Y (x, y) = FX(x)FY (y)

Theorem 5.6. Let X and Y be independent, with E(|X|) <∞ and E(|Y ) <∞. Then

E(XY ) = E(X)E(Y )

Proof. Start with simple functions. Then

X(ω) =
n∑

i=1

ai1Ai(ω)

with {Ai} disjoint. Let

Y (ω) =
m∑
j=1

bj1Bj (ω)

with {Bj} disjoint.
Independence implies P(AiBj) = P(Ai)P(Bj).
Then

E(XY ) =

n∑
i=1

m∑
j=1

aibjE(1Ai1Bj )

=
n∑

i=1

m∑
j=1

aibjP(AiBj)

=
n∑

i=1

m∑
j=1

aibjP(Ai)P(Bj)

by independence.
Now extend to non-negative random variables X,Y by constructing sequences of simple functions

using monotone convergence theorem. Let

Xn(ω) =
i

2n
if i

2n
< X(ω) ≤ i+ 1

2n
, i = 0, 1, . . . , n2n
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and zero if X(ω) > n.
For simple functions, we have

E(XnYn) = E(Xn)E(Yn)

and so by the monotone convergence theorem,

E(XY ) = E(X)E(Y )

�

Theorem 5.7. Let X and Y be independent random variables. Then

E(|X + Y |r) <∞

if and only if
E(|X|r) <∞ and E(|Y |r) <∞

for any r > 0.

Lemma 5.8 (cr inequality). We have

|x+ y|r ≤ cr (|x|r + |y|r)

for x, y real, cr constant, r ≥ 0.

Proof. If r = 0, trivial.
If r = 1, we obtain the triangle inequality.
If r > 1, we have

|x+ y|r ≤ [2max(|x|, |y|)]r

= 2r max(|x|r, |y|r)

≤ 2r(|x|r, |y|r)

and setting cr = 2r proves for r > 1.
If 0 < r < 1, consider f(t) = 1 + tr − (1 + t)r, with f(0) = 0. Differentiating, we have

f ′(t) = rtr−1 − r(1 + t)r−1 ≥ 0 for t > 0. Thus f(t) is increasing for t > 0. Hence

f(t) > f(0) = 0

1 + tr ≥ (1 + t)r.

Using t = |y|
|x| , we obtain

(|x|+ |y|)r ≤ |x|r + |y|r

�
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6. Lecture 6 - Thursday 17 March

Lemma 6.1. For any α > 0 and distribution function F ,∫ ∞

0

xα dF (x) = α

∫ ∞

0

xα−1[1− F (x)] dx

Proof. Consider. Integrating by parts, we have that this is equal to

∫ b

0

xα dF (x) = −
∫ b

0

xα d(1− F (x))

= [−xα](1− F (x))|b0 +
∫ b

0

αxα−1(1− F (x)) dx

= −bα(1− F (b)) +

∫ b

0

αxα−1(1− F (x)) dx

We also have
0 ≤ bα(1− F (b)) ≤

∫ ∞

b

xα dF (x)

If the LHS converges then limb→∞
∫∞
0
xα dF (x) → 0. Thus the term bα(1 − F (b)) is squeezed to

zero.
Conversely, ∫ b

0

xα dF (x) ≤
∫ b

0

αxα−1(1− F (x)) dx

and so ∫ ∞

0

αxα−1(1− F (x)) dx <∞ ⇒
∫ ∞

0

xα dF (x) <∞.

�

Theorem 6.2. Let X,Y independent and r > 0. Then

E(|X + Y |r) <∞ ⇐⇒ E(|X|r)∞,E(|Y |r) <∞

Proof. If E(|X|r) <∞, E(|Y |r) <∞. Then

E(|X + Y |r) ≤ cr(E(|X|r) + E(|Y |)r) <∞

Assume E(|X + Y |r) <∞. Assume X and Y have median 0 (without loss of generality). Then

P(X ≤ 0) ≥ 1

2
,P(X ≥ 0) ≥ 1

2

Similarly for Y .
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Now,

P(|X| > t) = P (X < −t) + P (X > t), t > 0

=
P (X < −t, Y ≤ 0)

P (Y ≤ 0)
+
P (X > t, Y ≥ 0)

P (Y ≥ 0)

= 2P (X + Y ≤ −t) + 2P (X + Y > t)

= 2P (|X + Y | > t)

by independence.
Using the previous lemma, we have

E(|X|r)
∫ ∞

0

xr dF (x) = r

∫ ∞

0

xr−1P (|X| > x) dx

≤ 2r

∫ ∞

0

xr−1P (|X + Y | > x) dx

= 2rE(|X + Y |r).

So E(|X + Y |r) <∞ ⇒ E(|X|r) <∞. Similarly for E(|Y |r) <∞.
�

Theorem 6.3. If X and Y are independent with distribution functions F and G respectively, then

P (X + Y ≤ x) =

∫
R
F (x− y) dG(y)

=

∫
R
G(x− y) dF (y)

Proof. This is just a simple statement of Fubini’s theorem. �

Corollary 6.4. Suppose that X has an absolutely continuous distribution function

F (x) =

∫ x

−∞
f(u) du

for some density function f with
∫
R f(x) dx = 1 and f ≥ 0.

Let Y be independent of X. Then X + Y has an absolutely continuous distribution with density∫
R
f(x− y) dG(y)

Thus we have

P (X + Y ≤ x) =

∫
R

∫ x

−∞
f(t− y) dt dG(y)

=

∫ x

−∞

∫
R
f(t− y) dG(y) dt
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Definition 6.5. A distribution function F that can be represented in the form

F (x) =
∑
j

bj1[aj ,∞](x)

with aj real, bj ≥ 0,
∑

bj
= 1 is called discrete.

If a distribution function is continuous then it may be:

(1) Absolutely continuous, in which case there is a density function f ≥ 0 such that F (b)−
F (a) =

∫ b

a
f(u) du. f is called the density.

(2) Singular, in which case F ′(x) exists and equal zero almost everywhere with respect to the
Lebesgue measure (see Chung §1.3)

Theorem 6.6. Any distribution function F can be written uniquely as a convex combination of
a discrete, an absolutely continuous, and a singular distribution. By convex, we mean a linear
combination with non-negative coefficients summing to one.

Theorem 6.7 (Chebyshev’s inequality). Let X be a random variable and g an increasing, non-
negative function. If g(a) > 0, then

P (X ≥ a) ≤ E(g(X))

g(a)
.

Proof. We have

E(g(X)) =

∫
R
g(x) dF (x)

≥
∫ ∞

a

g(x) dF (x)

≥ g(a)

∫ ∞

a

dF (x)

= g(a)P (X ≥ a)

�

Corollary 6.8. Let g(x) = x2. Then

P (|X − E(X)| > a) ≤ Var(X)

a2

Let g(x) = eax. Then

P (X ≥ a) ≤ E(ecX)

eca
= e−caE(ecX)

Let g(x) = |x|k, k > 0. Then

P (|X| ≥ a) ≤ E(|X|k)
ak

.
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7. Lecture 7 - Thursday 24 March

Definition 7.1 (Weak law of large numbers). Let X1, . . . , Xn . . . be IID random variables with
E(Xi) = µ,Var(Xi) = σ2 <∞. Then

Xn
p→X

Proof.

P (|Xn) ≤
E(Xn − µ)2

ϵ2

=
σ2/n

ϵ2
→ 0

as n→ ∞.
We have

E(|Xn − µ|2) = σ2/n→ 0

and so Xn converges to µ in L2 �

We can relax the assumptions to E(|X) <∞ (no need to have finite variance). See Chung (1974)
p.109, Theorem 5.2.2.

Theorem 7.2. Let Xi be uncorrelated, and E(Xi) = µi, Var(Xi) = σ2
i <∞ with

1

n2

n∑
i=1

σ2
i → 0

then we have
Xn − 1

n

n∑
i=1

µi
p→ 0

Proof.

P (|Xn − 1

n

n∑
i=1

µi| > ϵ) = P (
1

n

n∑
i=1

(Xi − µi)| > ϵ)

≤
Var( 1n

∑n
i=1(Xi − µi))

ϵ2
→ 0

as
∑

1 n
2
∑n

i=1 σ
2
i → 0. �

Theorem 7.3 (Borel-Cantelli lemma). Let A1, . . . be events in a probability space. Let B =

lim supAn =
∩

n≥1

∪
m≥nAm. Then

(i)
∑

n P (An) <∞ then P (B) = 0.
(ii) If Ai are independent and

∑
n P (An) → ∞ then P (B) = 1.

For (ii) we need independence. Consider Ai = A where P (A) = 1
3 . Then

B = lim supAn = A
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and P (B) = 1
3

Proof. Preliminary lemma - if 0 < x < 1, then log(1 − x) < −x. We can then show that if∑
n an → ∞ then

∏
n(1− an) → 0.

(i)
P (B) ≤ P (

∪
m≥n

An) ≤
∑
m≥n

P (Am) → 0

and so P (B) = 0.
(ii) We will prove P (

∪
m≥nAm) = 1 for all n. Take K > n. Then

1− P (
∪

m≥n

Am) ≤ 1− P (
K∪

m=n

Am)

= P ((
K∪

m=n

An)
c)

= P (
K∪

m=n

Ac
m)

=
K∏

m=n

(1− P (Am)) by independence

→ 0

as
∑

n P (An) → ∞ as K → ∞. Thus

P (
∪

m≥n

Am) = 1

for all m, and so P (B) = 1.

�

Theorem 7.4 (Strong law of large numbers). Let X1, . . . be IID random variables. Let E(X1) = µ,
E(X4

1 ) <∞. Let Sn =
∑n

j=1Xj. Then

Xn =
1

n
Sn

a.s.→ µ

Proof.

E(
n∑

i=1

(Xi − µ))4 =

n∑
i=1

E(Xi − µ)4 + 6

(
n

2

)
σ4

= nE(X1 − µ)4 + 3n(n− 1)σ4

≤ Cn2.
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From Chebyshev, we have

P (|Sn − µn| > ϵn) ≤ E(Sn − µn)4

)(ϵn)4

≤ cn2

ϵ4n4
=

k

n2

and so ∑
n

P (|Sn − nµ| > nϵ) <∞,

and so P (lim sup{|Sn

n − µ| > ϵ}) = 0. Letting Aϵ = {|Sn

n − µ| > ϵ}. Then

P (|Sn

n
− µ| does not converge to zero) = P (

∪
k

A1/k)

≤
∑
k

P (A1/k)

= 0

by Borel-Cantelli. �

8. Lecture 8 - Thursday 24 March

Let X1, . . . be IID random variables with mean µ. Then

P ( lim
n→∞

Sn

n
= µ) = 1

Conversely, if E(|X|) does not exist, then

P (lim sup |Sn

n
| = ∞) = 1

Theorem 8.1. If E(X2) <∞, and µ = 0 (WLOG),

P (|n−αSn| ≥ ϵ) ≤ E(S2
n)

n2αϵ2

= n1−2ασ2/ϵ2 → 0

provided S ≥ 1
2 , n

−αSn
p→ 0.

Theorem 8.2 (Hausdorff (1913)). |Sn| = O(n
1
2+ϵ) a.s for any ϵ > 0.

Assumes E(|Xi|r) <∞ for r = 1, 2, . . . .

Proof. Previously, we showed E(S4
n) ≤ Cn2 for some C > 0. Then we can extend this to

E(S2k
n ) ≤ ckn

k, k = 1, 2, . . .
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Then

P (n−α|Sn| > a) ≥ ckn
k

(anα)2k

= cka
−2knk(1−2α)

and so ∑
P (n−α|Sn| > a) <∞

if k(1− 2α) > −1 i.e. α ≥ 1
2 + 1

2k .
By Borel-Cantelli, P (|Sn| > anα i.o.) = 0 if α > 1

2 + 1
2k . �

Theorem 8.3 (Hardy and Littlewood (1914)). |Sn| = O(
√
n logn) a.s.

Lemma 8.4. Suppose |Xi| ≤M a.s. (Xi is bounded). Then for any x ∈ [0, 2
M ], we have

E(exSn) ≤ exp[nx
2σ2

2
(1 + xM)]

Proof. The random variables exXi are independent, so E(exSn) =
[
E(exX1)

]n. We can then evaluate

E(exX1) = E

[ ∞∑
k=0

(xX1)
k

k!

]

= 1 + 0 + x2σ2/2 + E(
∞∑
k=3

(xX1)
k

k!
)

≤ 1 + x2σ2/2 +
∞∑
k=3

xkMk−2σ2

k!

≤ 1 + x2σ2/2 + σ2M−2/3!
∞∑
k=3

xkMk

3k−3

= 1 + x2σ2/2 + σ2M−2/6
(xM/3)3

(1− xM/3)

= 1 + x2σ2/2 =
σ2Mx3

6(1− xM/3)
.

If 0 ≤ x ≤ 2/M , we have

E(exX1) ≤ 1 + σ2x2/2 + σ2x2/2(xM)

= 1 + σ2x2/2(1 + xM)

≤ exp(σ2x2/2(1 + xM))

�

Corollary 8.5. For 0 < a < 2σ2n
M , under the conditions of the above Lemma,

P (Sn ≥ a) ≤ e−
a2

2nσ2 )1− Ma
nσ2
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Proof.

P (Sn ≥ a) ≤ E(exSn)

eax

≤ exp(nσ
2x2

2
(1 + xM)− ax) 0 < x ≤ 2

M

Put x = a
nσ2 . THen

P (Sn ≥ a) ≤ exp( a2

2nσ2
(1 =

aM

nσ2
)− a2

nσ2
)

= exp( −a
2

2nσ2
(1− aM

nσ2
))

�

We can now prove the Hardy-Littlewood result. If |Xi| ≤ M almost surely then |Sn| =

O(
√
n logn) a.s.

Proof. Put a = c
√
n logn. Then

P (Sn ≥ c
√
n logn) ≤ exp(c

2 logn
2σ2

(1− Mc
√

logn√
nσ2

))

= n−c2/2σ2

exp(Mc3

2σ4

logn
√

logn√
n

)

If c2 > 2σ2 then
∑

n P (Sn > c
√
n logn) <∞. By Borel-Cantelli, we then have

P (Sn > c
√
n logn i.o.) = 0

Now apply the argument to −Xi. Then

P (−Sn > c
√
n logn i.o.) = 0

�

Theorem 8.6 (Khintchine (1923)). |Sn| = O(
√
n log logn) a.s.

Theorem 8.7 (Khintchine (1924)). Let Xi = ±1 with probability 1
2 . Then

lim sup |Sn|√
n log logn

=
√
2a.s.

9. Lecture 9 - Thursday 31 March

Definition 9.1 (Induced σ-field). Let (Ω,F ,P) be a probability space. Let Y be a set of random
variables on (Ω,F). Then σ(Y ) is the smallest σ-field contained in F with respect to which each
X ∈ Y is measurable.

That is, for each B ∈ B, the Borel σ-field on R, we have

X−1(B) ∈ σ(Y )
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Thus σ(Y ) is the intersection of all σ-fields which contain every set of the form X−1(B) for all
B ∈ B, X ∈ Y .

Definition 9.2 (Independent σ-fields). If X1, . . . are independent random variables and Ai ∈
σ(Xi), then

P (
n∩

i=1

Ai) =
n∏

i=1

P (Ai) (⋆)

If F1,F2, . . . are σ-fields contained in F and (⋆) holds for any Ai ∈ Fi then we sa the σ-fields are
independent.

Theorem 9.3. Let F0,F1, . . . be independent σ-fields and let G be σ-fields generated by any subset
of F1,F2, . . . . Then F0 is independent of G.

Proof. Outline. Take G to be the smallest σ-field containing F1,F2, . . . .
If A ∈ F0, B ∈ G, then we need to show

P (A ∩B) = P (A)P (B).

(1) Assume P (A) > 0.
(2) If B = A1 ∩A2 . . . An then the result is true.
(3) Let Ga be the class of finite unions of B. Then Ga is a finitely additive field, and G ∈ Ga can

be written as G =
∪k

i=1Gi where Gi has the form of B above. Then

P (A ∩G) = P (
k∪

i=1

A ∩Gi)

=
∑

P (A ∩Gi) =
∑
i=j

P (A ∩Gi ∩Gj) + . . .

= P (A)P (G)

by the inclusion-exclusion formula and independence of A and Gi.
(4) Now, let PA(B) = P (A∩B)

P (A) . Then PA and P are measures on F , and P and PA agree on Ga.
Thus by the extension theorem they agree on the σ-field generated by Ga which includes G.

�

Definition 9.4 (Tail σ-field). Let X1, X2, . . . be a sequence of random variables and let

Fn = σ({Xn, Xn+1, . . . })

be the σ field generated by Xn, Xn+1. Then

Fn ⊇ Fn+1 ⊇ Fn+2 . . .

and let
T =

∩
nFn
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be the tail σ-field.
T is the collection of events defined in terms of X1, X2, . . . not affected by altering a finite

number of the random variables.

Theorem 9.5 (The 0 − 1 law). Any set belonging to the tail σ-field of a sequence of independent
random variables has probability 0 or 1.

Proof. We have σ(Xn) is independent of σ({Xn+1, Xn+2, . . . }) = Fn+1 ⊇ T and so T is inde-
pendent of σ(Xn) for every n. By the previous theorem, it follows that F is independent of
G = σ({X1, X2, . . . }) but as T ⊆ G, we know that T is independent of itself. Thus, for any A ∈ T ,

P (A ∩A) = P (A)P (A)

and so P (A) = 0 or 1. �

9.1. Martingales.

Definition 9.6 (Martingale). Let (Ω,F ,P) be a probability space. Let {Fn} be an increasing
sequence of σ-fields.

Fn ⊆ Fn+1 ⊆ · · · ⊆ F .

Let {Sn} be a sequence of random variables on Ω. Then {Sn} is a martingale with respect to
{Fn} if
(1) Sn is measurable with respect to Fn.
(2) E(|Sn|) <∞.
(3) E(Sn | Fm) = Sm almost surely for all m ≤ n.

10. Lecture 10 - Thursday 31 March

Definition 10.1 (Supermartingale). {Sn} is a supermartingale with respect to {Fn} if
(1) Sn is measurable with respect to Fn.
(2) E(|Sn|) <∞.
(3) E(Sn | Fm) ≤ Sm almost surely for all m ≤ n.

Definition 10.2 (Submartingale). {Sn} is a submartingale with respect to {Fn} if
(1) Sn is measurable with respect to Fn.
(2) E(|Sn|) <∞.
(3) E(Sn | Fm) ≥ Sm almost surely for all m ≤ n.

Definition 10.3 (Regular martingale). Let X is a random variable E(|X|) < ∞, Sn = E(X | Fn)

and assume {Sn} is a martingale with respect to {Fn}.
If a martingale can be written in this way for some X then it is regular.

Not every martingale is a regular martingale.
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Example 10.4. Assume P (Xi = 1) = p, P (Xi = −1) = 1 − p, and let Sn =
∑n

i=1Xi. If p ̸= 1
2

then

Yn =

(
1− p

p

)Sn

is a martingale with respect to Fn = σ(X1, . . . , Xn), since

E(Yn | Fn−1) = E

((
1− p

p

)Sn+Xn

| Fn−1

)

=

(
1− p

p

)Sn
[(

1− p

p

)
p+

(
1− p

p

)−1

(1− p)

]
= Yn−1

10.1. Conditional expectations. If G ⊆ F then

L2(G) = {X |E(X2) <∞, X is G-measurable}

If Y ∈ L2 define Z = E(Y | G) to be the projection of Y onto L2(G), where

E(Y − Z)2 = inf
U∈L2(G)

E(Y − U)2

Then Y − Z will be orthogonal to the elements of L2(G). That is,∫
(Y − Z)X dP = 0

for all X ∈ L2(G). If A ∈ G, then letting X = 1A, we have∫
A

Y dP =

∫
A

E(Y | G) dP

If Y ≥ 0 construct {Yn} with Yn ∈ L2 such that Yn ↑ Y . Define

E(Y | G) = lim
n→∞

E(Yn | G).

The limit exists as
E(Yn | G) ≥ E(Ym | G), n ≥ m.

We still have

(1) E(Y | G) is G-measurable, and
(2) For all A ∈ G, ∫

A

Y dP =

∫
A

E(Y | G) dP

as ∫
A

E(Y | G) dP = lim
n→∞

∫
A

E(Yn | G) dP = lim
n→∞

∫
A

Yn dP =

∫
A

Y dP

by the monotone convergence theorem.



MSH2 - PROBABILITY THEORY 23

If Y ∈ L1, defining Y = Y + − Y −, we define

E(Y | G) = E(Y + | G)− E(Y − | G).

10.2. Stopping times.

Definition 10.5. A map
ν : Ω → N = {0, 1, 2, . . . ,∞}

is called a stopping time with respect to {Fn}, an increasing sequence of σ-fields, if

{ν = n} ∈ Fn.

and thus
{ν ≤ n}, {ν > n} ∈ Fn

Theorem 10.6 (Properties of stopping times). Let F∞ = ∨∞
n=1Fn, the σ-field generated by all Fn.

Then we have

(1) For all stopping times ν, ν is F∞-measurable.

{ν = n} ∈ Fn, {ν = ∞} = {
∪
n

{v = n}}c ∈ F∞

(2) The minimum and maximum of a countable sequence of stopping times is a stopping time. To
prove this, let {vk} be a sequence of stopping times. Then

{max
k

vk ≤ n} =
∩
k

{vk ≤ n} ∈ Fn

{min
k
vk > n} =

∩
k

{vk > n} ∈ Fn

Lemma 10.7. Let {Y 1
n } and {Y 2

n } be two positive supermartingales with respect to {Fn}, an
increasing sequence of σ-fields. Let ν be a stopping time. If Y 1

n ≥ Y 2
n on [ν = n], then

Zn = Y 1
n 1{ν>n} + Y 2

n 1{ν≤n}

is a positive supermartingale.

Proof. We have that Zn is Fn-measurable and positive. We then have

E(Zn | Fn−1) = E(Y 1
n 1{ν>n} + Y 2

n 1{ν≤n} | Fn−1)

= E(Y 1
n 1{ν>n−1} − Y 1

n 1{ν=n} + Y 2
n 1{ν≤n−1} + Y 2

n 1{ν=n} | Fn−1)

≤ Y 1
n 1{ν>n−1} + Y 2

n 1{ν≤n−1} + E((Y 2
n − Y 1

n )1{ν=n} | Fn−1)

≤ Zn−1

as Y 2
n − Y 1

n < 0 on {ν = n}. �
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11. Lecture 11 - Thursday 7 April

Theorem 11.1 (Maximal inequality for positive supermartingales). Let {Yn} be a positive super-
martingale with respect to {Fn}. Then

sup
n
Yn <∞a.s

on [Y0 <∞] and
P (sup

n
Yn > a | F0) ≤ min(1, Y0

a
)

Proof. Fix a > 0 and let νa = inf{n : Yn > a} = ∞ if supn Yn ≤ a. Then the sequence Yn(2) = a is
a positive supermartingale, and so

Zn = Yn1{νa>n} + a1{νa≤n}

is a positive supermartingale by the previous lemma. Then we have

E(Zn | F0) ≤ Z0 =

Y0 Y0 ≤ a

a Y0 > a

Thus Zn ≥ a1{νa≤n} and so
aP (va ≤ n | F0) ≤ min(Y0, a)

for all a. THus
P (sup

n
Yn > a | F0) = P (νa <∞|F0) ≤ min(1, Y0

a
)

�

Write

P (Y0 <∞, sup
n
Yn > a) = E(1{Y0<∞}1{supn Yn>a})

= E(1{Y0<∞})E(1{supn Yn>a} | F0)

≤
∫
Y0<∞

min(1, Y0
a
) dP

→ 0

as a→ ∞ by the dominated convergence theorem.
Thus, we have

P (Y0 <∞, sup
n
Yn <∞) = 1a.s.
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Fix a < b ∈ R. For any process Yn, define the following random variables

ν1 = min(n ≥ 0, Yn ≤ a)

ν2 = min(n > ν1, Yn ≥ b)

ν3 = min(n > ν2, Yn ≤ a)

and so on. If any vi is undefined it is subsequently set to infinity.
Define βab = max p : νv2p <∞, equal to the number of upcrossings of (a, b) by Yn. We have

βab = ∞ if and only if lim inf yn ≤ a < b ≤ lim sup yn. We also have Yn converges if and only if
βab <∞ for all rationals a, b, a < b.

Theorem 11.2 (Dubin’s inequality). If Yn is a positive supermartingale, then βab(ω) are random
variables and for each integer k ≥ 1, we have

P (βab ≥ k | F0) ≤ (
a

b
)k min(1, Y0

a
), 0 < a < b.

Proof. The vk defined above are stopping times with respect to Fn, as

[ν2p = n] =
n−1∪
m=0

[ν2p−1 = m,Ym+1 ≤ b, . . . , Yn−1 < b, Yn ≥ b]

and as ν1 is a stopping time, we then use induction.
We then have [βab ≥ k] = [ν2k <∞]. Then define

Zn = 1{0≤n<ν1} +

K∑
k=1

(
b

a
)k−1Yn

a
1{ν2k−1≤n≤ν2k}

+

(
b

a

)k

1{ν2k≤n<ν2k+1} +

(
b

a

)K

1{n≥ν2K+1}

i.e. 1{0≤n<ν1} +
Yn

a 1{}ν1 ≤ n < ν2 +
b
a1{ν2≤n<ν3} + · · ·+

(
b
a

)K 1{ν2K≤n}.
We now apply the previous lemma to show {Zn} is a positive supermartingale. We have(

b

a

)k

,

(
b

a

)k−1
Yn
a

are positive supermartingales. On [ν1 = n], we have 1 ≥ Yn

a . On [ν2k−1 = n] we have(
b

a

)k−1

≥
(
b

a

)k−1
Yn
a

On the even stopping times, we have
(
b
a

)k−1 Yn

a ≥
(
b
a

)k. Thus

E(Zn | F0) ≤ Z0

as Zn is a positive supermartingale. d
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Since Zn ≥ b
a

K1{ν2k≤n}, we have

P (ν2k ≤ n | F0) ≤
a

b

K
min(1, Y0

a
)

Letting n→ ∞, we have

P (βab ≥ k | F0) = P (ν2k <∞|F0)

≤
(a
b

)K
min(1, Y0

a
).

�

12. Lecture 12 - Thursday 7 April

Theorem 12.1. Let {Yn} be a positive supermartingale. Then there exists a random varaible Y∞
such that Yn

a.s.→ Y∞ and E(Y∞ | Fn) ≤ Yn for all n.

Proof. From Durbin’s inequality,
P (βab ≥ k) ≤

(a
b

)k
By Borel-Cantelli, as we have a summable sequence of probabilities, βab <∞ almost surely. Hence

P (Yn converges) = P

 ∩
a<b
a,b∈Q

βab <∞

 = 1

Let limn→∞ Yn = Y∞. If p < n, then

E
(

inf
m≥n

Yn | Fp

)
≤ E(Yn | Fp) ≤ Yp.

Furthermore, infm≥n Ym ↑ Y∞ so by the monotone convergence theorem, we have

E(Y∞ | Fp) = lim
n→∞

E
(

inf
m≥n

Ym | Fp

)
≤ Yp.

�

Theorem 12.2. Let Z be a positive random variable with EZp <∞, p ≥ 1. Then

Yn = E(Zn | Fn)
a.s.→ ,

Lp

→E(Z | F∞),

Note that almost sure convergence does not, in general, imply Lp convergence, although they both
imply convergence in probability.

Proof. Suppose Z ≤ a almost surely. Then there exists Y∞ such that Yn
a.s.→ Y∞ (as Yn are positive

martingales). Fix n and let B ∈ Fn. Then

lim
n→∞

∫
B

Ym+n dP =

∫
B

Z dP
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by definition of conditional expectation. Now 0 ≤ Yn ≤ a so by the dominated convergence theorem,∫
B

Y∞ dP =

∫
B

Z dP

and hence
Y∞ = E(Z | F∞)

and so the random variable Y∞ can be identified as the conditional expectation.
Since |Yn| ≤ a, the {Y p

n } are uniformly integrable, and so Yn
Lp

→Y∞. This follows from noting
that Yn

a.s.→ Y∞, and using that if Xn
p→X and {|Xn|p} is uniformly integrable then Xn

Lp

→X.
Now remove the assumption that Z ≤ a. Taking the Lp norm of the conditional expectations

gives
∥E(Z | Fn)− E(Z | F∞)∥p ≤ ∥E(Z ∧ a | Fn)− E(Z ∧ a | F∞)∥p + 2∥(Z − a)+∥p.

Now we know that ∥(Z − a)+∥p → 0 as a→ ∞, as E(Zp) <∞. Hence we have

Yn
Lp

→E(Z | F∞).

By uniqueness of limits, we obtain our required result. �

Corollary 12.3. If Z ∈ Lp and Yn = E(Z | Fn) then Yn
a.s.→ ,

Lp

→E(Z | F∞)

Theorem 12.4. Martingale convergence theorem

(a) If {Yn} is an integrable submartingale and supn E(Y +
n ) <∞ then there exists an integrable Y∞

such that
Yn

a.s.→ Y∞

(b) If {Yn} is an integrable martingale satisfying supn E|Yn| < ∞ then there exists an integrable
Y∞ such that

Yn
a.s.→ Y∞.

Proof.

(a) {Y +
n } is a positive submartingale as

E(Y +
n+1 | Fn) ≥ E(Yn+1 | Fn) ≥ Yn

If p > n, then

E(Y +
p+1 | Fn) = E(E(Y +

p+1 | Fp) | Fn)

≥ E(Yp+ | Fn).

Hence Mn = limp→∞ E(Y +
p | Fn) as we have a monotone sequence.
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Now,

E(Mn) = E
(

lim
p→∞

E(Y +
p | Fn)

)
= lim

p→∞
E(E(Y +

p | Fn)) MCT

= lim
p→∞

E(Y +
p ) <∞

so Mn is positive and integrable. Mn is a martingale as

E(Mn+1 | Fn) = E
(

lim
p→∞

E(Y +
p | Fn+1) | Fn

)
= lim

p→∞
E(Y +

p | Fn) MCT

=Mn.

Let Zn =Mn−Yn. Then Zn is integrable as M,Yn are, and Zn is a positive supermartingale,
as

E(Zn+1 | Fn) = E(Mn+1 | Fn)− E(Yn+1 | Fn)

≤Mn − Yn as Yn is submartingale

= Zn

and so Zn is a positive supermartingale. Note that Mn ≥ Y +
n and so

Mn − Yn =Mn − (Y +
n − Y −

n ) ≥ Y +
n − (Y +

n − Y −
n ) = Y −

n

Thus Zn and Mn converge almost surely to Z∞ and M∞ respectively, and so

Yn =Mn − Zn
a.s.→ M∞ − Z∞ = Y∞ ∈ L1.

(b) Note that |Yn| = 2Y +
n − Yn, and if {Yn} is a martingale, then

E|Yn| = 2EY +
n − EYn

2EY +
n − EY0

and so supEY +
n <∞ if and only if supn E|Yn| <∞.

�

Theorem 12.5 (Martingale convergence theorem (restated)). Let {Yn} be an integrable (sub/super)
martingale, that is, supn E|Yn| <∞. Then there exists an almost sure limit

lim
n→∞

Yt = Y∞

and Y∞ is an integrable random variable.



MSH2 - PROBABILITY THEORY 29

13. Lecture 13, 14 - Thursday 14 April

Definition 13.1 (Reverse martingale). {Yn,Gn} is a reverse martingale if {Gn} is a decreasing
sequence of σ-fields,

Gn ⊇ Gn+1

Yn is Gn-measurable, E(|Yn|) <∞, and

E(Yn | Gn) = Ym a.s for m ≥ n

Proposition 13.2. We have

E(|Yn|) = E(E(|Yn| | Gn+1))

≥ E(|E(Yn | Gn+1)|)

= E(|Yn+1|)

and so E(|Yn|) ≤ E(|Y0|) for all n, and

Yn = E(Y0 | Gn).

Theorem 13.3. If {Yn} is a reverse martingale with respect to {Gn}, then there exists a random
variable Y∞ such that

Yn
a.s.→ Y∞, Yn

L1

→Y∞ = E(Y0 | G∞)

where G∞ =
∩
Gn.

Proof. We have Yn = E(Y0 | Gn) and so {Yn} is uniformly integrable. Hence if Yn
a.s.→ Y∞ it also

converges in L1. Let
Zn = E(Y +

0 | Gn)− Yn.

Note that Zn ≥ 0. Then
E(Zn | Gn+1) = Zn+1

and so we only need to consider convergence for positive reverse martingales.
Let β(n)

a,b be the number of upcrossings of [a, b] by {Y0, Y1, . . . , Yn}. Applying Dubin’s inequality
to the martingale

{Yn, Yn+1, . . . , Y1, Y0}

Then
P (β

(n)
a,b ≥ k | Gn) ≤

(a
b

)k
which is independent of n, and thus

P (β
(n)
a,b ≥ k | G∞) ≤

(a
b

)k
for all n, and so

P (βa,b ≥ k | G∞) ≤
(a
b

)k
.
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where βa,b is the number of upcrossings for {Yn}, which implies

βa,b <∞ a.s.

Arguing as in the positive supermartingale case, we have {Yn} converges almost surely, and we
have Y∞ = lim supYn is Gn measurable for all n and so is G∞ measurable. �

Theorem 13.4 (Strong law of large numbers). Let X1, X2, . . . be IID with E(|X1|) < ∞. Let
E(X1) = µ. Let Sn =

∑n
i=1Xi. Then

1

n
Sn

a.s.→ µ.

Proof. Let Gn = σ{Sn, Sn+1, Sn+2, . . . } = σ{Sn, Xn+1, Xn+2, . . . }. We then have Gn ⊇ Gn+1. We
have

1

n
Sn = E(

1

n
Sn | Gn)

=
1

n

n∑
i=1

E(Xi | Gn)

= E(X1 | Gn),

as
E(X1 | Gn) = E(X2 | Gn) = . . .E(Xn | Gn)

by IID/symmetry.
Thus 1

nSn is a reverse martingale with respect to {Gn}. From above, we have have
1

n
Sn = Xn

a.s.→ ,
L1

→E(X | G∞).

We have limn→∞
∑n

i=1Xi is in the tail σ-field of the sequence of {Xn} and Xi are IID and so
the limiting random variable is degenerate.

Consider X∞ = E(X | G∞). By the Kolmogorov 0-1 law, we have

P ({X∞ ≤ a}) = 0 or 1.

Thus X∞ is a constant with probability one. Since

E(X1 | Gn)
L1

→E(X1 | G∞)

we have
lim

n→∞
E(

1

n
Sn) = E(E(X1 | G∞)) = E(X1) = µ.

Thus X∞ = µ almost surely, that is,
1

n
Sn

a.s.→ ,
L1

→µ.

�
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13.1. Characteristic functions. Following Fallow Volume 2.

Definition 13.5 (Characteristic function). Let X be a random variable. Then the characteristic
function is defined by

φ(t) = E(eitX).

φ(t) is always defined (unlike moment generating function (MGF), probability generating func-
tion (PGF)).

Proof. Let φ(t) be the characteristic function of the random variable X. Then

(i) |φ(t)| ≤ E(|eitX |) = 1 = φ(0).

(ii) φ(−t) = E(e−itX) = φ(t).

(iii) If X is symmetric about 0 then φ(t) is real.
(iv) φ(t) is uniformly continuous in t.

Proof.

|φ(t+ h)− φ(t) =

∣∣∣∣∫ ei(t+h)X − eitX dF (x)

∣∣∣∣
=

∣∣∣∣∫ eitX(eihX − 1) dF (x)

∣∣∣∣
≤
∫ ∣∣eihX − 1

∣∣ dF (x)
=

∫ √
cos2(xh− 1) + sin2(xh) dF (x)

=

∫ √
2− 2 coshx dF (x) → 0

as h→ 0 by the dominated convergence theorem. �

(v) If X and Y are independent random variables with characteristic functions φ and ψ respec-
tively, then X + Y has characteristic function

χ(t) = φ(t) · ψ(t)

(vi) If X has a characteristic function φ then aX + b has a characteristic function eitbφ(at).
(vii) If φ is a characteristic function the so is |φ|2.

Proof. Let X and Y have the same distribution, with X independent of Y . Then Z = X − Y

has a characteristic function φ(t)φ(−t) = |φ(t)|2. �

(viii) Let X have a MGF M(t). Then φ(t) =M(it).

�
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Example 13.6. (i) Let X ∼ N(0, 1). Then

φ(t) = e−
1
2 t

2

.

(ii) Let Y ∼ N(µ, σ2). Then
φ(t) = eitµ−

1
2σ

2t2 .

as Y = µ+ σZ with Z ∼ N(0, 1).
(iii) Let X ∼ Poisson(λ) Then

φ(t) = eλ(e
it−1).

(iv) Let P (X = 1) = 1
2 = P (X = −1). Then

φ(t) =
1

2

(
eit + e−it

)
= cos t.

(v) Let X ∼ Exp(λ). Then

φ(t) =

∫ ∞

0

eitxλe−λx dx

=

∫ ∞

0

λe−x(λ−it) dx

=
λ

λ− it

Theorem 13.7 (Parseval’s relation). Let F and G be distribution functions with associate char-
acteristic functions φ and ψ. Then∫

e−iztφ(z) dG(z) =

∫
ψ(x− t) dF (x)

Proof. ∫
e−iztφ(z) dG(z) =

∫
e−izt

(∫
eizt dF (x)

)
dG(z)

=

∫ ∫
eiz(x−t) dF (x) dG(x)

=

∫ (∫
eiz(x−t) dG(z)

)
dF (x) by Fubini’s theorem

=

∫
ψ(x− t)dF (x)

�

Corollary 13.8. If G is the distribution function of a N(0, 1
σ2 ) random variable. Then ψ(t) =

e−
1

2σ2 t2 , and so the above relationship becomes∫
eiztφ(z)

σ√
2π
e−

1
2 z

2σ2

dz =

∫
e−

1
2σ2 (x−t)2 dF (x).



MSH2 - PROBABILITY THEORY 33

Rearranging, we obtain
1

2π

∫
e−iztφ(z)e−

1
2 z

2σ2

dz =

∫
1√
2πσ2

e−
1

2σ2 (x−t)2 dF (x)

Then the right hand side is the density of the convolution of F and a N(t, σ2) distribution. Call
the convolution distribution Fσ. Then

Fσ(β)− Fσ(α) =

∫ β

α

(
1

2π

∫
e−iztφ(z)e−

1
2 z

2σ2

dz

)
dt

=
1

2π

∫
φ(z)e−

1
2 z

2σ2 e−izβ − e−izα

−iz
dz

If α and β are continuity points of F , then

F (β)− F (α) = lim
σ→0

1

2π

∫
φ(z)e−

1
2 z

2σ2 e−izβ − e−izα

−iz
dz (⋆)

for as σ → 0, Fσ → F .
Since a function has only countably many points of discontinuity, we can then derive the following

theorem.

Theorem 13.9. Let X be a random variable with distribution function F and characteristic function
φ. Assume ∫

|φ(t)| dt <∞.

Then F has a bounded, continuous density f given by

f(x) =
1

2π

∫
e−itxφ(t) dt

Proof. From (⋆) apply DCT. Then

F (β)− F (α) = F (β)− F (α) = lim
σ→0

∫ β

α

(
1

2π

∫
φ(z)e−

1
2 z

2σ2

dz

)
dt

=

∫ β

α

(
1

2π

∫
e−iztφ(z) dz

)
dt

�

Corollary 13.10. If φ(t) is non-negative and integrable continuous function associated with a
distribution function F . Then φ(t)

2πF ′(0) is a density function with characteristic function F ′(x)
F ′(0) .

Proof. We have

F ′(x) =
1

2π

∫
e−izxφ(z) dz

=
1

π

∫ ∞

0

cos(xz)φ(z) dz as φ(z) is real
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Thus

F ′(0) =
1

π

∫ ∞

0

φ(z) dz

1 =
1

2F ′(0)π

∫
φ(z) dz

and thus
F ′(x)

F ′(0)
=

∫
cos(xz) φ(z)

2φF ′(0)
dz

�

14. Lecture 14 - Thursday 14 April

15. Lecture 15 - Thursday 21 April

Example 15.1. X has density f(x) = 1
2e

−|x|. Then

φ(t) =
1

2

∫
eitxe−|x| dx

=

∫ ∞

0

cos txe−x dx

=

∫ ∞

0

1

2

(
eitx + e−itx

)
e−x dx

=
1

2

∫ ∞

0

e−x(1−it) +−x(1+it) dx

=
1

2

[
−1

1− it
e−x(1+it) +

−1

1 + it
e−x(1+it)

]∞
0

=
1

1 + t2

Thus φ(t) = 1
1+t2 which is a non-negative, integrable characteristic function. Thus,

φ(t)

2πf(0)
=

1

π(1 + t2)

which is the Cauchy distribution. We then know that the characteristic function of the Cauchy
distribution is

γ(t) =
F ′(x)

F ′(0)
=
f(x)

f(0)
= e−|t|

from Corollary 13.10.

Theorem 15.2 (Moment theorem). Let F be the distribution function of X. Assume X has finite
moments up to order n, i.e. E(|X|n) < ∞. Then the characteristic function φ(t) has uniformly
continuous derivatives up to order n, and

φ(k)(t) = ikE(|X|k), k = 1, 2, . . . , n
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and
φ(t) = 1 +

n∑
k=1

E(Xk)
(it)k

k!
+ o(tn)

as t→ 0.
Conversely, if φ can be written as

φ(t) = 1 +
n∑

k=1

ak
(it)k

k!
+ o(tn)

as t → 0, then the associated density function has finite moments up to order n if n is even, and
up to order n− 1 if n is odd, with ak = E(|X|k).

Proof.

Lemma 15.3. For any t ∈ R, ∣∣∣∣eit − 1− it · · · − (it)n−1

(n− 1)!

∣∣∣∣ ≤ |t|n

n!
.

Proof. Taylor’s Theorem. �

Suppose E(|X|k) <∞ for k = 1, 2, . . . , n. Then

|xkeitx| ≤ |x|k

, so ∫
xkeitx dF (x)

exists. Now
φ(t+ h)− φ(t)

h
=

∣∣∣∣∫ ei(t+h)x − eitx

h
dF (x)

∣∣∣∣
=

∣∣∣∣∫ eitx · e
ihx − 1

h
dF (x)

∣∣∣∣
≤
∫

|x| dF (x) <∞

from Lemma 15.3.
So by DCT,

φ′(t) = lim
h→0

φ(t+ h)− φ(t)

h
= i

∫
xeitx dF (x)

and thus
φ′(0) = iE(X).

Using induction, we obtain
φ(k)(t) = ik

∫
xkeitx dF (x)
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and φ(k)(0) = ikE(Xk) for k = 1, 2, . . . , n.
Arguing as in the proof of characteristic functions uniform continuity.
Expanding φ(t) about t = 0 in a Taylor series, we have

φ(t) = 1 +

n∑
k=1

φ(k)(0)
[

t

k

]k! +Rn(t), t > 0.

with
Rn(t) =

tn

n!

[
φ(n)(θt)− φ(n)(0)

]
, 0 < θ < 1.

We then have ∣∣∣∣Rn(t)

tn

∣∣∣∣ ≤ 1

n!

∫
|x|n|eiθtx − 1| dF (x)

≤ 2

n!

∫
|x|n dF (x).

and so by the DCT,
lim
t→0

∣∣∣∣Rn(t)

tn

∣∣∣∣ = 0,

and thus Rn(t) = o(tn).
Conversely, suppose φ has an expansion up to order 2k. Then φ has a finite derivative of order

2k at t = 0 Then

−φ(2)(0) = − lim
h→0

φ(h)− 2φ(0)− φ(−h)
h2

= lim
h→0

2

∫
1− coshx

x2
dF (x)

≥ 2

∫
lim
h→0

1− coshx
h2

dF (x)by Fatau

=

∫
x2dF (x) = E(X2)

and so φ(2)(0) <∞ ⇒ E(X2) <∞.
Using induction, assume finite 2(k − 1)th derivative at 0 ⇒ E(X2(k−1)) < ∞. Then from the

first part,
φ(2(k−2))(t) = (−1)k−1

∫
x2k−2eitx dF (x)

Suppose φ2k(0) <∞. Then let
G(x) =

∫ x

−∞
y2k−2 dF (y).
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so G(x)
G(∞) is a distribution function with characteristic function

ψ(t) =
1

G(∞)

∫
eitxx2k−2 dF (x)

=
(−1)k−1φ(2k−2)(t)

G(∞)

As φ(2k−2)(t) is twice differentiable at t = 0. So

ψ(2)(0) ≥
∫
y2y2k−2 dF (y)

G(∞)

and thus E(X2k) <∞. as required. �

16. Lecture 16 Thursday 21 April

Corollary 16.1. Let φ be a characteristic function associated with a random variable X. Then φ

has continuous derivatives of all orders if and only if X has finite moments of all orders.

Corollary 16.2. The function φ(t) = e−|t|α is not a characteristic function if α > 2. Note that
α = 1 was the Cauchy distribution, α = 2 is the Normal distribution.

Proof. If α > 2 then
lim
t→0

φ(2)(t) = 0 ⇒ E(X2) = 0

which implies X is degenerate. But if X is degenerate at b, then

φ(t) = eitb ̸= e−|t|α

Thus by uniqueness of characteristic functions, e−|t|α is not a characteristic function. �

16.1. Lattice distributions.

Theorem 16.3 (Lattice distributions). Let X be a random variable with distribution function F ,
characteristic function φ. If c ̸= 0 then the following are equivalent.

(i) X has a lattice distribution whose range is continued in 0,±b,±2b, . . . , b = 2π
c .

(ii) φ(t+ nc) = φ(t) for n = ±1,±2, . . . , that is, φ is periodic with period c.
(iii) φ(c) = 1.

Proof. (1) ⇒ (2).

φ(t) =

∞∑
k=−∞

P (X = kb)eitkb

=
∞∑

k=−∞

P (X = kb)e2πitk/c
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which implies
φ(t+ nc) = φ(t)

as e2πinck/c = 1.
(2) ⇒ (3). Simply set t = 0, n = 1. Then φ(0) = φ(c) = 1.
(3) ⇒ (1).

1− E(cos cX) = 0

E(1− cos cX) = 0

but as 1 − cos cX ≥ 0, X must have probability components on points where cos cX = 1, that is,
cX takes on the values 0,±π,±2π, . . . . �

Corollary 16.4. X is degenerate if and only if |φ(t)| = 1 for all t.

Proof. If P (X = b) = 1, then φ(t) = eitb, and so |φ(t)| = 1 for all t.
If |φ(c)| = 1 for c ̸= 0, then φ(c) = eiθ for some θ. Let φ1(t) = φ(t)e−iθt/c is characteristic

function of X − θ
c . Then φ1(c) = 1, thus X − θ

c is a lattice taking values in 0,± 2π
c ,±

4π
c , . . . .

Now, pick some b ∈ R with b
c irrational. Then |φ(b)| = 1, and then X − a2 is a lattice taking

values in 0,±2π
b ,±

4π
b , . . . . Then

(i) |φ(t)| < 1 for t ̸= 0 (e.g. Normal, e− 1
2 t

2).
(ii) |φ(λ)| = 1 and |φ(t)| < 1 on 0 < t < λ (e.g. discrete ±1, cos t).
(iii) |φ(t)| = 1∀t, degenerate distributions.

�

Example 16.5. We can construct 3 nontrivial distribution functions φ1, φ2, φ3 such that

(i) φ1(t) = φ2(t), ∀t ∈ [−1, 1].
(ii) |φ(t)| = |φ3(t)|, ∀t.

Consider g(x) = 1 − |x|, x ∈ [−1, 1]. This has characteristic function φ(t) = 2(1−cos t)
t2 . But the

characteristic function is positive and integrable, and so

φ1(t) =

1− |t| |t| ≤ 1

0 |t| > 1

is the characteristic function of the density

f(x) =
1− cosx
πx2

.

We can express φ1(t) as the trigonometric series,

φ1(t) = 1− |t| = 1

2
+

∞∑
k=1

ak cos(kπt)
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with

ak = 2

∫ 1

0

(1− t) cos(kπt) dt =

 4
kπ2 k odd

0 k even
We can thus write

φ1(t) =
[

1
]2 +

∞∑
k=1

4

(2k − 1)2π2
cos(2k − 1)πt.

Let V be a random variable, with

P (V = 0) =
1

2
, P (V = ν) =

2

ν2
, ν = ±π,±3π,±5π, . . .

Then V is a lattice distribution, with characteristic function

φ2(t) =
1

2
+

4

π2

(
cosπt+ cos 3πt

9
+

cos 5πt
25

+ . . .

)
and thus φ1(t) = φ2(t) on [−1, 1], but have different density functions.

Finally, let U be a lattice random variable with distribution

P (U = ± (2k + 1)π

2
) =

4

π2(2k + 1)2
, k = 0, 1, 2, . . .

Then U has a characteristic function φ3(t) = 2
[
φ2(

t
2 )−

1
2

]
. Thus

|φ3(t)| = |φ2(t)| ∀t.

17. Lecture 17 - Thursday 5 May

17.1. Sequences of characteristic functions.

Lemma 17.1 (Helly selection theorem). Given a sequence of distribution functions {Fn} then there
exists a sequence {nk} and a non decreasing right continuous function F such that

Fnk
(x) → F (x)

at all continuity points x of F .

Proof. First order the rationals to get a sequence {rk}. From {Fn(r1)} we choose a subsequence
{Fn1k

(r1)} which converges.
Now from the sequence {n1k} choose a subsequence {n2k} such that {Fn2k

(r2)} converges, etc.
Now let nk = nkk. Then for each rational number r, the limit Fnk

(r) exists as n → ∞.
Define L(R) = limFnk

(r), r ∈ Q. Then L(r) is non-decreasing and takes values in [0, 1]. Let
F (x) = infr≤x L(r). Then F is non-decreasing, and right continuous, and Fnk

(x) → F (x) for all
x ∈ Q and at all points of continuity of F . �

Lemma 17.2 (Extended Helly-Bragg theorem). If a sequence of distribution functions {Fn} con-
verges to a function F at all continuity points of F and g is a bounded, continuous, real valued
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function then ∫
R
g dFn →

∫
R
g dF

Proof. Let M = supx |g(x)|, and let a, b be continuity points of F . Then∣∣∣∣∫
R
g dFn −

∫
R
g dF

∣∣∣∣ ≤
∣∣∣∣∣
∫
R
g dFn −

∫ b

a

g dFn

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

g dFn −
∫ b

a

g dF

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

g dF −
∫
R
g dF

∣∣∣∣∣
≤M [Fn(a)− Fn(−∞) + Fn(∞)− Fn(b)] +

∣∣∣∣∣
∫ b

a

g dFn −
∫ b

a

g dF

∣∣∣∣∣
+M [F (a)− F (−∞) + F (∞)− F (b)]

Since
Fn(a) → F (a), Fn(b) → F (b)

as a, b are continuity points, we can choose a, b large enough to make the 3rd term small (< ϵ
3 for

arbitrary ϵ > 0), and then N large enough to make the first term small.
Now we deal with the middle term. Let a = x0N < x1N < · · · < xνN ,N = b be a sequence of

subdivisions of [a, b], such that ∆n → 0 (partition width) as n→ ∞. Then

gN (x) =

νN∑
ν=1

g(xν , N)1{xν−1,N≤x≤xν,N}

Then supx∈[a,b] |gN (x)− g(x)| → 0 as N → ∞ (as g is bounded and continuous.) Then by DCT we
have ∫ b

a

g dFn = lim
N→∞

∫ b

a

gN dFn∫ b

a

g dF = lim
N→∞

∫ b

a

gN dF

Next, we will show

lim
n→∞

∫ b

a

gN dFn =

∫ b

a

gN dF

Let xν,N be continuity points of F so

Fn(xν,N )− Fn(xν−1,N ) → F (xν,N )− F (xν−1,N ).

Hence

lim
n→∞

∫ B

a

gN (x) dFn = lim
n→∞

νN∑
ν=1

g(xν,N )(Fn(xν,N )− Fn(xν−1,N ))

=

∫ b

a

gN (x) dF (x)
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If MN = supx∈[a,b] |gN (x)− g(x)|, then∣∣∣∣∣
∫ b

a

g dFN −
∫ b

a

g dF

∣∣∣∣∣ ≤
∫ b

a

|g − gn| dFn +

∣∣∣∣∣
∫ b

a

gn dFn −
∫ b

a

gN dF

∣∣∣∣∣+
∫ b

a

|g − gN | dF

≤MN [Fn(b)− Fn(a)] +

∣∣∣∣∣
∫ b

a

gN dFn

∫ b

a

gN dF

∣∣∣∣∣+MN [F (b)− F (a)]

Since MN → 0 as N → ∞. Then choosing N large enough to make MN small enough, for a large
N fixed, N2 say, we have ∣∣∣∣∣

∫ b

a

gN2 dFn −
∫ b

a

gN2 dF

∣∣∣∣∣ ≤ ϵ

9

The result then follows. �

Lemma 17.3. Let {Fn} be a sequence of distribution functions with associated characteristic
function {φn}. Assume φn(t) → φ(t) as n → ∞ for all t ∈ R. Then there exists a non-decreasing
right continuous function F such that Fn(x) → F (x) at all continuity points x of F .

Proof. From Lemma 17.1 there exists a subsequence {nk} and a non-decreasing continuous function
F such that Fnk

(x) → F (x) at all continuity points of F . Using Parseval’s relation on {Fnk
, φnk

},
we have

1

2π

∫
R
e−iztφnk

(z)e−
1
2σ

2z2

dz =

∫
R

1√
2π
e−

1
2 (

x−t
σ )

2

dFnk
(x)

Let k → ∞. Then the LHS becomes
1

2π

∫
R
e−iztφ(z)e−

1
2σ

2z2

dz

by the dominated convergence theorem.
The RHS becomes ∫

R

1√
2π
e−

1
2 (

x−t
σ )

2

dF (x)

by an application of Lemma 17.2. Thus φ determines F uniquely (as before), so the limit F must
be the same for all convergent subsequences. �

Theorem 17.4 (Continuity theorem). Let {Fn} be a sequence of distribution functions converging
to a distribution function F at all continuity points x of F . This happens if and only if φn(t) → φ

pointwise and φ is continuous in the neighbourhood of the origin. If this is the case then φ is the
characteristic function associated with F , and is continuous everywhere.

Proof. If {Fn} converges to F , use Lemma 17.2, with g(x) = cos(xt) + sin(xt). �
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18. Lecture 18 - Thursday 12 May

Theorem 18.1. Assume Fn → F at continuity points of F , and associated characteristic function
φn → φ pointwise. If φn → φ and φ is continuous in a neighbourhood of 0, then Fn → F and F is
distribution function associated with φ.

Proof. From previous lemma, there exists a non-decreasing, right continuous non-negative function
F such that Fn → F . We need to show F is a distribution function, that is F (+∞)−F (−∞) ≥ 1.
By Parseval’s relation, we have

σ√
2π

∫
R
e−iztφ(z)e−

1
2σ

2z2

dz =

∫
R
e−

1
2 (

x−t
σ

2) dF (x) ≤ F (+∞)− F (−∞)

The left hand side is equal to

E(e−iNσtφ(Nσ))

where Nσ ∼ N(0, 1
σ2 ). Since ∣∣e−iztφ(t)

∣∣ ≤ 1

Assume φ is continuous on |t| < A. Then

E(e−iNσtφ(Nσ)) = E(e−iNσtφ(Nσ) | |Nσ| ≥ A) · P (|Nσ| ≥ A)

+ E(e−iNσtφ(Nσ) | |Nσ| < A)P (|Nσ| < A).

The first term tends to zero as σ → ∞, as P (|Nσ| ≥ A) → 0 on |Nσ| < A. Then the distribution
function tends to

G(x) =

0 x < 0

1 x ≥ 0

as σ → ∞.

lim
σ→∞

σ√
2π

∫
R
e−iztφ(z)e−

1
2σ

2z2

dz =

∫
R
e−iztφ(z) dG(z) = 1

by the extended Helly-Bragg theorem. �

Corollary 18.2. If Xn has distribution function Fn and characteristic function φn, and X has
distribution function F and characteristic function φ. Then the following are equivalent.

i) Fn(x) → F (x) at all continuity points x of F .
ii) φn(t) → φ(t) for all t,

iii) E(g(Xn)) → E(g(X)) for all real, bounded, continuous functions g.

In these cases we write Xn
d→X (Xn converges in distribution to X)

Corollary 18.3. Suppose Xn
d→X. If h is any continuous real valued function, then h(Xn)

d→h(X).
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Proof. Xn
d→X if and only if E(g(Xn)) → E(g(X)). Then g(h(x)) is real, bounded, and continuous.

Then
E(g(h(Xn))) → E(g(h(X))) ⇒ h(Xn)

d→h(x)

for all g real, bounded, continuous. �

Theorem 18.4 (Slutsky’s theorem). IF Xn
d→X and Yn

p→ a, then

Xn + Yn
d→X + a

Proof. Given ϵ > 0, choose x such that x, x − a ± ϵ are continuity points of F (x) = P (X ≤ x).
Then

P (Xn + Yn ≤ x) = P (Xn + Yn ≤ x, |Yn − a| > ϵ) + P (Xn + Yn ≤ x, |Yn − a| ≤ ϵ)

≤ P (|Yn − a| > ϵ) + P (Xn ≤ x− a+ ϵ)

P (Xn ≤ x− a− ϵ) = P (Xn ≤ x− a− ϵ, |Yn − a| > ϵ) + P (Xn ≤ x− a− ϵ, |Yn − a| ≤ ϵ)

≤ P (|Yn − a| > ϵ) + P (Xn + Yn ≤ x)

Taking limits as n→ ∞, we have

P (X ≤ x− a− ϵ) ≤ lim
n→∞

P (Xn + Yn ≤ x) ≤ P (X ≤ x− a+ ϵ)

Since x− a± ϵ are continuity points of F , we have

lim
n→∞

P (X − n+ Yn ≤ x) = P (X ≤ x− a). �

18.1. Central limit theorem.

Note (Notation). Let X1, X2, . . . are independent random variables with characteristic functions
φ1, φ2, . . . and distribution functions F1, F2, . . . . Let E(Xi) = 0,Var(Xi) = σ2

i < ∞, i = 1, 2, . . . .
Let

Sn =
n∑

i=1

Xi, s2n = Var(Sn) =
n∑

i=1

σ2
i

Theorem 18.5 (Lindeberg conditions). Let ϵ > 0. Then

Ln(ϵ) =
1

s2n

n∑
i=1

E
(
X2

i 1{(}|Xi| > ϵsn)
)

=
1

s2n

n∑
i=1

∫
|x|>ϵsn

x2 dFi(x)

Then the Lindeberg condition is

∀ϵ > 0, Ln(ϵ) → 0 as n→ ∞
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Example 18.6. Assume E(|Xi|3) <∞. Then

Ln(ϵ) ≤
1

s2n

n∑
i=1

E(X2
i

|Xi|
ϵsn

)

=
1

ϵ

1

s3n

n∑
i=1

E(|Xi|3)

Theorem 18.7 (Liapounov’s condition).

1

s3n

n∑
i=1

E(|Xi|3) → 0 as n→ ∞

From above, Liapounov’s condition implies Lindeberg’s condition.

Theorem 18.8 (Central limit theorem). If for all ϵ > 0, Ln(ϵ) → 0 as n→ ∞, then
Sn

sn

d→N(0, 1)

Proof. Preliminaries.

(i) If |ak| <≤ 1 and |bk| ≤ 1 for all k, then∣∣∣∣∣
n∏

i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ ≤
n∑

i=1

|ai − bi|

as a1a2 − b1b2 = (a1 − b1)a2 − b1(a1 − b2) and use induction.
(ii) |ez − 1− z| ≤ δ|z|, δ > 0, for |z| sufficiently small.

It is sufficient to prove

φSn/sn(t) =
n∏

k=1

φk(t/sn) → e−
1
2 t

2

) (‡)

for all t.
Now

|φk(t/sn)− 1| =
∣∣∣∣∫ (e

itx
sn − 1− itx

sn
)dFk(x)

∣∣∣∣ as E(Xk) = 0

≤
∫

t2

x2
2s2n dFk(x)

=
1

2

σ2
k

s2n
t2 (⋆)

Now

σ2
k = E(X2

k1{|Xk|≤usn}) + E(X2
k1{|Xk|>usn})

≤ (usn)
2 + s2nLn(u)



MSH2 - PROBABILITY THEORY 45

Hence
σ2
k

s2n
≤ u2 + Ln(u)

and since there are no k on the RHS, we have

max
k≤n

σ2
k

s2n
≤ u2 + Ln(u)

By Lindenberg’s condition, we have Ln(u) → 0 as n→ ∞, and as u was arbitrary, we have

max
k≤n

σ2
k

s2n
→ 0

From Assignment 5, we know
exp(φk(t)− 1)

is a characteristic function. Let δ → 0. Then∣∣∣∣∣exp(
n∑

k=1

(φk(t/sn))− 1)−
n∏

k=1

φk(t/sn)

∣∣∣∣∣ ≤
n∑

k=1

∣∣∣eφk(t/sn)−1 − φk(t/sn)
∣∣∣ by (i)

≤ δ
n∑

k=1

|φk(t/sn)− 1| by (ii)

≤ δt2

2

n∑
k=1

σ2
k

s2n
by (⋆)

=
δt2

2
. if n is sufficiently large

By (‡), we must show
n∑

k=1

(φk(t/sn)− 1) +
1

2
t2 → 0

that is,
n∑

k=1

∫ (
eitx/sn − 1− itx

sn
+

1

2

t2x2

s2n

)
dFk(x) → 0 (†)

The modulus of the integral in (†) is bounded by

1

6

∣∣∣∣ txsn
∣∣∣∣3 ≤ u

|t|3x2

6s2n

if |x| ≤ usn and
x2t2

2s2n
+
x2t2

2s2n
when |x| > usn. Hence the integral of (†) is bounded above by

u|t|3

6
+
t2

s2n

n∑
k=1

∫
|x|>usn

x2 dFk(x) =
u|t|3

6
+ Ln(u)t

2
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as the integral is the Lindeberg’s condition.
Given t, ϵ > 0, choose u such that u|t|3

6 < ϵ
2 , and N0 large enough such that Ln(u)t

2 < ϵ
2 for

n > N0. So the left hand side of (†) is bounded above by ϵ, and so the result follows. �

Theorem 18.9 (Partial converse of the central limit theorem). Suppose that sn → ∞ and σn

sn
→ 0

as n→ ∞. Then the Lindeberg condition is necessary for
Sn

sn

d→N(0, 1).

Proof. By assumption, given ϵ > 0 there exists N1 > 0 such that
σk
σn

<
σk
σk

< ϵ

for N1 ≤ k ≤ n as s2n ≤ s2k(k ≤ n). We also have
σk
sn

< ϵ, k = 1, 2, . . . , N1

for n > N1 as s2n → ∞. Hence
max

1≤k≤n

σk
sk

→ 0

as n → ∞. Assume Sn

sn

d→N(0, 1). If (5) holds then this convergence is equivalent to (1) ⇐⇒
(3)(⇒ (4)) as (1) ⇐⇒ (3) requiring (5), to ensure∣∣∣∣φk(

t

sn
)− 1

∣∣∣∣
can be made uniformly small.

The real part of (4),
n∑

k=1

∫ (
cos(xt

sn
)− 1 +

x2t2

2s2n

)
dFk(x) ≥

n∑
k=1

∫
|x>usn

(
cos(xt

sn
)− 1 +

x2t2

2s2n

)
dFk(x)

For any u > 0, choose t such that x2t2

2s2n
− 2 > 0 if |x| > usn (i.e. t2 > 4

n2 ). Continuing, we have

≥
n∑

k=1

∫
|x|>usn

(
x2t2

2s2n
− 2

)
dFk(x)

≥
n∑

k=1

∫
|x|>usn

(
x2t2

2s2n
− 2

x2

u2s2n

)
dFk(x)

=

(
t2

2
− 2

u2

)
1

s2n

n∑
k=1

∫
|x|>usn

x2 dFk(x)

=

(
t2

2
− 2

u2

)
Ln(u)

Thus Ln(u) → 0 as n→ ∞, that is, Lindeberg’s condition holds. �
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Corollary 18.10. Let X1, X2, . . . IID with E(X1) = 0,Var(X1) = σ2. Then
Sn√
nσ2

d→N(0, 1)

Let X̄k = Sn

n .

Proof. We have s2n = nσ2. For ϵ > 0, we have

Ln(ϵ) =
1

nσ2

n∑
k=1

E(X2
k1{|Xk|>ϵσ

√
n})

=
1

σ2
E(X2

11{|X1|>ϵσ
√
n}) → 0

as n→ ∞ as E(X2
1 ) <∞. �

19. Lecture 19 - Thursday 19 May

The central limit theorem is about distribution functions. It is not an automatic consequence
that the derivatives (densities) converge.

If Sn

sn
has density fn(x) we need further conditions to ensure fn(x) → 1√

2π
e−

1
2x

2 as n→ ∞.

Theorem 19.1. If Xi are IID with characteristic functions φ(t) and |φ(t)| is integrable then

fn(x) →
1√
2π
e−

1
2x

2

Example 19.2 (Densities not converging). Let Xi have density

f(x) =
C

x(logx)2 , 0 < x <
1

2
.

Then E(X2) <∞ but
∑n

i=1Xi has an unbounded density on (0, 12 ).

19.1. Stable Laws.

Definition 19.3 (Stable distribution). A distribution F is said to be stable if it is not concentrated
at one point, and when X1 and X2 are independent with distribution function F and a1, a2 are
arbitrary constants there exists some α > 0, β such that

α1X1 + αX2 − β

α

has distribution function F .

Example 19.4. If X1 has a characteristic function φ(t) then

αX3 + β = a1X1 + a2X2

eiβtφ(αt) = φ(a1t)φ(a2t)
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If φ(t) = e−c|t|γ , 0 < γ ≤ 2, then

φ(a1t)φ(a2t) = e−c(|a1|γ+|a2|γ)|t|γ .

As these distributions are symmetric, we have β = 0, and so setting α = (|a1|γ+ |a2|γ). Thus dis-
tributions with characteristic functions of the form e−c|t|γ are stable. Hence the Cauchy distribution
is stable (γ = 1), and the normal distribution is stable (γ = 2).

Theorem 19.5. If φ is the characteristic function of a symmetric random variable (X
d
= − X)

with a stable distribution then φ(t) = e−c|t|γ for some c > 0, γ ∈ (0, 2].
Recall that a distribution is symmetric if and only if φ is real.

Partial. φ(t)φ(t) = φ(αt) used to show that φ(t) ̸= 0. (Since φ(0) = 1 and φ(t) is continuous).
Then build up properties of φ. �

Theorem 19.6 (Lèvy). Let X1, X2, . . . be independent and identically distributed random variables
with distribution functions G. Let Sn =

∑n
i=1Xi. Suppose that there exists a sequence of constants

(an, bn) with bn > 0, such that
Sn − an
bn

d→X

where X is not a constant. Then X is stable.

Definition 19.7 (Domain of attraction). If X has distribution function F then we say G is in the
domain of attraction of F .

Corollary 19.8. If X has finite variance then G is in the domain of attraction of the normal
distribution.

Corollary 19.9. If G satisfies limx→∞ x(1−G(x)) = c > 0 then G is in the domain of attraction
of the Cauchy distribution, that is,

xP(X > x) → c.

A necessary and sufficient condition to be in the domain of attraction for the Cauchy distribution
is

1−G(x) = P (X1 > x) =
L(x)

x
where L(x) is a slowly varying function. L(x) is a slowly varying function if for all C > 0,

lim
x→∞

L(Cx)

L(x)
= 1.

For example, L(x) = 1, L(x) = logx are slowly varying functions.

Theorem 19.10. All stable laws are absolutely continuous and the distribution functions have
derivatives of all orders.

Theorem 19.11. The normal distribution is the only stable law with finite variance.
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Theorem 19.12. It can be shown that the canonical form of the characteristic function of a stable
law is

φ(t) = exp
[
iγt− c|t|γ

{
1 +

iβt

|t|
ω(t, α)

}]
where

γ ∈ R, α ∈ (0, 2], c > 0, |β| ≤ 1, ω(t, α) =

tan πα
2 α ̸= 1

2
π log |t| α = 1

If φ is real, then β = γ = 0.

20. Lecture 20 - Thursday 19 May

20.1. Infinitely divisible distributions. Consider a triangular array {Xnk}nk=1 where for each
n, Xn1, Xn2, . . . , Xnn are independent random variables. We assume that the distribution are
identically distributed for each n.

X11

X21 X22

X31 X32 X33

... . . .

Example 20.1. Let Xnk ∼ B(1, pn). Then Sn =
∑n

k=1Xnk ∼ B(n, pn). We know that if npn → λ

as n→ ∞, then
Sn

d→Poisson(λ).

Note that the Poisson distribution is not continuous, nor is it stable. Consider X1, X2 Poisson
distributed, and let Y = 2X1 + 3X2. Then Y is not in the Poisson family as P (Y = 1) = 0.

Definition 20.2 (Infinitely divisible). A distribution function F is infinitely divisible if for every
positive integer k, F is the k-fold convolution of some distribution Gk with itself.

Example 20.3. (1) The Poisson distribution is infinitely divisible, as

φ(t) = eλ(e
it−1) =

[
e

λ
k (eit−1)

]k
(2) Symmetric stable laws are infinitely divisible, as

φ(t) = e−c|t|α =
(
e−

c
k |t|α

)k
Lemma 20.4. Assume Xn

d→X, Yn
d→Y , {Xn}, {Yn} independent. Then

Xn + Yn
d→X + Y.
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Proof. Xn has a characteristic function φn(t) → φ(t). Yn has characteristic function ψ(t) → ψ(t).
Then

φn(t)ψn(t) → φ(t)ψ(t).

�

Theorem 20.5. Given the array {Xnk}, letting Sn =
∑n

k=1Xnk. If P (Sn ≤ x) → F (x) then F is
infinitely divisible.

Proof. Fix k. We must show that F is the k-fold convolution of someGk. Let n′ = mk, m = 1, 2, . . . ,
and let

Y
(m)
i = Xn′,(i−1)m+1 + · · ·+Xn′,im, i = 1, . . . , k.

Then
Smn = Y

(m)
1 + · · ·+ Y

(m)
k

and Y
(m)
f are IID.

If P (Y (m)
1 ≤ x) → Gk(x) as m→ ∞ then

G∗k
k = F

So we need to show that Gk is a well defined distribution. We have Y (m)
1 is the sum of m iid random

variables, and
Hm(x) = P (Y

(m)
1 ≤ x).

We need to ensure “no probability escapes to infinity.” Given a convergent subsequence of distri-
bution functions, we know that the limit satisfies Gk(x), Gk right continuous, non-decreasing. We
need to show G(+∞) = 1. Suppose that there exits ϵ > 0 such that for any M > 0 we can find a
subsequence m′

n such that

P (|Y (m′
n)

1 | > M) > ϵ

There is a subsequence of {m′
n}, {m′′

n} say, such that

P (Y
m′′

n
1 > M) >

ϵ

2
or P (Y

m′′
n

1 < −M) >
ϵ

2

So
P (Y

m′′
n

1 + · · ·+ Y
m′′

n

k > kM) >
( ϵ
2

)k
and so F (km) ≤ 1−

(
ϵ
2

)k (modulo choosing continuity points kM of F ). Now, since we know that
our limiting distribution F is a proper distribution function, we obtain our contradiction (no such
ϵ > 0 exists).

Hence Gk is a proper distribution function, and so G∗k
k = F . �

Definition 20.6 (Compound Poisson distribution). Let X1, X2, . . . IID random variables. and let
N ∼ Poisson(λ). Then let SN = X1 + · · ·+XN . Then SN has a compound Poisson distribution.
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If X has characteristic function φ, then SN has characteristic function

E(eitSN ) =

∞∑
n=0

E(eitSN |N = n)P (N = n)

=
∞∑

n=0

φ(t)ne−λλ
n

n!

= e−λeλφ(t)

= eλ(φ(t)−1).

The compound Poisson distribution is clearly infinitely divisible.

Theorem 20.7. A distribution function F is infinitely divisible if and only if it is the weak limit
of a sequence of distributions, each of which is compound Poisson.

21. Lecture 21 - Thursday 26 May

Theorem 21.1. A distribution function is infinitely divisible if and only if it is the weak limit
(limit in distribution) of a sequence of distribution functions each of which is compound Poisson.

Lemma 21.2. The weak limit of a sequence of infinitely divisible distributions is infinitely divisible.

Proof. Let Fn(x) be a sequence of distribution functions that are infinitely divisible with

Fn(x) → F (x)

at all continuity points x of F . Form an array {Xnk}nk=1 where for a given n, Xn1, Xn2, . . . , Xnn

are IID with distribution function nFn(x), the nth root of Fn. Then

Sn =
n∑

k=1

Xnk

has distribution function Fn.
We know Fn(x) → F (x) so from the previous result F is infinitely divisible as it is the limit of

the row sums of a triangular arrow of row-wise infinitely divisible random variables. �

Lemma 21.3. The characteristic function of an infinitely divisible distribution is never zero.

Proof. If φ(0) = 1 and φ is continuous, without loss of generality assume φ is real (if not, consider
|φ|2 = φφ which is real and infinitely divisible.)

Let φk(t)
k = φ(t). Assume φ(t) > 0 for |t| ≤ a. Then for t ∈ (−a, a), φk(t) → 1 as k → ∞.

Now note that
1− φ(2t) ≤ 4(1− φ(t)), (⋆)
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as

1− φ(2t) =

∫
(1− cos 2tx dF (x) as φ is real

=

∫
(2− 2 cos2 tx) dF (x) cos 2θ = 2 cos2 θ − 1

= 2

∫
(1− cos tx)(1 + cos tx) dF (x)

≤ 4

∫
(1− cos tx) dF (x) 1− cos tx ≥ 0

= 4(1− φ(t))

as required.
Then we have 1− |φ(2t)| ≤ 1− φ(2t)|2 ≤ 4(1− |φ(t)|2) ≤ 8(1− |φ(t)|). If φ(t) ̸= 0 on 0 < t < a

and ϵ > 0 arbitrary, we can find k large enough such that

1− |φk(t)| <
ϵ

8

which implies 1− |φk(2t)| < ϵ and so |φk(2t)| ̸= 0 on |t| < a. So φk(t)| ̸= 0 on |t| < 2a, and hence
|φ(t)| ̸= 0 on |t| < 2a.

Iterating this argument, we have that |φ(t)| > 0 for all t. �

Lemma 21.4. For each k, let φk be a characteristic function such that φk
k(t) = φ(t). φ(t) is a

characteristic function of an infinitely divisible distribution. Then limk→∞φk(t) = 1 for all t.

Proof. Since φ is continuous and φ(0) = 1, we have

|φk(t)| = |φ(t)|1/k → 1

as k → ∞.
We have k argφk(t) = argφ(t) + 2πj, j = 0, 1, . . . , k − 1. Since

argφk(0) = arg(1) = 0 so j = 0

argφk(t) =
1

k
argφ(t) → 0

as k → ∞, and so φk(t) → 1 as k → ∞. �

Proof of theorem. Let φ be the characteristic function of an infinitely divisible distribution F . Let
φk
k(t) = φ(t). Then

logφ(t) = k logφk(t)

= k log(1− (1− φk(t)))
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Since 1− φk(t) → 0 as k → ∞, we have

logφ(t) = −k[1− φk(t) +
(1− φk(t))

2

2
+ . . . ]

= −k[1− φk(t)](1 +
1− φk(t)

2
+ . . . )

= −k[1− φk(t)] + o(1)

and so φ(t) ∼ e−k(1−φk(t)) which is a compound Poisson characteristic function. �

Example 21.5. Show that the U([−1, 1]) distribution is not infinitely divisible. This has associated
characteristic function sin t

t . Then φ(π2 ) = 0, and so the distribution is not infinitely divisible.

22. Exam material

• Borel-Cantelli lemma.
• Martingales, central limit theorems, strong law of large numbers.
• Inequalities of random variables.

Example 22.1 (Q2b) of 2010 Exam). Let (Xj) be IID. Then

E|X1| <∞ ⇐⇒ P(|Xn| ≥ n i.o ) = 0

We have

E|X1| <∞ ⇐⇒
∞∑
j=1

P(|X1| ≥ j) <∞

⇐⇒
∞∑
j=1

P(|Xj | ≥ j) by IID

⇐⇒ P(|Xj | ≥ j i.o ) = 0

by Borel-Cantelli lemma.

Example 22.2 (Q7 of 2010 Exam). Let {Xn} be a sequence of IID random variables on a proba-
bility space (Ω,F , P ) with

P (X1 = 1) = P (X1 = −1) =
1

2
.

Let Fn = σ(X1, X2, . . . , Xn) and let {Bn} be a sequence of events with Bn ∈ Fn, satisfying

B1 = Ω, lim
n→∞

P (Bn) = 0, P (lim supBn) = 1.

Define Y1 = 0 and
Yn+1 = Yn(1 +Xn+1) + 1BnXn+1, n = 1, 2 . . . .

(a) Show that {Yn} is a martingale.
(b) Show that Yn converges in probability to 0.
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(c) Show that lim supBn ⊆ lim sup{Yn ̸= 0} and hence show that {Yn} does not converge almost
surely.

Proof.
(a) Note that Y1 is F1-measurable. By induction, we have that Yn + 1 is Fn+1-measurable.

We have

E|Yn+1| ≤ 2E|Yn|+ P (Bn) as |Xn+1 ≤ 1

as E|Y1| = 0, P (Bn) ≤ 1, so by induction, E|Yn| <∞ for all n.
Finally,

E(Yn+1 | Fn) = YnE(1 +Xn+1 | Fn) + 1BnE(Xn+1 | Fn)

= Yn as E(Xn+1 | Fn) = E(Xn+1) = 0.

Hence Yn is a martingale.
(b) Let ϵ > 0. We must show P (|Yn| > ϵ) → 0 as n→ ∞. Consider P (Yn+1 ̸= 0). We have

P (Yn+1 ̸= 0) ≤ P (Bn occurs or Yn ̸= 0 and Xn+1 = 1)

= P (Bn) +
1

2
P (Yn ̸= 0).

Hence
lim
n→∞

P (Yn+1 ̸= 0) ≤ 2 lim
n→∞

P (Bn) = 0

and so Yn
p→ 0.

(c) If Yn
a.s.→ Y almost surely then by uniqueness of limits in probability Y = 0 almost surely. We

have

Yn+1 =

2Yn + 1Bn Xn+1 = 1

−1Bn Xn+1 = −1

Hence Bn ⊆ {ω : Yn+1(ω) ̸= 0}. Thus

lim supBn =
∞∩
m

∞∪
n=m

Bn ⊆
∞∩
m

∞∪
n=m

{Yn+1 ̸= 0}

= lim sup{Yn ̸= 0}

Hence 1 = P (lim supBn) ≤ P (lim sup{Yn ̸= 0}) and so P (Yn ̸= 0 i.o.) = 1, and so Yn does not
converge almost surely.

�
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