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1. LECTURE 1 - TUESDAY 1 MARCH

Definition 1.1 (Finite dimensional distribution). The finite dimensional distribution of a

stochastic process X is the joint distribution of (X, Xt,,. .., Xt,)

Definition 1.2 (Equality in distribution). Two random variables X and Y are equal in distri-
bution if P(X < o) =P(Y < a) for all @ € R. We write X Ly,

Definition 1.3 (Strictly stationary). A stochastic process X is strictly stationary if
(thvthv sy th) = (Xt1+h7 Xt2+h7 LR th+h)
for all ¢;, h.

Definition 1.4 (Weakly stationary). A stochastic process X is weakly stationary if E (X;) =
E (X¢4n) and Cov (Xy, Xi) = Cov (Xiyp, Xeyp) for all ¢, s, h.

Lemma 1.5. IfE (Xf) < 00, then strictly stationary implies weakly stationary.

Example 1.6.

e The stochastic process {X;} with X, all 1ID is strictly stationary.
e The stochastic process W; with W, N(0,t) and X; — X independent of X (for s < t) is

not strictly or weakly stationary.
Definition 1.7 (Stationary increments). A stochastic process has stationary increments if
Xy = XS Xy~ Xop
for all s,t, h.

2. LECTURE 2 - THURSDAY 3 MARCH

Example 2.1. Let X,,,n > 1 be IID random variables. Consider the stochastic process {S,,} where
Sn =371 X;. Then {S,} has stationary increments.

2.1. Concepts of convergence. There are three major concepts of convergence of random vari-
ables.

e Convergence in distribution
e Convergence in probability

e Almost surely convergence
Definition 2.2 (Convergence in distribution). X, 4 X if P(X, <z)— P(X <z) for all z.
Definition 2.3 (Convergence in probability). X, = X if P((|X,, — X| > €)) — 0 for all € > 0.

Definition 2.4 (Almost surely convergence). X,, “3 X if except on a null set 4, X,, — X, that is,
lim,, o X, = X. And hence P(lim, o X, = X) =1
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Definition 2.5 (o-field generated by X). Let X be a random variable defined on a probability
space (2, F,P). We call o(X) the o-field generated by X, and we have

o(X)={X"'(B): BeB}

where X 1(B) = {w, X(w) € B} and B is the Borel set on R.

Definition 2.6 (Conditional probability). We have P(A|B) = P]g;?é?) if P(B) # 0.

Definition 2.7 (Naive conditional expectation). We have E (X |B) = ]E]g,)((g? ),

Definition 2.8 (Conditional density). Let g(z,y) be the joint density function for X and Y. Then
we have Y [, g(x,y) dz = gy (y). We also have

IX|y=y =
=y gy ()

which defines the conditional density given Y = y.
Finally, we define E (XY =y) = [ 29x)y—y(2) dz.

Definition 2.9 (Conditional expectation). Let (2, F,P) be a probability space. Let A be a sub
o-field of F. Let X be a random variable such that E(|X|) < co. We define E (X|.A) to be a random
variable Z such that

(i) Z is A-measurable,
(ii) E(XT4) =E(ZI,4) for all A € A.

Proposition 2.10 (Properties of the conditional expectation). Consider Z = E(X|Y) = E(X|o(Y))
o IfT is o(Y)-measurable, then E(XT|Y) = TE(X|Y) a.s.

o IfT is independent of Y, then E(T|Y) =E(T).
e E(X)=EEX|T))

3. LECTURE 3 - TUESDAY 8 MARCH
Definition 3.1 (Martingale). Let {X;,t > 0} be a right-continuous with left-hand limits.

lim X; exists
tTto

Let {F,t > 0} be a filtration.

Then X is called a martingale with respect to F; if
(i) X is adapted to F;, i.e. X; is Fy-measurable
(ii) E(|X|) < o0, t >0

(iii) E(X|Fs) = Xs ass.

Example 3.2. Let X,, be IID with E(X,,) = 0. Then {S;,k > 0}, where S, = Zf:o X;, is a

martingale.
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Example 3.3. An independent increment process {X;,t > 0} with E(X;) = 0 and E(|X¢|) < oo is
a martingale with respect to F; = 0{X,,0 < s <t}

Definition 3.4 (Gaussian process). Let {X;,¢ > 0} be a stochastic process. If the finite dimensional
distributions are multivariate normal, that is,

(Xtyy-o oy Xt,)

m

N(p, %)

for all t1,...,t,, then we call X; a Gaussian process

Definition 3.5 (Markov process). A continuous time process X is a Markov process if for all ¢,
each A € 0(X;,s > t) and B € 0(X;, s < t), we have

P(AXy, B) = P(A]X;)

Definition 3.6 (Diffusion process). Consider the stochastic differential equation
dX; = p(t,x)dt + o(t, z)dB;

A diffusion process is path-continuous, strong Markov process such that
}llii% W YE(Xyn — Xi| Xy = ) = p(t, x)

%imO RYE([Xoon — Xt — hu(t, X)X = x) = 0?(t, x)
—

Definition 3.7 (Path-continuous). A process is path-continuous if lim;_,;, X; = X3,.

Definition 3.8 (Lévy process). Let {X;,t > 0 be a stochastic process. We call X a Lévy process
(i) Xo =0 a.s.

(ii) It has stationary and independent increments

(iii) X is stochastically continuous, that is, for all s, ¢, ¢ > 0, we have
. B > ) —
illg P(|Xs — X¢| >¢€) =0.

Equivalently, X KX, if s — t.

Example 3.9 (Poisson process). Let (N(¢),t > 0) be a stochastic process. We call N(¢) a Poisson
process if the following all hold:
(i) N(0) =0
(ii) N has independent increments
(iii) For all s,t > 0,
e M(A)"

P(N(t—i—s)—N(s):n):T n=0,1,2,...



MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS 6

The Poisson process is stochastically continuous - that is,

P(IN(t) = N(s)| =€) =P(IN(t —s) = N(0)| = ¢)
= 1-P(N(t—s)| < @)
=1-P(IN(t—s)|=0)

=1—e M) 50 ast—s
The Poisson process is not path-continuous, that is

P(lim |N(t) — N(s)| = 0) # 1

t—s
because
P(Upp—si>e| N (t) = N(s)| > 6) = P(IN(s +1) = N(s)[ = 6) > 0
4. LECTURE 4 - THURSDAY 10 MARCH
Definition 4.1 (Self-similar process). For any t1,ta,...,t, > 0, for any ¢ > 0, there exists an H
such that

d
(Xctla Xctza e 7Xctn) = (CFI)(H7 CHth, ey CHth).
We call H the Hurst index.

Example 4.2 (Fractional process).
(1- B)dXt =¢€;, ¢ martingale difference

BX;=X;_1, O0<d<1

Definition 4.3 (Brownian motion). Let {B;,t > 0} be a stochastic process. We call B; a Brow-
nian motion if the following hold:

(i) By =0 a.s.

(ii) {B:} has stationary, independent increments.
(iii) For any ¢ > 0, By = N(0,t)
)

(iv) The path ¢t — B, is continuous almost surely, i.e.

IP’(hm Bt = Bto) =1

t—to
Definition 4.4 (Alternative formulations of Brownian motion). A process {Bi,t > 0} is a Brownian
motion if and only if

e {B;,t > 0} is a Gaussian process
o E(B;) =0,E(B;B;) = min(s, 1)
e The process {B;} is path-continuous
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Proof. (=) For all t,...,t,,, we have

(Btm - BtnL—l?' .. aBtQ — Bt1) = N(O,E)

as B, has stationary, independent increments. Hence, (B, By, ., ..., By, ) is normally distributed.
Thus By is a Gaussian process. We can also show that E(B;) = 0 and E(B;B;) = min(t, s).
(<) TO PROVE U

Corollary. Let By be a Brownian motion. The so are the following:
[ ] {Bt+t0 - Btoat Z O}

{=B:,t >0}

{CBt/Cz,t > O,C 75 0}

{tBl/ta t Z O}

Proof. Here, we prove that {X;} = {tB;} is a Brownian motion. Consider " a;X;,. Then
by a telescoping argument, we know that the process is Gaussian (can be written as a sum of
Xy, Xt, — X4, etc). We can also easily show that E(X;) = 0 and E(X;X,) = min(s, t) as required.

We now show that lim;_,o X; = 0 a.s. Fix ¢ > 0. We must show

P(AU N xl<]=1

n=1m=1 O<t<#

However, as | X;| has the same distribution as | B;| (as they are both Gaussian with same mean and

covariance), we have that this is equivalent to

U N oBl<)

0<t<

DL

P

n=1

which is clearly one.

5. LECTURE 5 - TUESDAY 15 MARCH

Theorem 5.1 (Properties of the Brownian motion). We have

T — I

P(B; < x| By, = zo,...,Bt, = x,) = P(B; < z|Bs = x5) = O

)

i

t—s

Theorem 5.2. The joint density of (By,,..., B, is given by

n

n
g(l’l, e ,$n) = H f(‘rtj - xtj_utj - tl)

Jj=1

where f(x,t) = —2=e"
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Theorem 5.3 (Density and distribution of Brownian bridge). Let t; <t < ty. Then

The density of By|By, = a, B, = b is given as

Gta,t,to (aa b’ t)
Gtq,to (av b)

Theorem 5.4 ( Joint distribution of B; and B;). We have
P(BS S ‘T7Bt S y) =
P(Bs < x,B; — Bs <y — Bs)

Yy—z I% 1 -
s e 29 dz; dz
/ / \/ V2t —s) L

- /,oo /,; %GW

5.1. Properties of paths of Brownian motion.

Definition 5.5 (Variation). Let g be a real function. Then the variation of g over an interval [a, b]

is defined as

Definition 5.6 (Quadratic variation). The quadratic variation of a function g over an interval [a, b]
is defined by

=1 2
l9.9] Algl()ZIg 1)

Theorem 5.7 (Non-differentiability of Brownian motion). Paths of Brownian motion are contin-
wous almost everywhere, by definition. Consider now, the differentiability of By. We claim that a
Brownian motion is non-differentiable almost surely, that is,

li |Bt _Bs‘
m  ——--

=00 a.s.
t—s |t — 5|

We claim that

(i) Brownian motion is not differentiable almost surely for any t > 0.

(#i) Brownian motion has infinite variation on any interval [a,b], that is,

Vi([a,b]) = Aigloz |B(t;) = B(tj-1)| =00 a.s.
j=1
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(#ii) Brownian motion has quadratic variation t on [0,t], that is

(B, BJ([0 Z (ti—))P =t as.

Proof. We know that (B, .., Bet,) 4 (c?By,,...,cIB; ). This is true as By = N(0,ct) =
c'/2N(0,t) as required.
Now suppose X; is H-self-similar with stationary increments for some 0 < H < 1 with Xy = 0.

Then, for any fixed tg, we have

o 1Xe = Xl _
im —2 =00 a.s.
t—to t— to
Consider X _x
P(lim sup 12X = X | > M)
t—to t— tO

which by stationary increments, is equal to

|X | | Bto
P(lim su > M lim P( Pin Tl >y
( tatop t )= n—o0 U [th —to] — )

By B
> lim ]P’(|7t°

n—o00 | n—tol

= lim P(IN(0,1)] > M - (£, — to)"/?)
n—o0

> M)

and as the RHS goes to zero, we have
P(N(0,1)] > M - (t, —to)"/?) — 1

as required. O

Now, Assume Vz([0,t]) < oo almost surely. Consider @, = >_7_; [By, — By, ,|*. Then we have

n
@n < 0<52n |Be; = Brjal- Z |Bt, — Bt .|

Let A — 0. Then

n
lim lim max |B;, — B;. -ZB.—B.
AS0 @n < A—>OO<]<Xn‘ ts ol , |Bt; il

< s 1, B -Vl

because B; is uniformly continuous on [0,¢]. This is a contradiction to Vp([0,t]) < cc.
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Proof. We now show that E((Q, —t)?) — 0 as n — co. In fact, we have

E(Qn) = E(Bi, - Bi,_,)’

<
Il
—

I
NE

(tj —tj—1) =t

<.
Il
-

We now show L? convergence. We have

E(Qn - t)z = E((Qn - ]E(Qn))2)

= E(ZYJ where Yj = [By; — Btj—1|2 —E(|B,

j=1
=3 E()
j=1

<D Ity =t EIN(0, 1)[*

Jj=1

<C-A-t—=0
as A — 0. Thus we have convergence in L?.

6. LECTURE 6 - THURSDAY 17 MARCH

10

- Bt‘—l |2)

J

Theorem 6.1 (Martingales related to Brownian motion). Let B,t > 0 be a Brownian motion.

Then the following are martingales with respect to Fy = 0(Bs,0 < s < t).
(1) By, t > 0.

(2) B? —t,t > 0.

(8) For any u, uBi— gt

Proof. (1) is simple.

(2). We know that E(|B?|) is finite for any ¢t. We can also easily show E(B? —t|F,) = B2 — s

a.sS.

Theorem 6.2. Let X; be a martingale satisfying X? — t is also a martingale.

Brownian motion.

Definition 6.3 (Hitting time). Let T, = infyy>0,5,—a}
(1) Ifa=0, Ty =0.
(2) If & > 0, then

P(T, <t)=2P(B; > a) = e dx
V21t Ja

We clearly have T, >t <= supp<,<; < @

O

Then X; is a
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7. LECTURE 7 - TUESDAY 22 MARCH

Theorem 7.1 (Arcsine law). Let B, be a Brownian motion. Then
2 a
P(B, =0, for at least once, t € [a,b]) = —arcos 3
b

Example 7.2. Processes derived from Brownian motion
(1) Brownian bridge
Xt:Bt—tBl tE[O,l]
Consider X = F(z), with X;,...X,, data. Our empirical distribution
1 n
Fa(w) = =3 1ix,<x
i=1
We can then prove that
"VE,(x) - F(z) = X; te(0,1)
(2) Diffusion process
Xt = ,LLt + O'Bt
This is a Gaussian process with E(X;) = ut, Cov(X;, Xs) = o2 min(s, t).
(3) Geometric Brownian motion
Xf, — XO@ILtJrUBt

This is not a Gaussian process.

(4) Higher dimensional Brownian motion
B, = (B},...,B}")
where the B’ are independent Brownian motions, then

7.1. Construction of Brownian motion. Define a stochastic process
Bn _ S[nt] - E<S[nt])
t \/ﬁ
With
_ By ift=1%
By = '
0 otherwise
Then we can prove that
B = B; on [0,1]

Definition 7.3 (Stochastic integral). We now turn to defining expressions of the form

A
/ X dYs
0

11
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with X3, Y; stochastic processes.

Definition 7.4 (f, f(B;)ds). We have

/O Y

exists if f is bonded and continuous, except on a set of Lebesgue measure zero. Thus, we can set

n

| 1= Jim > 58,0~ )

j=1
if f(x) is bounded.

We now seek to find fol Bgds. Consider Q, = Y7_) By, (t; — tj—1). As the sum of normal
variables, we know that Q,, = N(u,,02).

Since fol B ds is normally distributed with mean 0, we have

1 1
IE(XQ):E/ Bsdx/ By dt
0 0
1
:/ E(B,By) ds dt
0

1

:/ min(s,t) dsdt
0

=1/3

8. LECTURE 8 - THURSDAY 24 MARCH

1 n
/O F(B.)ds = giinoj;f<3yj><tj+1 ;)

Recall .
1 -
| Buas~ N 0.5 = fim, > Bty =)

Consider I = [ X, dY,. We have the following:

Theorem 8.1. [ exists if

(1) The functions f,g are not discontinuous at the same point x.
(2) f is continuous and g has bounded variation or,

(2)’ f has finite p-variation and g has finite g-variation, where

1/p+1/g=1
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For any p, we deﬁne p-UG’f’i(ltiOﬂ by
lim E p
:1 0 |f )|

Theorem 8.2. If J = fo )dg(t) exists for any continuous f, then g must have finite variation.
Theorem 8.3. B; has bounded p variation for any p > 2 and unbounded q-variation for any q < 2.
Proof. We can write (for p > 2), p =2+ (p — 2). Then we have

n
Ay = lim max|B;, — By, P2 By, — By,
j=1

and hence A; exists. O

Corollary. Thus fol dBy is well defined if f has finite variation (as setting ¢ = 1, p > 2 gives
I/p+1/g>1).

Consider fol B, dB; - is this an R-S integral? Consider

A = ZBtj (Bt — ), Bon = ZBtJ+1 (Bi; 1, — Byy)

We have that

n

Agy = A1y =Y (B, —By)* =1
j=1
and

Ay + Aoy = ZBt o B2 = B
Thus we know
Agp — %(B% +1)
Ay, — %(Bf —-1)

Definition 8.4 (It6 integral). The It6 integral is defined by evaluating f(Bj,), the left-hand end-

point at each partition interval [¢;,¢;41)

9. LECTURE 9 - TUESDAY 29 MARCH

Definition 9.1 (It6 integral). Consider fo s)dBs. Where f(s) is a real function, Bs a Brownian

motion. We define the integral in two steps.
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(1) If f(s) is a step function, define

1 Mottt
1= [ s =Y [ pe .
j=1"1
- ch(Bth - By,)

<.
Il
-

(2) If f(s) € L?([0,1]), then let f,, be a sequence in L?([0,1]) such that f,, — f in L%([0,1]).
Then define I(f) to be the limitation in such situations such that

E(I(fa) = 1(f))* =0
in L2([0,1]) or Let I(f) = lim, o I(f,) in probability.

Remark. If f(x),g(x) are given step functions then oI(f) + BI(g) = I(af + Bg).
Remark. If f(x) is a step function, then I(f) ~ N(0, fol f2(s)ds)

Proof.

m

I(f) = ch(Btj+l - Btj) ~ N(O’O-Q)

j=1

where 02 = 3700 | A (tj11 — t)).
Theorem 9.2. I(f) is well defined (independent of the choice of fp.)

Proof. Let fn,gn — f in L?([0,1]). We then need to only compute
A =E(I(fn) = I(gm))* =0

as m,n — oo.
In fact,

1
An,m = ]E(I(fn - gm))2 = A (fn - gm)2 dx

as n,m — oo.

14
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Remark. If f is continuous bounded variation, then
1
/ f(s)dBs = (R.S.) /)olf(s) dBs
0
= lim Z; f(t3)B(tj41 — By,)
J:

Proof. Case 1).

al(f) + ﬂl(g) = nlggo[al(fn) + ﬂl(gn) = nIL%[I(afn + ﬂgnﬂ = I(af + ﬂg)
and thus af, + Bg, — af + Bg € L*([0,1]). O

Case 2). If I(f) = lims—0 I(f,) in probability. Then
I(fn) ~ N(0,07)
1
~ N(0, 2(s)d
0. [ sy
1
N(0, 2(s)d
S N, [P
if 02 — fol f?(z) dz. In fact, as
1 1
[ o= [ (s pPan
0 0
1 1 1
_ 2 _ £)2 _
—/0 f d.’EJr/O (fn—1) d:L'+/0 (fn—f)fdx

1
—>/ f?dx
0

as other terms tend to zero by L? convergence and Holder’s inequality.
Remark. (R.S.) fol f(s)dBs exists if f is of bounded variation.
Remark. If f is continuous then fol f?dx < oo and
n
fn(t) = Zf(tj)l[tj,tj+1) — f(t) in LQ([Ov 1])
j=1

Thus,
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We have to prove
1
/ (fo—f)*dz =0
0
if f is continuous.
10. LECTURE 10 - THURSDAY 31 MARCH

We have ) )
Ito dB, ~ N(0, 24
<mAﬂ@ @Aﬂﬂt

if f is continuous, and of finite variation. In this case, we can write

A—0 4

mﬁéﬂw&ﬂm%ﬂwmﬁmZNW%r%)

Example 10.1. We have

1 1 1
1
/ (1—1)dB, = (Ito )/ (1—1)dB; ~ N(O,/ (1 — 1) dr) = N(0, 3)
0 0 0
and by integrating by parts, we have
1 1 1 1
/ (1—1)dB; = (1 —t) B}, 7/ By d(1—1t) :0+/ Btdth(O,g)
0 0 0

Now consider .
(It ) / X, dB,
0
where we now allow X to be a stochastic process.
Write F; = 0(Bs,0 < s < ). Let 7 be the collection of X such that
(1) X, is adapted to F;, that is, for any s, X is F, measurable.
(2) fol X2 ds < oo almost surely (R.S)
Let 7' = {X, | X, €, [, E(X2) < cc}. Then 7/ C m. Let X, = e5. Then
L_ 0

E(X?) = E(e”) = { V175
o S

IN
»

1
<1z

v
Bl

Definition 10.2 (It6 integral for stochastic integrands). We proceed in two steps.

(1) Let Xy =327 Gl 1,,,) Where ¢; is Fy; measurable. Then
n
I(X) = ZCj(BtHl - Btj)'
j=1

(2) If X € m, there exists a sequence X™ € 7/ such that X™ are step process with

/ X" — X [?ds — 0
01
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as n — oo in probability or in L%([0,1]) if X, € .

Proof. We show only for X, continuous, the general case can be found in Hu-Hsing Kuo (p.65). As
X, is continuous, then it is in w. Then choose
X =Xo+ ZJ = 1" X 10,00
Then X, € pi’ and
E(IX2 = X,J?) =0

for any s € (0,1).
We can also show that
E(|X? — Xs[*) < o0

and so by the dominated convergence theorem, we have

1
lim [ E(X? - X,*)ds=0.

n—roo 0

Finally if X, € 7, the Ito integral [} X, dB, is defined as

I(X) = lim 1(X")

in probability or in L? if X € 7/

11. LECTURE 11 - TUESDAY 5 MARCH

Let I(X) = fol X, dBy in the It0 sense. We then require

(1) X5 is Fs = 0{B:,0 <t < s}-measurable
(2) fol X2 ds < oo almost surely.

Then I(X) = lim, o I(X,,) where X,, is a sequence of step functions converging to X in L2,

that is,
1
/ (X —Xs)"ds =0
0

We then show that this definition is independent of the sequence of step functions. For any Y

step process, we have
1 1 1
/ (Y —Y™)%dx < 2/ (Y —XS)2ds+2/ (X — X, )?dx — 0
0 0 0
Theorem 11.1 (Properties of the Itd integral).
(1) For any o, B €R, X,Y €,

IHaX +8Y)=al(X)+ pI(Y)
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(2) For any X, € ', we have

E(I(X)) =0, ]E(IQ(X)):/O E(X?%)ds

If X"en', Y, en’, then

(3) If X continuous then
= hm Z th BtJJrl Btj)

in probability.
. . . . 1
(4) If X is continuous and of finite variation and fo B;dX, < oo then

1 1 1
(R.S.)/ = (It6) | X,dB, = X1B;, — XoBo —/ B, dX,
0 0 0

Proposition 11.2. We now show why we require

(1) Xs is Fs = 0{By,0 < t < s}-measurable
(2) fol X2ds < co almost surely.

Proof. Motivation for (1)
X ZCJ (titi+1)

ZCJ Btj+1 Btj)
E(1(X) = Y B(G (B - By)

= ZE(E(Cj(BtHl - Bi,)) | F,))

n

=Y E(GE(Bi,,, -5, | F1,))

j=1

18
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Motivation for (2)

n

E(I*(X)) =E() G(Bi., — By)?

j=1
- 2ZE CZCJ Bt IR Bt_j)(Bti+1 - th)) |}—t1) + ZE(C;(Btj+1 - Btj)z)
1<J 7j=1
= Z]E (tj+1 —1t5)
1
= / E(X?) dt
0

We now show that there X € 7’. such that fol E(X" — X;)?ds — 0. We have
E(I*(X)) = E(I(X)) - I(X") + E(I(X]))
=E(I*(X™)) + 2E(I(X")(I(X) = I(X"))) + E(/(X) — I(X™))?

By Cauchy-Swartz, the middle term tens do zero, and by definition, the third term tends to zero.
Thus we have
lim E(1(X,)) = E(72(X))

n—oo

Let X7 be step processes. We now show
E(X! - X)? = 0= / (X2 2ds —0
By definition, we have

I(X) = lim I(X") = hmZXtJ Bi,., — By)).

n— oo

and we proved the required result in lectures.

We now show that the (R.S.) integral exists if X is continuous and of finite variation, and
fol B, dXs < o0, the our integration by parts formula holds.

We have

1 n
(R'S.)/o XsdB, = }E%;ij (B, 41 — Biy)

7hmZXt (By,., — By,)

which is our It6 integral by definition.
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Definition 11.3 (Ité process). Suppose Y; = fot XsdB,, t > 0 is well defined, for X, € . Then
Y, is an It6 processes. To show a process Y; is an Itd process, we need to show that fg | X | ds) Moo
a.s. and fg | X2 ds < o0 as.

Theorem 11.4. We have that Y; is continuous (except on a null set), is of infinite variation, as
n n tit
Z|Yrtj+1 _Y2J| = Z|/ Xs dBS'
j=1 j=1 7t

n
> stin|XS||Btj+1*Btj
j=1

> C Z ‘Btj+1 - BtJ|

j=1"
12. LECTURE 12 - THURSDAY 7 MARCH

From before, consider the It6 process Y; = f(f X, dB;.
Lemma 12.1. E([’ X,dB,|F,) = 0.

Proof. Let Xy = 371 Glt,.t,.,)- Then

n

B[ XudBu|F) = Y EG(Bi, - Br)| )

Jj=1
n

= ZE(E(Cj(BtHl — By,) | Fs) | F;)

= ZE(E(Cj(Btj+1 — By,) | Fi;) | Fs)

Jj=1

=0

where the third equality follows from the fact that (F;) is an increasing sequence of o-fields and
the final follows from the fact that By, , — By, is independent of F,. O

Definition 12.2 (Local martingale). A process Y; is a local martingale if there exists a sequence

of stopping times 7,,n > 1 such that Yi,i,(s,-),7, is a martingale.

Proposition 12.3. We have the following.
(1) If X5 € @', that is, fot E(X?)ds < oo, then (Yy, Ft) is a martingale.
(2) If X, € m, that is fot X2ds < 00 a.s., then (Y3, F:) is a local martingale.
(8) For f(z) satisfying fot f?(2)dz < co., we have

t
Y;:/() f(s)st
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is a Gaussian process.
Proof. We have Y; is trivially F;-measurable.

We have E(]Y;|) < oo a.s. as E(Y?) = fo E(X2)ds < oo by assumption.
We have

E(Y; | Fs) /XdB+/XdB|]—'

_E(Y, | F,) + E( / X, dB, | )
_y,

from the previous lemma.

Now assuming X, € 7/, the exists an X a step process such that

t
/ E(X" - X,)*du— 0
0

as n — oQ.
Set ;" = [} X/ dB,. Then

t
/XudBu:Yt—
S

:Y;_Ytn_’_y;/n_ysn_’_}/SN_Y;

Then for each n, we have
/X dB,) = (Y, = Y[ | Fy) + BY? — Y, | F,)

We only need to prove E(|Z]?) — 0 which implies E(Z?) = 0 and thus Z = 0 almost surely. We
have
E(Z%) <2E(Y; — Y")? +2E(Y; — Y)2 = 0
by definition of Y,".

13. LECTURE 13 - TUESDAY 12 MARCH

Theorem 13.1. Let f be continuous. Then

t
%g%z.f J+17Btj)2:/0 f(B )ds
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Proof. Let

n

Z‘f Bt )‘Bt7+l _Bt]"2

Note that 3 7 f(By,)(Bt,,, — )2 — fo s) ds in probability.
It only needs to show that @, — 0 in probablhty. We have
: 2
Q”Sf?]a%x,Jf( ) f(Btj)z;‘Btj+l_Btj| —0-t=0
J:
in probability from the quadratic variance of the brownian motion

Theorem 13.2. Let f be bounded on [0,1]. Then

tim > F(X,)(By,., — Bi,)’ / J(Xds)

§—0 4
Jj=1

22

Proof. We only prove for cases where fot E(X?2)ds is finite. In this case, there exists X step process

such that .
/ E(X! — X,)*ds — 0
0

as n — oQ.

In fact, we can let X' =377 ) X;;1 Let

[tjti+1]

t
Yt”:/ X dB;
0

Then Y,”

t; j+1
Therefore,

n _ [l n
—Y) = [T X dB,.

n

n
Z(}/tgurl }/tj Z Ytj+1 _)/t?_Fle +Z2j)
Jj=1

j=1
where le = }/tj+1 -Yr

¢, and Zg; =Yy, =Y. Continuing, we have

= E YtHl — 2 + error

= ZXQ (Bt;,, — )2 + error

—>/ X2d5

if the error term goes to zero. We have

Ry <2 70 42) Z5;+2> |Zyl- Y7, Y0 +2> | Za]- V7, = Y0 +2D |21 - | 2o

20 Z5)PAE 2 Z8) P AR 20X 2R (Y Z5)
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and as ) ZijQ — 0 in probability, we have our result. O

Theorem 13.3 (1t6’s first formula). If f(x) is a twice-differentiable function then for any t,
18- 18)= [ rmaas [ 1w

Proof. Let s =tq1,...,t, =t. We have

f( Z ;+1 - (Btj)]

Jj=1

Applying Taylor’s expansion to f(By,,,) — f(B:;) we get

f(Btj+1) - f(Btj = f/(Btj)(Btj+1 - B ) + f//( )(Bt]+1 - Btj)g

and so

5—0

/f )dB, + = /:f”(Bu)du

f(B¢) — f(Bs) = lim Zf By,) (B, ., — By,) + }i_lf(l]z %f//(ej)<Btj+1 — By,)?
=1

Example 13.4.

14. LECTURE 14 - THURSDAY 14 MARCH

Definition 14.1 (Covariation). The covariation of two stochastic processes Xy, Y; is defined as
1
X, Y](t) = (X + Y, X +Y](t) - [X -V, X - Y](t))

where [+, -] is the quadratic variation previously defined.

Definition 14.2 (Stochastic differential equation). Let X; be an It6 process. Then

t b
X=X, +/ wu(s) der/ o(s)dBs

We write
dX; = pu(t)dt + o(t) dB;

By convention, we write dX; - dY; = d[X,Y](t). In particular, (dY;)? = d[Y,Y](t).

Theorem 14.3. Let Y; be path continuous, and let X; have finite variation. Then

[X,Y](t) = 0.
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Proof. We have

X, Y](0) = (X +Y, X 4]~ [X ~¥,X - Y]

= }i Z: Xt]+1 Xt] (}/tJJrl Ytj)

S }i_rf%)max|}/tj+1 KJ|Z|th+1 XtJ
—0

as Y; is path continuous and X; has finite variation.

Corollary. From this theorem, we then have
dB;-dt =0, (dt)*=0, (dBy)*=dt
Corollary. For an Ito process X; given above, we then have
d[X, X](t) = dX; - dX, = (u(t)dt + o(t) dB,)* = o>(t) dt

Corollary. If f(x) has a twice continuous derivative, then

F(BL), Bi(t) = / (B

Proof. From Itd’s formula, we have

A(By) = §'(B) By + o f"(By)de

Then from above, we have

d[f(By), Be|(t) = df (By) - dB; = f'(By)dt

Theorem 14.4 (1td’s lemma). By Taylor’s theorem, we have

9 dt + O cdXi+ o —F5—

e=X, 2 81‘2
19%f(t, )
2 9zot dX; - dt

=X
_ Of(t, X¢) of(t,x) 10°f(t, x)
=% dt + x|,y (u(t)dt+ o(t)dB:) + 3

of 8 92 0
(a{jtafu()Jr;af 2(t )) dt—l—a—fa()dBt

df(ta Xt) =

(dXy)?
=X

o*f(t,
Oz

2

x)

r=X¢

o2 dt

24
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Example 14.5. Let f(B;) = eBt. Then
df (By) = Pt dB, + %eBt dt
Theorem 14.6. Assume fo f2(t)dt < co. Let Xy = fo dB, — 7f0 f?(s)ds. Then
Y, = et
is a martingale with respect to Fy = 0(Bs,0 < s < t).
Proof. We have
dY, = Xt dX, + %ext (dX;)?
=Xt [f(t)dB, — % f2(s) dt] + %ext fAat
=Xt f(t) dB;
and thus Y; = f e f(s) dB, which is a martingale from previous work. O

15. LECTURE 15 - TUESDAY 19 MARCH

Theorem 15.1 (Multivariate Ito’s formula). Let B;(t) be a sequence of independent Brownian

motions. Consider the Ito processes X}, with
dX} = b;(t)dt + Zakl ) dBy(t

Suppose f(t,x1,...,x,) is a continuous function of its components and has continuous partial

watives 2L of __of
derivatives i, D27 D%wi0m; Then

dXidxi}

of N Of

1 my _ Y !

df(t, X7, X = o dt 4y o dX] Zaxaxj
i=1 v !

We have

dX}dX] = Y opio; dBy(t) dB(t)
k,s=1

n
Z OkiOkj dt+
k=1

as d[B;, B;|(t) = 0 when B;, Bj are independent

Example 15.2. Let

dXt = U1 (t)dt + 01 (t) dBl (t)
dY; = o (t)dt + 09 (t) dBs (t)
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with B, Bo independent. Then
d(X;-Yy) = Yy dX; + X, dY; + d[X, Y](2)

and by independence, d[X,Y](t) = dX; - dY; = 0.

Example 15.3. Let
dXt = ,U,l(t)dt + o1 (t) dBl (t)
Then
d(X; V) =Y dX, + Xi dY; + o1(t)o2(t) dt.
In particular, if u; = po = 0, then
t t
X Y = / [01(8)Ys + 02(8)Xs] dBs + / o1(s)oa(s) dt
0 0
Thus, Z; = X;Y; — fot o1(s)oa(s) dt is a martingale.

Theorem 15.4 (Tanaka’s formula). We have

¢
|Bt — a| = |al +/ sgn(Bs — a) dBs + L(t, a)
0

where
1t
c(t,a):g%?ﬁ/o 15, aj<c ds
Proof. Let
fa) = |t —a|l =5 |z —a]>e

>(r—a)?® |z—a|<e

Then we have

1 Tr>a+e€
fil@)={t(@x—a) |z—al<ec
-1 r<a—Ee€

and

0 |xz—al>e¢
L |z—a[<e
Then by It6’s formula, we have

t
0

FB) = £0)+ [ g8 = syap.+ 5 [ s

26
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Obviously
lim /..(0) = |al
e—0
and
l'ml/tf”(B)dsl/tl ds = L(t,a)
61_)02 o € s = e Jo |Bs—al|<e - y @
Note that

1 2
—(Bs —a) —sgn(Bs —a)| ds — Oa.s.
€

t
/0 If/(Bs) — sgn(B, — a)|* ds

/|B5a<e

Theorem 15.5.

E(t7a):/o 0q(Bs) ds

Theorem 15.6. If f is integrable on R, then
00 t
| cwsreas= [ ) as
—o00 0

16. LECTURE 16 - THURSDAY 21 MARCH

Definition 16.1 (Linear cointegration). Consider two non stationary time series X; and Y;. If

there exist coefficients o and 3 such that
aXy+ BY; = uy
with u; stationary, then we say that X; and Y; are cointegrated.

Definition 16.2 (Nonlinear cointegration). If Y; — f(X;) = u; is stationary, with f(-) a nonlinear

function.

17. LECTURE 17 - TUESDAY 3 MAY

17.1. Stochastic integrals for martingales. We now seek to define stochastic integrals with

respect to processes other than Brownian motion.

Example 17.1. Let X; = [ Y, dB,, and thus dX, = Y, dB,. Then

t t
th/ YS’dXS:/ Y! .Y, dB,

0 0
Revus and Yov - Continuous Martingale and Brownian Motion

Definition 17.2 (Martingale). A martingale with respect

(1) M, adapted to F;.
(2) E(|M]) < oo.
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(3) E(M;|Fs) = M as.

A process is a submartingale if (3) is replace with E(M; | F5) > M,. A process is a supermartin-
gale if (3) is replaced with E(M; | Fs) < M.

Example 17.3. Let N; be a poisson process with intensity A. Then

(1) N; is a submartingale with respect to the natural filtration.

(2) N; — At is a martingale with respect to the natural filtration.
Theorem 17.4. If fg E(H?(s))ds < oo and H(s) is adapted to Fs = o(By;,t < s), then
Y, = /tH(s)st,t >0
0
is a continuous, square integrable martingale - that is, E(Y? < 00).

Theorem 17.5. Let M; be a continuous, square integrable martingale with respect to Fy. Then
there exists an adapted process H(s) such that fot E(H?(s))ds < oo and

t
M; = M, —|—/ H(s)dBs

0

where By is a Brownian motion with respect to F;.

Theorem 17.6. M;,t > 0 is a Brownian motion if and only if it is a local continuous martingale
with [M, M](t) = t,t > 0 under some probability measure Q.

Proof. A local continuous martingale is of the form M; = My + fg H(s)dBs. Then we have

[M, M](t) = /Ot H*(s)ds =t = H(s) = la.s. = M, = B;.

Theorem 17.7. Let My, t > 0 e a continuous local martingale such that [M, M](t) T co. Let
¢ = inf{s : [M, M](s) > t}.

Then M (1) is a Brownian motion. Moreover, M(t) = B([M, M](¢)),t > 0.

This is an application of the change of time method.

Example 17.8. B; is a Brownian motion - and then Y; = B? — t is a martingale. We have
dY; = H(s) dBs = 2B, dB;.

Thus,
t
Bfft:2/ B, dB,.
0
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Definition 17.9 (Predictability of a stochastic process). A stochastic process Xy, ¢ > 0 is said to
be predictable with respect to F; if X; € F;_ for all t > 0, where

]:tfzﬂ]:thh, ]:t:0—<ﬂ]:th>'

h>0 h>0

Example 17.10. Let g; be a step process, with

gt = Z le[t.jvt.wl)(t)
i=1

Then g, is not predictable.
Let g; be a step process, with

gt = Z Gl ;41 (0)
i=1
Then g, is predictable.
Example 17.11. Let N; be a Poisson process. Then N;_ is predictable, but /V; is not predictable.

From now on, assume M, ¢ > 0 is right continuous, square integrable martingale with left hand

limits.
Lemma 17.12. M? is a submartingale.
Proof.
E(M | Fo) = E(M + 2(M; — M) + (My = Mo)* | Fy)
= M +E((M; = M)*| Fo)
> M?

Theorem 17.13 (Doob-Myer decomposition). By Doob-Myer we can write
M? = L + A,

where Ly is a martingale, and Ay is a predictable process, right continuous, and increasing, such
that Ag = 0, E(4;) < 0o,t > 0.
Ay is called the compensator of M?, and is denoted by (M, M)(t).

Example 17.14. Consider B = B —t +t. Then
(B, B)(t) =t = [B, B](t)
Theorem 17.15. If M; is continuous then

[M, M](t) = (M, M)(t).
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Example 17.16. Let V; be a Poisson process. Then we know N, =N, — Mt is a martingale. We
may prove

NZ = Xt
is a martingale, that is, (N, N)(t) = A\t. However,

[N, N](t) = Mt + Ny # (N, N)(t)
Example 17.17. X; = fot f(s)dBs is a continuous martingale. Thus,
X100 = [P0 = (5,500
Theorem 17.18. If M, is a continuous, square integrable martingale, then

MG — [M, M](t)

is a martingale, and so

[M, M](t) = (M, M)(t) + martingale
which implies

E[M, M](t) = E(M, M)(t) = EM?

We now turn to defining integrals such as

t
/ X dMs;
0

Definition 17.19. Let L? 4 be the space of all predictable stochastic process X, satisfying the

pre

where M, is a martingale.

condition

t
/ X2d(M,M)(s) < co.

0
Then the integral fot XsdMs is defined as before in two steps.

(1) If X, € L?Dred and X, = Z;”Zl Gyt t;41)- Define
n
I(X) = ZCj(Mtj+1 - Mtj)~
j=1

s s i s X¢'s s 1 .
(2) Forall X, € L2, there exists a sequence of step process X" such that X? — X, in L*. Define

I(z) to be the limit in such situations such that

E(I(X) - I(X™)* = 0.

Proposition 17.20. Properties of the integral.
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(1) If M is a (local) martingale, then

/0 sy,

is a (local) martingale.

Proof. ,
o / F(u)dM, | F.) =0

(2) If M; is a square integrable martingale and satisfies

E( / F2(s) d(M, M)(1)) < o0

then .
I = s)dM,
(= [ sesyan
is square integrable with E(I(f)) =0, and E(I*(f)) = fot f2(s)d(M, M)(s).
In particular, if M(s) = [ o(u)dBy, then

t t
/ X, dM; :/ Xso(s)dBg
0 0
provided fg X20%(s)ds < o0 and fot o2(s)ds

(3) If X; = fot f(@)dMs and M; is a continuous, square integrable martingale, then

[XvX](t):A F2(s)d[M, M](s) = (X, X)(t)

18. LECTURE 18 - TuDSAY 10 MAY
Let M; be a martingale. Then M? — [M, M](t) is a martingale, and
M? = martingale + (M, M)(t)
Recall that if M; is a continuous square integrable martingale, then
(M, M)(t) = [M, M](t)
Generally speaking,

[M, M](t) = (M, M)(t) + martingale

Theorem 18.1. If
€6 f2(s) d(M, M)(s) < o0

31
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a.s. then .
Y, = / f(s) dM,
0
is well defined, and

By? = [ s aarang)

= /0 t f2(s)d[M, M](t) if My-continuous
and .
YY) = W10 = [0 M)
Proof.
dY; = f(t) dM,;
4Ly, Y)(t) = dYidY,
= f2(t) dM,dM,
— () d[M, M) (1)
vyl = [ £ = o

By Ito’s formula, we also have
t t
v =vie2 [ vaavos [ 1wy
0 0

= 2/0 Y- f(s)dMs + (Y, Y)(t)
dY? = 2Y,f(t) M, + d(Y,Y)(t)

Hence
Y, Y)(t) = Y2 2 / Y, f(s) dM, = Y, Y](t)
0

since fot Y, f(s) dMj, is a martingale. O

18.1. It6’s integration for continuous semimartingales.

Definition 18.2. Let (X, F;) be a continuous semimartingale. Then
Xt = Mt + At

where M, is a martingale and A; is a continuous adapted process of bounded variation (lims_,o Z?Zl | At

Atj‘ < OO)

G+
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Definition 18.3 (Integrals for semimartingales).

t t t
/ c, dX, = ce dMg + / cs dA,
0 0 0

and since A; has bounded variation, the second integral is defined in the Riemann-Stiljes (R.S.)

sense.

Theorem 18.4 (Ito’s formula). Let X; be a continuous semimartingale. Let f(x) have twice

continuous derivatives. Then
F(X0) = £(Xo) / F1(X) dX, + 2 / F(X,) dIX, X](s)

Proof. Partition the interval [0, t], and use a Taylor expansion to express f(z) = f(zo) + f'(zo)(z —
0) + 3 " (o) (& — w0)*. 0
18.2. Stochastic differential equations. Consider the equation
dX, = o(t, X,) dB; = p(t, X;) dt
We seek to solve for a function f(¢,z) such that
Xy = f(t, By).

Such an f(t, By) is a solution to the stochastic differential equation.

Definition 18.5 (Strong solution). X; = X + fg o(s, Xs)dBs + fg u(s, Bs)ds

19. LECTURE 19 - THURSDAY 12 MAY

Theorem 19.1. Let
dXt = a(t, Xt) dt + b(t, Xt) dBt

Assume EXg < oco. Xy is independent of Bs and there exists a constant ¢ > 0 such that

(1) la(t, z)| + [b(t, 2)| < C(1 + |x]).
(2) a(t,x),b(t,x) satisfy the Lipschitz condition in x, i.e.

la(t, x) — a(t, y)| + [b(t, x) = b(t, y)| < Clz —y|
for allt € (0,T).

Then there exists a unique (strong) solution.

Example 19.2. Let
dX; = c1 Xy dt + co X dBy,

with ¢1, co constants.
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Example 19.3. Let
dX; = [e1 () Xy + ()] dt + [o1(8) Xt + 02(t)] dBy

Let a(t,x) = ¢1(t)x + ca(t)x, b(t, x) = o1(t)x + o2(t). Just follow Kuo p. 233.
Let

t t 1 t
Ht = e_Yt7 }/t = / O’l(s) ds +/ Cl(S) dBS — 5/ C%(S) ds
0 0 0

Then by the It6 product formula, we have
d(H X;) = Hy (dXy — 01 (8) X dt — ¢1(8) X dBy — co(t)eq (t) dt)
Then by definition of the X;, we obtain
d(HXy) = Hy (ca(t) dBy + 02(t) dt — c1(t)ca(t) dt)

which can be integrated to yield

HX, =C+ /Ot Hgco(s)dBs + /Ot Hg(oa(s) — c1(t)ca(t)) ds

Dividing both sides by H; we obtain our solution Xj;.

Theorem 19.4. The solution to the linear stochastic differential equation
dX: = [e1(t) Xt + c2(t)] dt + [01(t) Xt + 02(t)] d By

s given by
t

/ t
X, =Ce ¥ —|—/ eYt =Yoo (t) dB, +/ eV Y5 (ag(s) — c1(t)ca(t)) dt
0 0

where Yy = fg c1(s)dBs + fot (o1(s) — 3ci(s)) ds

20. LECTURE 20 - TUESDAY 17 MAY

20.1. Numerical methods for stochastic differential equations.

Theorem 20.1 (Euler’s method). For the stochastic differential equation
dXt = G(Xt) dt + b(Xt) ClBt7
we stmulate X; according to

th = th71 + a(th71>Atj + b(th71> ABtj

Theorem 20.2 (Milstein scheme). For the stochastic differential equation

dXt = CL(Xt) dt + b(Xt) dBt,
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we stmulate Xy according to
Xo, =Xy, +a(Xy,_,)At; +b(Xy, ) ABy, + %b’(thfl)(Aij — At;)
20.2. Applications to mathematical finance.
20.3. Martingale method. Consider a market with risky security Sy and riskless security f;.

Definition 20.3 (Contingent claim). A random variable Cr : Q — R, Fpr-measurable is called a

contingent claim. If Cr is o(St)-measurable it is path-independent.

Definition 20.4 (Strategy). Let a; represent number of units of S;, and b; represent number of
units of B;. If a4, by are Fi-adapted, then they are strategies in our market model. Our strategy
value V; at time ¢ is

Vi = as Xy + b By

Definition 20.5 (Self-financing strategy). A strategy (at,b) is self financing if
dVy = a; dSy + by dfy
The intuition is that we make one investment at ¢ = 0, and after that only rebalance between S

and f;.

Definition 20.6 (Admissible strategy). (at,b;) is an admissible strategy if it is self financing
and V; >0forall 0 <t <T.

Definition 20.7 (Arbitrage). An arbitrage is an admissible strategy such that Vo =0,V > 0 and
P(Vr > 0) > 0. Alternatively, an arbitrage is a trading strategy with Vy = 0, and E(Vr) > 0.

Definition 20.8 (Attainable claim). A contingent claim C7 is said to be attainable if there exists
an admissible strategy (a¢, b;) such that Vo = Cr. In this case, the portfolio is said to replicate the
claim. By the law of one price, Cy = V; at all ¢.

Definition 20.9 (Complete). The market is said to be complete if every contingent claim is

attainable

Theorem 20.10 (Harrison and Pliska). Let P denote the real world measure of the underlying
asset price Xy. If the market is arbitrage free, there exists an equivalent measure P*, such that the
discounted asset price X, and every discounted attainable claim C, are P* -martingales. Further, if

the market is complete, then P* is unique. In mathematical terms,
Cy = BtE*(ﬁqleT | Ft).

P* is called the equivalent martingale measure (EMM) or the risk-neutral measure.



MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS 36

21. LECTURE 21 - THURSDAY 19 MAY

For a trading strategy (a¢,b:), then the value V; satisfies

t t
‘/t:VOJ'_/ asdss+/ bsdﬁs
0 0

where By is the riskless asset.
To price an attainable option X, let (a¢,b;) be a trading strategy with value V; that replicates
X. Then to avoid arbitrage, the value of X at time ¢t = 0 is given by Vj.

21.1. Change of Measure. Let (2, F,P) be a probability space.

Definition 21.1 (Equivalent measure). Let PP and Q be measures on (£2, F). Then for any A € F,
if

P(A)=0 < Q(4)=0
then we say the measures P and Q are equivalent. If P(A) = 0 = Q(A) = 0, we write Q << P.

Theorem 21.2 (Radon-Nikodyn). Let Q << P. Then there exists a random variable A such that
A>0, Ep(A) =1 and

QA) = /A 0P = E,(M4)

for any A € F. X is P=almost surely unique.
Conwversely, if there exists A such that A\ > 1, Ep(\) = 1, then defining

Q(A) = / AdP
A
and then Q is a probability measure and Q << P. Consequently, if Q << P, then
Eq(Z) = Ep(AZ)

whenever Eg(|Z]) < oo.
The random variable X is called the density of Q with respect to P, and denoted by

_4Q

A= TP

Example 21.3. Let X ~ N(0,1) and Y ~ N(u,1) under probability P. Then there exists a Q
such that Q is equivalent to P and Y ~ N(0,1) under Q.
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Proof.

P(X € A) = \/ﬂ/

Define Q(A) = / e HX 1 gp
A

L /e*’“”*%e*g[7 dx
\/27T

/ (u+z)2
dx
\/ 2w
Then Q << P,P << Q and let
d 2
¥ Rl

Then A satisfies the conditions of Radon-Nikodyn theorem.

Then we have
Eo(Y) = Es((X + p))

2
(X + p)e X5 gp

I
—

1 (uta)?
(z + pe™ 3

5

dxr =0

22. LECTURE 22 - TUESDAY 24 MAY
Theorem 22.1. Let \(t),0 <t < T be a positive martingale with respect to Fy such that
Ex(A(T)) = 1.

Define a new probability measure Q by

Q(A) = /A A(T) dP

Then Q << P and for any random variable X, we have

and if X € F, then for any s <t, we have

Bol(X | 7) = B (30517

37

()
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Consequently a process S(t) is a Q-martingale if and only if
S(t)A(t)
is a P-martingale
Proof. (x). We have

QEp(MT)) | Fi = 0) = Ep(MT) 1k, (\(1) | Fi=0))

=0
We have
(G ) =% (056w m )
= Ep (Ep(A(T)X | F1)14)
= Ex(M(T)X14)
=Ep(X14)
(*x). We have

Ep (W)X m) A(IS)EP(A(t)Xm)

1

— wﬂzp (Ep(NT)X | F) | Fs)
1

- wIEH»(A(T)X | Fs)

= Eq(X [ Fs)

because of (x).
(). We have

as required.

38

O

Theorem 22.2. Let Bs,0 < s < T be a Brownian motion under P. Let S(t) = By + p,u # 0.

Then there exists a Q equivalent to P such thatS(t) is a Q-Brownian motion and

dQ B 12T
T = — = nbT K .

Note that S(t) is not a martingale under P, but it is a martingale under Q.
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Proof. Under Q,
Q(Bo = 0) = / ANT)dP = 1
Bo=0
S(t) is a Q-martingale if and only if S(£)A(t) is a P-martingale. But we have
X, = SUNE) = (B + ) e~

is a martingale.

Finally, note that

[5,5)(t) = [B, BI(t) = t

22.1. Black-Scholes model.

39

Definition 22.3 (Black-Scholes model). The Black-Scholes model assumes the risky asset S; follows

the diffusion process given by

ds
=t — udt+odB,
Sy
and the riskless asset follows the diffusion
dpy
— =rdt
Bt
Define the discounted process as follows:
5 S o Vi 4 G
Si=—, Vi=—, Ci=—.
e B T B

23. LECTURE 23 - THURSDAY 26 MAY
Lemma 23.1.
(a) By a simple application of Ité’s lemma,
ds
L — (u—r)dt +odB,.
St

(b) St s a Q-mm tmgale with
— Q _ ,—aBr—34°T
)\ = — =€ 2

with ¢ = #==.
(c) Note that
dS - R
5t _ d(B,+ ") = 0aB,
o

t

where Bt = B; + qt is a Brownian motion under Q.
(d) dgt = O'St dét
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(e) In a finite market, where Sy takes only finitely many values, S, isa Q-martingale is a necessary
condition for no-arbitrage.
(f) Note that

ds N
?t =udt+odB, =rdt+odB,
t
Theorem 23.2. A value process V; is self financing if and only if the discounted value process Vv,

1s a Q-martingale.

dV; = a; dS, — dV; = adS; + b, dB;
t

= Vt:VO—F/OtanSS—F/O bs dfs
< V; is self financing.
Proof. By Itd’s formula, we have
dV, = e "t dV, — re "tV dt
=e " (a; dS; + by dB;) —re " (ay Sy + by fBy) dt
ai(e” " dS; —re” "t dt)

= Q¢ dSt

Theorem 23.3. In the Black-Scholes model, there are no arbitrage opportunities.

Proof. For any admissible trading strategy (a¢,b;), we have that the discounted value process V; is
a Q-martingale. So if Vj = 0, then E(%) =0, and we have

Eq(Vr) = Eo(Vr | Fo) = Vo =0

which implies Q(VT > 0) = 0, which implies P(Vy > 0) = 0, which implies that Ep(Vr) = 0, which

then implies no arbitrage. O

Theorem 23.4. For any self financing strategy,

t t
vtzatst+btﬁt=vo+/ audsu+/ bu dBe
0 0

And so a strategy is self financing if
St dat + Bt dbt + d[a, S](t) =0

We now consider several cases.

(1) If a; is of bounded variation, then [a,S]|(t) = 0. Hence

St dat + ﬂt dbt = 0,
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which implies
S
dby, = —5{ da,
Hence day - dby < 0.

(2) Ifa; is a semi-martingale ay = af—i—At, then by must be a semi-martingale, where by = bf—&—Bt
where a?,b? are the martingale parts and Ay, By are of bounded variation.

24. LECTURE 24 - TUESDAY 31 MAY

Theorem 24.1. Given a claim Ct under the self-financing assumption, there exists a Q-martingale
such that
V, = ]E(Q_) (efr(Tft)CT \.7'1) JFr = 0(3370 <s< t).

In particular, we have
Vo = Eg(e " Cr)
Proof. For any Q-martingale V;, we have V; = Eq(Vz | F;). Then
Vi = Bgle("0Cr | ),
as Vpr = Crp. O

Theorem 24.2. A claim is attainable (there exists a trading strategy replicating the claim), that
is,

Vi=Vo+G(2)

t t
Glt) = / G dSi + / bu B
0 0

Vr >20,Vr =Cr

Theorem 24.3. Suppose that Cr is a non-negative random variable, Cy € Fr and Eq(C3f < o0),
where Q is defined as before. Then

(a) The claim is replicable.
) o
V, = Eq (e-T<T-f>cT | ]—'t) — U, =Eqo(Cr | F)

where Cp = e—rTCr.
In particular, Vo = Eg(e™"TCp) = Eg(Cr).

Theorem 24.4. Assume V; = Eq(Cr|F;). Using the martingale representation theorem, there

exists an adapted process H(s) such that

t
AR / H(s)dB, <= dVy = H(t)dB,.
0
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On the other hand, df/} =a dS’t =a;- US} df?t. Hence we obtain our required result,
_ H(t)

at = ———,
O'St

and then solve for b;.

Example 24.5. Let Cr = f(Sr). Then V; = Eq (e "T=0F(S0)17%) . Since F; = 0(B,,0 < s <
t) = U(BS, 0<s<t),and S, is a Q-martingale, we have

~ A -2 A
S = Spe~ T Hob

and so
Sy =TSy = SterTefé(Tft)Jra(BTfét).
Then
A (erTgte—%w—ww(BT_m)}
and so
Vi = F(t,S)
where
F(t, 1) = Eq [e 700 ()T -040vT7)
:e—r(T—t)/f (xe—é(T—t)-i-o’zm) d)(z) dz
R
22
where ¢(z2) = \/%6*7,

Example 24.6. In particular, if f(y) = (y — K)™, then we obtain
-0 > (729 f 22 o -0 22
F(t,z)=e™" / e T OTIVOTT gy K/ e T dz
—d, —d

= 2®(d) + oV0) — Ke "0 ®(d})
= 2®(dy) — Ke " ®(dy),
where )
_ log (%) +(r+%)0
oV ’
Theorem 24.7 (Black-Scholes model summary). V; = a;S; + b: 8¢, where

s,
St

d1 d2:d1_0\/§

:Mdt+0'dBt

dpy
— =rdt
B
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(a) Sy = e S, is a Q-martingale, where

dQ
dP

— e—lIBT—%qu

and q =
Then B; = B; + E=2t is a Q-Brownian motion, and dS, = 0S; dB,.
(b) Vi is self-financing if (at, by) satisfies

p—r
pra

St dat + ﬂt dbt + d[a, S](t) =0

which then implies V; is a Q-martingale, V; = e~ "V;.

(c) There are no arbitrage opportunities in the Black-Scholes model.

25. LECTURE 25 - THURSDAY 2 JUNE

Theorem 25.1 (Feyman-Kac formula).

(1) Suppose the function F(x,t) solves the boundary value problem
OF (t,x) OF (t,z) 1 4 0*F(t,x)
o b T T )
such that F(T,z) = ¥(x).
(2) Let Si be a solution of the SDE

=0

dS; = u(t,Sy)dt + o(t,St) dB; (%)

where By is a Q-Brownian motion

(3) Assume
T D*F(t,Sy)
/0 E(o(t,5) 7 5 dt < oo

Then
F(t,5) = Eq (¥(S7) | Ft) = Eq (F(T, Sr) | ) -

where Fy = 0(Bs,0 < s < 1).

Proof. Tt is enough to show that F'(¢, S;) is a martingale with respect to F; under Q. By It6’s lemma,

we have
dF(t,St) = 6f(;;st) dt + aFg;St) ds; + %% - (dSy)?
= %—ZZ + n(t, St)g—l; + 02(;’ 51) 821;:;&) dt + %U(t S,) dB,
= %U(LS}) dB;

which is a Q-martingale. O
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Theorem 25.2 (General Feyman-Kac formula). Let Sy be a solution of the SDE (). Assume that
there is a solution to the PDE

OF (t,x) OF (t,z) 1 4 O*F(t,x)

En + u(t, x) P +30 (tmc)iax2 =

r(t,x)F(t,x).

Then
F(t,8)) = g (e~ I S0 p(T, 57) | 7y )

Proof. Again by It6’s lemma,

02 0%F oF
where M; = g %—I;U(u, Sy) dB,,. Hence we have
dF(t,Sy) = r(t,Sy) X dt + dM;
d|:€ Y r(u,sy duX :| 7ft"r(u,Su)dudMy (:>)
. T
e i r(u,Su)duF(T7 St) = F(t, S, +/ e S ) du dM, (=)
t
Eq (e* FErtwsa) du e g,y |]-"t) = F(t,8)) (=)

T
v F
+Eg (/ e~ Ji T(wSu) du 8—0(1/, S,)dB, |.7-'t>
¢ ox

=0

and so we obtain our result,

_F(t7 St) — EQ (6_ ftT (u,Sy ) duF(T, ST) |J—_'t>
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