PMH3 - FUNCTIONAL ANALYSIS

ANDREW TULLOCH

Contents

1. Lecture 1 - Monday 28 February	2
2. Lecture 2 - Wednesday 2 March	2
3. Lecture 3 - Monday 7 March	3
4. Lecture 4 - Wednesday 9 March	4
5. Lecture 5 - Tuesday 15 March	6
6. Lecture 6 - Wednesday 16 March	9
6.1. The Hahn-Banach theorem	9
6.2. Zorn's Lemma	10
7. Lecture 7 - Monday 21 March	11
8. Lecture 8 - Wednesday 23 March	13
9. Lecture 9 - Monday 28 March	16
9.1. The dual of a Hilbert space	17
10. Lecture 10 - Wednesday 30 March	19
11. Lecture 11 - Monday 4 April	22
11.1. Stone-Weierstrass theorem	23
12. Lecture 12 - Wednesday 6 April	25
13. Lecture 13 - Monday 11 April	28
13.1. Applications of Stone-Weierstrass theorem	28
14. Lecture 14 - Wednesday 13 April	30
15. Lecture 15 - Monday 18 April	32
15.1. The open mapping theorem	35
16. Lecture 16 - Wednesday 20 April	36
17. Lecture 17 - Monday 1 May	38
17.1. Spectral Theory	39
18. Lecture 18 - Wednesday 4 May	40
19. Lecture 19 - Monday 9 May	44
20. Lecture 20 - Wednesday 11 May	47
21. Lecture 21 - Monday 16 May	50

21.1. Limits of compact operators	51
22. Lecture 22 - Wednesday 18 May	52
22.1. Projections	54
23. Lecture 23 - Monday 23 May	55
24. Lecture 24 - Wednesday 25 May	57
25. Lecture 25 - Monday 30 May	59
26. Lecture 26 - Wednesday 1 June	63
26.1. Fredholm alternative for compact operators on a Hilbert space	63

PMH3 - FUNCTIONAL ANALYSIS

1. Lecture 1 - Monday 28 February

Definition 1.1 (Norm). Let X be a vector space. A norm on X is a function $\|\cdot\|: X \to \mathbb{R}$ satisfying

- $||x|| \ge 0$ with equality if and only if x = 0.
- $\bullet \ \|\alpha x\| = |\alpha| \|x\|.$
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

We call the pair $(X, \|\cdot\|)$ a normed vector space.

Theorem 1.2 (Reverse triangle inequality). Let X be a normed vector space. For any $x, y \in X$, we have

$$|||x|| - ||y||| \le ||x - y||$$

Definition 1.3 (Complete space). Let X be a normed vector space. Then X is **complete** if every Cauchy sequence in X converges to some $x \in X$.

Definition 1.4 (Banach space). A **Banach space** is a complete normed vector space.

2. Lecture 2 - Wednesday 2 March

Proposition 2.1 (Convergence). Let $(V, \|\cdot\|)$ be a normed vector space. A sequence (x_n) in V converges to $x \in V$ if given $\epsilon > 0$, there exists N such that $\|x - x_n\| < \epsilon$ whenever n < N.

Lemma 2.2. If $x_n \to x$, then $||x_n|| \to ||x|| \in \mathbb{R}$.

Proof.
$$|||x_n|| - ||x||| \le ||x - x_n|| \to 0.$$

Proposition 2.3. Every convergent sequence is Cauchy.

Definition 2.4 (Banach space). A complete, normed, vector space is called a Banach space

Proposition 2.5. $(\mathbb{K}, |\cdot|)$ is complete.

Proposition 2.6. $(\ell^p, \|\cdot\|_p)$ is a Banach space for all $1 \leq p \leq \infty$

Proof. A general proof outline follows.

- \bullet Use completeness of $\mathbb R$ to find a candidate for the limit.
- Show this limit function is in V.
- Show that $x_n \to x$ in V.

Let $x^{(n)}$ be a Cauchy sequence in ℓ^p . Since $|x_j^{(n)} - x_j^{(n)}| \le ||x^{(n)} - x^{(m)}||$, we know that $x_j^{(n)}$ is a Cauchy sequence in \mathbb{K} . Hence, $\lim_{n\to\infty} x_j^{(n)} := x_j$ exists, and is our limit candidate.

We now show that
$$\sum_{j=1}^{\infty} |x_j|^p < \infty$$
. We have

Proposition 2.7. $(\ell([a,b]), \|\cdot\|_{\infty})$ is a Banach space

Proposition 2.8. If $1 \le p < \infty$, then $(\ell([a,b]), \|\cdot\|_p)$ is **not** a Banach space.

Proof. Consider a sequence of functions that is equal to one on $[0, \frac{1}{2}]$, zero on $[\frac{1}{2} + \frac{1}{n}, 1]$, and linear between. This is a Cauchy sequence that does not converge to a continuous function.

We've seen that $(\ell([a,b]), \|\cdot\|_p)$ is not complete for $1 \leq p < \infty$.

Theorem 3.1 (Completion). Let $(V, \|\cdot\|)$ be a normed vector space over \mathbb{K} . There exists a Banach space $(V_1, \|\cdot\|_1)$ such that $(V, \|\cdot\|)$ is isometrically isomorphic to a dense subspace of $(V_1, \|\cdot\|_1)$. Furthermore, the space $(V_1, \|\cdot\|_1)$ is unique up to isometric isomorphisms.

Proof. Rather straightforward - construct Cauchy sequences, append limits, quotient out (as different sequences may converge to the same limit). \Box

Definition 3.2. $(V_1, \|\cdot\|_1)$ is called **the completion** of $(V, \|\cdot\|)$.

Definition 3.3 (Dense). If X is a topological space and $Y \subseteq X$, then Y is **dense** in X if the closure of Y in X equals X, that is, $\overline{Y} = X$.

Alternatively, for each $x \in X$, there exists (y_n) in Y such that $y_n \to x$.

Definition 3.4 (Isomorphism of vector spaces). Two normed vector spaces $(X, \|\cdot\|X)$ and $(Y, \|\cdot\|Y)$ are **isometrically isomorphic** if there is a vector space isomorphism $\Psi: X \to Y$ such that

$$\|\Psi(x)\|_Y = \|x\|_X \quad \forall x \in X$$

Example 3.5. Let $\ell_0 = \{(x_i) | \#\{i, x_i \neq 0\} < \infty\}$. The completion of $\ell_0, \|\cdot\|_p$ is $(\ell^p, \|\cdot\|_p)$, because,

- ℓ_0 is a subspace of ℓ^p ,
- It is dense, since we can easily construct a sequence in ℓ_0 converging to arbitrary $x \in \ell^p$.

Example 3.6 (L^p spaces). Let μ be the Lebesgue measure on \mathbb{R} . Let

$$\mathcal{L}^p([a,b]) = \{\text{measurable } f: [a,b] \to \mathbb{K} \,|\, \int_a^b |f|^p \, d\mu < \infty \}$$

Let $||f||_p = \left(\int_a^b |f|^p d\mu\right)^{1/p}$. Since $||f||_p = 0 \iff f = 0$ a.e., we quotient out by the rule $f \equiv g \iff f - g = 0$ a.e., and then our space of equivalence classes forms a normed vector space, denoted $L^p([a,b])$.

Theorem 3.7 (Riesz-Fischer). $(L^p([a,b]), \|\cdot\|_p)$ is the completion of $(\mathcal{C}[a,b], \|\cdot\|_p)$, and is a Banach space.

Proof. Properties of the Lebesgue integral.

Remark.

- Let X be any compact topological space, let $\mathcal{C}(X) = \{f : X \to \mathbb{K} \mid f \text{ is continuous}\}$, and let $||f||_{\infty} = \sup_{x \in X} ||f(x)||$. Then $\mathcal{C}(X, ||\cdot||_{\infty})$ is Banach.
- Let X be any topological space. Then the set of all continuous and bounded functions with the supremum norm forms a Banach space.
- Let (S, \mathcal{A}, μ) be a measure space. Then we can define the \mathcal{L}^p and L^p analogously, and they are also Banach.

Definition 3.8 (Linear operators on normed vector spaces). Let X, Y be vector spaces over \mathbb{K} . A linear operator is a function $T: X \to Y$ such that

$$T(x + y) = T(x) + T(y)$$
$$T(\alpha x) = \alpha T(x)$$

for all x, y, α .

We write $\operatorname{Hom}(X, Y) = \{T : X \to Y \mid T \text{ is linear}\}\$

Definition 3.9. $T: X \to Y$ is continuous at $x \in X$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$||x - y||_X < \delta \Rightarrow ||Tx - Ty||_y < \epsilon$$

Definition 3.10.

$$\mathcal{L}(X,Y) = \{T : X \to Y \mid T \text{ is linear and continuous}\}$$

Remark. If $\dim(X) < \infty$ then $\operatorname{Hom}(X,Y) = \mathcal{L}(X,Y)$. This is **not** true if X has infinite dimension.

Definition 3.11 (Bounded linear operator). Let $T: X \to Y$ be linear, then T is **bounded** if T maps bounded sets in X to bounded sets in Y. That is: for each M > 0 there exists M' > 0 such that

$$||x||_X \le M \Rightarrow ||Tx||_Y \le M'$$

4. Lecture 4 - Wednesday 9 March

Consider the space $\mathcal{L}(X,Y)$, the set of all linear and continuous maps between two normed vector spaces X and Y.

Theorem 4.1 (Fundamental theorem of linear operators). Let $(X, \|\cdot\|_X)$ and $Y, \|\cdot\|_Y$ be normed vector spaces. Let $T \in Hom(X,Y)$, the set of all linear maps from X to Y. Then the following are all equivalent.

- 1) T is uniformly continuous
- 2) T is continuous
- 3) T is continuous at θ

- 4) T is bounded
- 5) There exists a constant c > 0 such that

$$||Tx||_Y \le c||x||_X \quad \forall x \in X$$

Proof. $1) \Rightarrow 2) \Rightarrow 3)$ is clear.

3) \Rightarrow 4). Since T is continuous at 0, given $\epsilon = 1 > 0$, there exists δ such that

$$||Tx - T0|| \le 1$$
 whenever $||X - 0|| \le \delta$,

i.e. that $||x \leq \delta \Rightarrow ||Tx|| \leq 1$. Let $y \in X$. The $\|\frac{\delta y}{||y||}\| \leq \delta$, and so $\|T\left(\frac{\delta y}{||y||}\right)\| < \leq 1$. Hence,

$$\frac{\delta}{\|y\|}\|Ty\| \le 1$$

and so

$$||Ty|| \leq \frac{||y||}{\delta}$$

for all $y \in X$. Thus, for all $||y|| \leq M$, we have $||Ty|| \leq M'$, where $M' = \frac{M}{\delta}$, and so T is **bounded.**

4) \Rightarrow 5). If T is bonded, given M=1>0, there exists $c\geq 0$ such that $||x||\leq 1 \Rightarrow ||Tx||\leq c$. Then

$$||T\left(\frac{x}{||x||}\right)|| \le c$$

Hence, $||Tx|| \le c||x||$.

 $5) \Rightarrow 1$). If 5) holds, then

$$||Tx - Ty|| = ||T(x - y)|| \le c||x - y||.$$

So if ϵ is given, taking $\delta = \frac{\epsilon}{c}$, we have

$$||Tx - Ty|| \le c||x - y|| < c\frac{\epsilon}{c} = \epsilon.$$

Corollary. If $T \in Hom(X,Y)$, then T continuous \iff T bounded \iff $||Tx|| \le c||x||$ for all $x \in X$.

Definition 4.2 (Operator norm). The **operator norm** of $T \in \mathcal{L}(x, y)$, ||T|| is defined by any one of the following equivalent expressions.

- (a) $||T|| = \inf\{c > 0 \mid ||Tx|| < c||x||\}.$
- (b) $||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||}$.
- (c) $||T|| = \sup_{||x|| \le 1} ||Tx||$.
- (d) $||T|| = \sup_{||x||=1} ||Tx||$.

Proposition 4.3. The operator norm is a norm on $\mathcal{L}(x,y)$.

Proof. The following are simple to verify.

(a) $||T|| \ge 0$, with equality if and only if T = 0.

(b) $\|\alpha T\| = |\alpha| \|T\|$.

(c)
$$||S + T|| \le ||S|| + ||T||$$
.

Example 4.4 (Calculating ||T||). To calculate ||T||, try the following.

1) Make sensible calculations to find c such that

$$||Tx|| \le c||x||$$

for all $x \in X$.

2) Find $x \in X$ such that ||Tx|| = c||x||.

5. Lecture 5 - Tuesday 15 March

Remark. Ignore !2, Q3(b), Q8 on the practice sheet, as we will be ignoring Hilbert space theory for the time being.

Definition 5.1 (Algebraic dual). Let $(X, \|\cdot\|)$ be a normed vector space over \mathbb{K} . The **algebraic** dual of X is

$$X^* = \operatorname{Hom}(X, \mathbb{K}) = \{ \varphi : X \to \mathbb{K} \mid \varphi \text{ is linear} \}.$$

Elements of X^* are called linear functionals.

Definition 5.2 (Continuous dual (just dual)). The **continuous dual** (just dual) of X is

$$X' = \mathcal{L}(X, \mathbb{K}) = \{ \varphi : X \to K \mid \varphi \text{ is linear and continuous} \}.$$

Remark. $X^* \supseteq X'$ if $\dim(X) = \infty$.

Example 5.3. Let $(\wp([a,b]), \|\cdot\|_{\infty})$ be the normed vector space of polynomials $p: [a,b] \to \mathbb{K}$.

- (a) The functional $D: \wp([0,1]) \to \mathbb{K}$ given by D(p) = p'(1) is linear, but **not** continuous.
- (b) The functional $I: \wp([0,1]) \to \mathbb{K}$ given by $I(p) = \int_0^1 p(t) dt$ is linear **and** continuous.

Proof. (a) Linearity is clear. The $p_n(t) = t^n$ for all $t \in [0,1]$. Then $|D(p_n)| = n||p_n||_{\infty}$. So D is not continuous, as continuity implies that there exists c such that

$$||Tx|| \le c||x||.$$

(b) Exercise: Show ||I|| = 1.

Describing the continuous dual space X' is one of the first things to do when trying to understand a normed vector space. It is generally pretty difficult to describe X'.

Proposition 5.4 (Dual of the ℓ^p space for (1). Let <math>1 . Let <math>q be the "dual" of p, defined by $\frac{1}{q} + \frac{1}{p} = 1$. Then $(\ell^p)'$ is isometrically isomorphic to ℓ^q .

Remark (Observation before proof). Let $1 \leq p < \infty$. Let $e_i = (0, 0, \dots, 1, 0, \dots)$ where 1 is in the *i*-th place.

1) If $x = (x_i) \in \ell^p$, then

$$x = \sum_{i=1}^{\infty} x_i e_i$$

in the sense that the partial sums converge to x.

2) If $\varphi: \ell^p \to \mathbb{K}$ is linear and continuous, then

$$\varphi(x) = \sum_{i=1}^{\infty} x_i \varphi(e_i)$$

Proof of observations. Let $S_n = \sum_{i=1}^n x_i e_i$. Then

$$||x - S_n||_p^p = ||(0, 0, \dots, x_{n+1}, x_{n+2}, \dots)||_p^p$$
$$= \sum_{i=n+1}^{\infty} |x_i|^p$$

 $\rightarrow 0$ as it is the tail of a convergent sum.

Write $\varphi(x)$ as

$$\varphi(x) = \varphi(\lim_{n \to \infty} S_n) \quad \text{(continuity)}$$

$$= \lim_{n \to \infty} (\varphi(S_n))$$

$$= \lim_{n \to \infty} \varphi\left(\sum_{i=1}^n x_i e_i\right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^n x_i \varphi(e_i) \quad \text{(linearity)}$$

$$= \sum_{i=1}^\infty x_i \varphi(e_i) \qquad \Box$$

Proof. Define a map θ by

$$\theta: \ell^q \to (\ell^p)'$$
$$y \mapsto \varphi_y$$

where $\varphi_y(x) = \sum x_i y_i$ for all $x \in \ell^p$.

- (1) φ_y is linear, as $\varphi_y(x+x') = \varphi_y(x) + \varphi_y(x')$ (valid as sums converge absolutely.)
- (2) φ_y is continuous, as

$$|\varphi_y(x)| = |\sum x_i y_i| \le \sum |x_i y_i| \le ||x||_p ||y||_q$$

by Hölder's inequality. From the fundamental theorem of linear operators, as $|\varphi_y(x)| \le ||x||_p ||y||_q$, we have that φ_y is continuous, and that

$$\|\varphi_y\| \le \|y\|_q \tag{*}$$

- (3) θ is linear.
- (4) θ is injective, as

$$\theta(y) = \theta(y') \Rightarrow \varphi_y = \varphi_{y'} \Rightarrow \varphi_y(x) = \varphi_{y'}(x) \quad \forall x \in \ell^p$$
$$\Rightarrow \varphi_y(e_i) = \varphi_{y'}(e_i) \quad \forall i \in \mathbb{N} \Rightarrow y_i = y_i' \quad \forall i \in \mathbb{N} \Rightarrow y = y'$$

(5) θ is surjective. Let $\varphi \in (\ell^p)$. Let $y = (\varphi(e_1), \dots, \varphi(e_n), \dots) = (y_1, \dots, y_n, \dots)$. We now show $y \in \ell^q$.

Let $x^{(n)} \in \ell^q$ be defined by

$$x_i^{(n)} = \begin{cases} \frac{|y_i|^q}{y_i} & \text{if } i \le n \text{ and } y_i \ne 0\\ 0 & \text{otherwise} \end{cases}$$

Then

$$\varphi(x^{(n)}) = \sum_{i=1}^{\infty} x_i^{(n)} \varphi(e_i) = \sum_{i=1}^{n} |y_i|^q$$
 (†)

by Observation 2) above.

On the other hand, we know

$$\|\varphi(x^{(n)}) \leq \|\varphi\| \|x^{(n)}\|_{p}$$

$$= \|\varphi\| \left(\sum_{i=1}^{\infty} |x_{i}^{(n)}|^{p}\right)^{1/p}$$

$$= \|\varphi\| \left(\sum_{i=1}^{n} |y_{i}|^{(q-1)p}\right)^{1/p}$$

$$= \|\varphi\| \left(\sum_{i=1}^{n} |y_{i}|^{q}\right)^{1/p} \text{ as } 1/p + 1/q = 1. \tag{***}$$

Now, using (\dagger) and $(\star\star)$, we have

$$\sum_{i=1}^{n} |y_i|^q \le \|\varphi\| \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/p}$$

and so we must have

$$||y||_q \le ||\varphi|| \tag{* * *)}$$

and so $y \in \ell^q$.

We also have, by $(\star\star)$,

$$||y||_q \leq ||\varphi_y||$$

(6) Finally, we show that θ is an isometry. By (\star) and $(\star \star \star)$, we have

$$\|\theta(y)\| = \|\varphi_y\| = \|y\|_q$$

as required. \Box

6. Lecture 6 - Wednesday 16 March

How big is X'? When is $X' \neq \{0\}$? Examples suggest that X' is big with a rich structure.

6.1. **The Hahn-Banach theorem.** The Hahn-Banach theorem is a cornerstone of functional analysis. It is all about extending linear functionals defined on a subspace to linear functionals on the whole space, while preserving certain properties of the original functional.

Definition 6.1 (Seminorm). A let X be a vector space over \mathbb{K} . A seminorm on X is a function $p: X \to \mathbb{R}$ such that

- (1) $p(x+y) \le p(x) + p(y) \quad \forall x, y \in X$
- (2) $p(\lambda x) = |\lambda| p(x) \quad \forall x \in X, \lambda \in \mathbb{K}$

Theorem 6.2 (General Hahn-Banach). Let X be a vector space over \mathbb{K} . Let $p: X \to \mathbb{R}$ be a seminorm on X. Let $Y \subseteq X$ be a subspace of X. If $f: Y \to \mathbb{K}$ is a linear functional such that

$$|f(y)| \le p(y) \quad \forall y \in Y$$

then there is an extension $\tilde{f}: X \to \mathbb{K}$ such that

- \tilde{f} is linear
- $\tilde{f}(y) = f(y) \quad \forall y \in Y$
- $|f(x)| \le p(x) \quad \forall x \in X$

Remark. This is great.

- Y can be finite dimensional (and we know about linear functionals on finite dimensional spaces)
- If p(x) = ||x||, then

$$|\tilde{f}(x)| \le ||x|| \quad \forall x \in X$$

and so $\tilde{f} \in X'$

Corollary. Let $(X, \|\cdot\|)$ be a normed vector space over \mathbb{K} . For each $y \in X$, with $y \neq 0$, there is $\varphi \in X'$ such that

$$\varphi(y) = ||y||$$
 and $||\varphi|| = 1$

Proof. Fix $y \neq 0$ in X. Let $Y = \{\mathbb{K}y\} = \{\lambda y | \lambda \in \mathbb{K}\}$, a one-dimensional subspace.

Define $f: Y \to \mathbb{K}$, $f(\lambda y) = \lambda ||y||$. This is linear. Set p(x) = ||x||. Then

$$|f(\lambda y) = p(\lambda y)|$$

and so by Hahn-Banach, there exists $\tilde{f}: X \to \mathbb{K}$ such that

- \tilde{f} is linear
- $\tilde{f}(\lambda y) = f(\lambda y) \quad \forall \lambda \in \mathbb{K}$
- $|\tilde{f}(x)| \le ||x|| \quad \forall x \in X$

Then we have $\tilde{f} \in X'$ and ||f|| = 1 as required.

6.2. Zorn's Lemma.

Theorem 6.3 (Axiom of Choice is equivalent to Zorn's Lemma). See handout for proof that

$$A.C. \Rightarrow Z.L.$$

Definition 6.4 (Partially ordered set). A **partially ordered set** (poset) is a set A with a relation \leq such that

- (1) $a \le a$ for all $a \in A$,
- (2) If $a \le b$ and $b \le a$ then a = b,
- (3) If $a \le b$ and $b \le c$, then $a \le c$

Definition 6.5 (Totally ordered set). A **totally ordered set** is a poset (A, \leq) such that if $a, b \in A$ then either $a \leq b$ or $b \leq a$.

Definition 6.6 (Chain). A chain in a poset (A, \leq) is a totally ordered subset of A.

Definition 6.7 (Upper bound). Let (A, \leq) be a poset. An **upper bound** for $B \subseteq A$ is an element $u \in A$ such that $b \leq u$ for all $b \in B$.

Definition 6.8 (Maximal element). A **maximal element** of a poset (A, \leq) is an element $m \in A$ such that $m \leq x$ implies x = m, that is,

$$m \le x \Rightarrow x = m$$

Example 6.9. Let S be any set. Let $\mathcal{P}(S)$ be the power set of S (the set of all subsets of S). Define $a \leq b \iff a \subseteq b$. Maximal element is S

Theorem 6.10 (Zorn's Lemma). Let (A, \leq) be a poset. Suppose that every chain in A has an upper bound. Then A has (at least one) maximal element.

Example 6.11 (Application - all vector spaces have a basis).

Definition 6.12 (Linearly independent). Let X be a vector space over \mathbb{F} . We call $B \subseteq X$ linearly independent if

$$\lambda_1 x_1 + \dots + \lambda_n x_n = 0 \Rightarrow \lambda_1 = \dots = \lambda_n = 0$$

for all finite $\{x_1, \ldots, x_n\} \subseteq B$.

Definition 6.13 (Span). We say $B \subseteq X$ spans X if each $x \in X$ can be written as

$$x = \lambda_1 x_1 + \dots + \lambda_n x_n$$

for some $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ and $\{x_1, \ldots, x_n\} \subseteq B$.

Definition 6.14 (Hamel basis). A Hamel basis is a linearly independent spanning set. Equivalently, $B \subseteq X$ is a Hamel basis if and only if each $x \in X$ can be written in exactly one way as a finite linear combination of elements of B.

Theorem 6.15. Every vector space has a Hamel basis

Proof. Let $L = \{\text{linearly independent subsets}\}$, with subset ordering. Let C be a chain in L. Let $u = \bigcup_{a \in C} a$. Then

- (1) $u \in L$,
- (2) u is an upper bound for C.

So Zorn's Lemma says that L has a maximal element \mathbf{b} .

Then \mathbf{b} is a Hamel basis.

- **b** is linearly independent.
- If $\operatorname{Span}(\mathbf{b}) \neq X$, there exists $X \in X \setminus \operatorname{Span}(\mathbf{b})$, and $\mathbf{b}' = \mathbf{b} \bigcup \{x\} \in L$ is linearly independent, contradicting maximality of \mathbf{b} .

Remark. If $X, \|\cdot\|$) is Banach, every Hamel basis is uncountable.

Proof of Hahn-Banach Theorem Discussion of Dual operators

Theorem 7.1 (Hahn-Banach theorem over \mathbb{R}). Let X be a real linear space and let p(x) be a seminorm on X. Let M be a real linear subspace of X and f_0 a real-valued linear functional defined on M. Let f_0 satisfy $f_0(x) \leq p(x)$ on M. Then there exists a real valued linear functional F defined on X such that

- (i) F is an extension of f_0 , that is, $F(x) = f_0(x)$ for all $x \in M$, and
- (ii) $F(x) \leq p(x)$ on X.

Proof. We first show that f_0 can be extended if M has codimension one. Let $x_0 \in X \setminus M$ and assume that span $(M \cup \{x_0\}) = X$. As $x_0 \notin M$ be can write $x \in X$ uniquely in the form

$$x = m + \alpha x_0$$

for $\alpha \in \mathbb{R}$. Then for every $c \in \mathbb{R}$, the map $f_c \in \text{Hom}(X,\mathbb{R})$ given by $f_c(m + \alpha x) = f_0(m) + c\alpha$ is well defined, and $f_c(m) = f_0(m)$ for all $m \in M$. We now show that we can choose $c \in \mathbb{R}$ such that $f_c(x) \leq p(x)$ for all $x \in X$. Equivalently, we must show

$$f_0(m) + c\alpha \le p(m + \alpha x_0)$$

for all $m \in M$ and $\alpha \in \mathbb{R}$. By positive homogeneity of p and linearity of f we have

$$f_0(m/\alpha) + c \le p(x_0 + m/\alpha) \quad \alpha > 0$$

$$f_0(-m/\alpha) - c \le p(-x_0 - m/\alpha) \quad \alpha < 0$$

Hence we need to choose c such that

$$c \le p(x_0 + m) - f_0(m)$$

 $c \ge -p(-x_0 + m) + f_0(m).$

This is possible if

$$-p(-x_0+m_1)+f_0(m_1) \le p(x_0+m_2)-f_0(m_2)$$

for all $m_1, m_2 \in M$. By subadditivity of p we can verify this condition since

$$f_0(m_1 + m_2) \le p(m_1 m_2) = p(m_1 - x_0 + m_2 - x_0) \le p(m_1 - x_0) + p(m_2 + x_0)$$

for all $m_1, m_2 \in M$. Hence c can be chosen as required.

Hence D(F) = X, and the theorem is proven.

Theorem 7.2 (Hahn-Banach over \mathbb{C}). Suppose that c is a seminorm on a complex vector space X and let M sub a subspace of X. If $f_0 \in Hom(M,\mathbb{C})$ is such that $|f_0(x)| \leq p(x)$ for all $x \in M$, then there exists an extension $f \in Hom(X,\mathbb{C})$ such that $f|_M = f_0$ and $|f(x)| \leq p(x)$ for all $x \in X$.

Proof. Split f_0 into real and imaginary parts

$$f_0(x) = g_0(x) + ih_0(x).$$

By linearity of f_0 we have

$$0 = if_0(x) - f_0(ix) = ig_0(x) - h_0(x) - g_0(ix) - ih_0(ix)$$
$$= -(g_0(ix) + h_0(x)) + i(g_0(x) - h_0(ix))$$

and so $h_0(x) = -g_0(ix)$. Therefore,

$$f_0(x) = g_0(x) - ig_0(ix)$$

for all $x \in M$. We now consider X as a vector space over \mathbb{R} , $X_{\mathbb{R}}$. Now considering $M_{\mathbb{R}}$ as a subspace of $X_{\mathbb{R}}$. GSince $g_0 \in \text{Hom}(M_{\mathbb{R}}, \mathbb{R})$ and $g_0(x) \leq |f_0(x)| \leq p(x)$ and so by the real Hahn-Banach, there exists $g \in \text{Hom}(X_{\mathbb{R}}, \mathbb{R})$ such that $g|_{M_{\mathbb{R}}} = g_0$ and $g(x) \leq p(x)$ for all $x \in X_{\mathbb{R}}$. Now set F(x) = g(x) - ig(ix) for all $x \in X_{\mathbb{R}}$. Then by showing f(ix) = if(x), we have that f is linear.

We now show $|f(x)| \leq p(x)$. For a fixed $x \in X$ choose $\lambda \in \mathbb{C}$ such that $\lambda f(x) = |f(x)|$. Then since $|f(x)| \in \mathbb{R}$ and by definition of f, we have

$$|f(x)| = \lambda f(x)| = f(\lambda x) = g(\lambda x) \le p(\lambda x) = |\lambda p(x)| = p(x)$$

as required.

8. Lecture 8 - Wednesday 23 March

Definition 8.1 (Inner product). Let X be a vector space over \mathbb{K} . An **inner product** is a function

$$\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$$

such that

- (1) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- (2) $\langle \alpha x, z \rangle = \alpha \langle x, z \rangle$
- (3) $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- (4) $\langle x, x \rangle \geq 0$ with equality if and only if x = 0

We then have

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

and

$$\langle x, \alpha z \rangle = \overline{\alpha} \langle x, z \rangle$$

Definition 8.2 (Inner product space). Let $(X, \langle \cdot, \cdot \rangle)$ be an **inner product space**. Defining $||x|| = \sqrt{\langle x, x \rangle}$ turns X into a normed vector space. To prove the triangle inequality, we use the Cauchy-Swartz theorem.

Theorem 8.3 (Cauchy-Schwarz). In an inner product space $(X, \langle \cdot, \cdot \rangle)$, we have

$$|\langle x, y \rangle| \le ||x|| ||y|| \quad \forall x, y \in X$$

Proof.

$$0 \le \langle x - \lambda y, x - \lambda y \rangle$$

$$= \langle x, x \rangle - \langle x, \lambda y \rangle - \langle \lambda y, x \rangle + \langle \lambda y, \lambda y \rangle$$

$$= \|x\|^2 - \bar{\lambda} \langle x, y \rangle - \lambda \langle y, x \rangle + |\lambda|^2 \|y\|^2$$

$$= \|x\|^2 - 2\operatorname{Re}(\lambda \langle y, x \rangle) + |\lambda|^2 \|y\|^2$$

Set $\lambda = \frac{\langle x, y \rangle}{\|y\|^2}$. Then

$$0 \le ||x||^2 - 2\operatorname{Re}(\frac{|\langle x, y \rangle|^2}{||y||^2}) + \frac{|\langle x, y \rangle|^2}{||y||^2}$$
$$= ||x||^2 - \frac{|\langle x, y \rangle|^2}{||y||^2}$$

as required.

Corollary.

$$||x + y|| \le ||x|| + ||y||$$

Definition 8.4 (Hilbert space). If $(X, \langle \cdot, \cdot \rangle)$ is complete with respect to $\| \cdot \|$ then it is called a **Hilbert space**.

Example 8.5. (a) ℓ^2 , where $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}$.

Cauchy-Schwarz then says

$$|\sum_{i=1}^{\infty} x_i \overline{y_i}| \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2} \sqrt{\sum_{i=1}^{\infty} |y_i|^2}$$

(b) $L^2([a,b])$, where $\langle f,g\rangle = \int_a^b f(x)\overline{g(x)}\,dx$.

Cauchy-Swartz then says

$$\left| \int_{a}^{b} f(x) \overline{g(x)} \, dx \le \dots \right|$$

Definition 8.6 (Orthogonality). Let $(X, \langle \cdot, \cdot \rangle)$ be inner product spaces. Then $x, y \in X$ are orthogonal if $\langle x, y \rangle = 0$ where $x, y \neq 0$.

Theorem 8.7. Let x_i, \ldots, x_n be pairwise orthogonal elements in $(X, \langle \cdot, \cdot \rangle)$. Then

$$\|\sum_{i=1}^{n} x_i\|^2 = \sum_{i=1}^{n} \|x_i\|^2$$

Theorem 8.8 (Parallelogram identity). In $(X, \langle \cdot, \cdot \rangle)$ we have

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 (*)

for all $x, y \in X$.

Remark. If $(X, \|\cdot\|)$ is a normed vector space which satisfies parallelogram identity then X is an inner product space with inner products defined by the polarisation equation

$$\langle x,y \rangle = \begin{cases} \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right) & \mathbb{K} = \mathbb{R} \\ \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2 \right) & \mathbb{K} = \mathbb{C} \end{cases}$$

Definition 8.9 (Projection). Let X be a vector space over \mathbb{K} . A subset M of X is convex if for any $x, y \in M$, then

$$tx + (1-t)y \in M \quad \forall t \in [0,1]$$

Theorem 8.10 (Projection). Let $(\mathcal{H}, \langle \cdot, \cdot, \rangle)$ be a Hilbert space. Let $M \subseteq \mathcal{H}$ be closed and convex. Let $x \in \mathcal{H}$. Then there exists a unique point $m_x \in M$ which is closest to x, i.e.

$$||x - m_x|| = \inf_{m \in M} ||x - m|| = d$$

Proof. For each $k \geq 1$ choose $m_k \in M$ such that

$$d^2 \le ||x - m_k||^2 \le d^2 + \frac{1}{k}$$

Each m_k exists as d is defined as the infimum over all m.

Then

$$||m_k - m_l||^2 = ||(m_k - x) - (m_k - x)||^2$$

$$= 2||m_k - x||^2 + 2||m_l - x||^2 - ||m_k + m_l - 2x||^2$$

$$\leq 2d^2 + \frac{2}{l} + 2d^2 + \frac{2}{k} - 4||\frac{m_k + m_l}{2} - x||^2$$

and as $m_k/2 + m_l/2 \in M$, we have $\|\frac{m_k + m_l}{2} - x\|^2 \ge d^2$. Then

$$||m_k - m_l||^2 \le 2(\frac{1}{k} + \frac{1}{l})$$

Thus (m_k) is Cauchy. So $m_k \to m_x \in M$ as \mathcal{H} is complete and M is closed. We then have

$$||x - m_x|| = d$$

and so now we show that m_x is unique.

Suppose that there exists $m'_x \in M$ with $||x - m'_x|| = d$. Then by the above inequality, we have

$$||m_x - m_x'||^2 = 2||m_x - x||^2 + 2||m_x' - x||^2 - 4||\frac{m_x - m_x'}{2} - x||^2 \le 0$$

from above. \Box

Definition 8.11 (Projection operator). Let $(\mathcal{H}, \langle \cdot, \cdot, \rangle)$ be a Hilbert space. Let $M \subseteq \mathcal{H}$ be closed and convex. Define

$$P_M:\mathcal{H}\to\mathcal{H}$$

by $P_M(x) = m_x$ from above. This is the projection of \mathcal{H} onto M.

Definition 8.12 (Orthogonal decomposition). If $S \subseteq \mathcal{H}$, let

$$S^{\perp} = \{ x \in \mathcal{H} | \langle x, y \rangle = 0 \quad \forall y \in S.$$

We call S^{\perp} the orthogonal component.

9. Lecture 9 - Monday 28 March

Theorem 9.1 (From previous lecture). If $M \subseteq \mathcal{H}$, then the projection of \mathcal{H} onto M is

$$P_m: \mathcal{H} \to \mathcal{H}$$

$$x \mapsto m_r$$

where $m_x \in M$ is the unique element with $||x - m_x|| = \inf_{m \in M} ||x - m||$.

Lemma 9.2. Let $M \subseteq \mathcal{H}$ be closed subspace. Then $x - P_M x \in M^{\perp}$ for all $x \in \mathcal{H}$.

Proof. Let $m \in M$. We need to show $\langle x - P_M x, m \rangle = 0$. This is clear if m = 0. Without loss of generality, assuming $m \neq 0$, we can assume ||m|| = 1. Then write

$$x - P_M x = x - (P_M x + \langle x - P_M x, m \rangle m) + \langle x - P_M x, m \rangle m.$$

Let the bracketed term be m'. Then $x - m' \perp \langle x - P_M x, m \rangle m$ because

$$\langle x - m', \langle x - P_M x, m \rangle m \rangle = \overline{\langle x - P_M x, m \rangle} \langle x - m', m \rangle$$

$$= C \langle x - P_M x - \langle x - P_M x, m \rangle m, m \rangle$$

$$= C (\langle x - P_M x, m \rangle - \langle x - P_M x, m \rangle || m ||)$$

$$= 0.$$

So $||x - P_M x||^2 = ||x - m'||^2 + |\langle x - P_M x, m \rangle|^2$. So $||x - P_M x||^2 \ge ||x - P_M x||^2 + |\langle x - P_M x, m \rangle|^2$ by definition of $P_M x$. Thus,

$$\langle x - P_M x, m \rangle = 0$$

and thus $x - P_M x \in M^{\perp}$.

Theorem 9.3. The following theorem is the key fundamental result. Let $(\mathcal{H}, \langle \cdot, \cdot, \rangle)$ be a Hilbert space. Let M be a closed subspace of \mathcal{H} . Then

$$\mathcal{H} = M \oplus M^{\perp}$$
.

That is, each $x \in \mathcal{H}$ can be written in exactly one way as $x = m + m^{\perp}$ with $m \in M$, $m^{\perp} \in M^{\perp}$.

Proof. Existence - Let $x = P_m x + (x - P_M x)$.

Uniqueness - Let $x=x_1+x_1^{\perp}, \ x=x_2+x_2^{\perp}$ with $x_1,x_2\in M, x_1^{\perp}, x_2^{\perp}\in M^{\perp}$. Then

$$x_1 - x_2 = x_2^{\perp} - x_1^{\perp} \in M^{\perp}$$

Then

$$\langle x_1 - x_2, x_1 - x_n \rangle = 0 \Rightarrow x_1 = x_2.$$

Thus $x_1^{\perp} = x_2^{\perp}$.

Corollary. Let $M \subseteq \mathcal{H}$ be a closed subspace. Then we have

- (a) $P_M \in \mathcal{L}(\mathcal{H}, \mathcal{H})$.
- (b) $||P_M|| \leq 1$.
- (c) $ImP_m = M$, $Ker P_M = M^{\perp}$.
- (d) $P_M^2 = P_M$.
- (e) $P_{M^{\perp}} = I P_{M}$.

Proof. (c), (d), (e) exercises.

(a). Let $x, y \in H$. Write $x = x_1 + x_1^{\perp}$ and $y = y_1 + y_1^{\perp}$ with $x_1, y_1 \in M$ and $x_1^{\perp}, y_1^{\perp} \in M^{\perp}$. Then

$$x = y = (x_1 + y_1) + (x_1^{\perp} + y_1^{\perp})$$

and so

$$P_M(x+y) = x_1 + y_1$$

and similarly $P_M(\alpha x) = \alpha P_M x$. We also have

$$||x||^2 = ||P_M x + (x - P_M x)||^2$$
$$= ||P_M x||^2 + ||x - P_M x||^2$$
$$\ge ||P_M x||^2$$

and so $||P_M|| \leq 1$.

9.1. The dual of a Hilbert space. If $y \in \mathcal{H}$ is fixed, then the map

$$\varphi_y: \mathcal{H} \to \mathbb{K}$$

$$x \mapsto \langle x, y \rangle$$

is in \mathcal{H}' . Linearity is clear, and continuity is proven by Cauchy-Swartz,

$$|\varphi_y(x)| = |\langle x, y \rangle| \le ||y|| ||x||.$$

So $\|\varphi_y\| \leq \|y\|$. Since $|\varphi_y(y)| = \|y\|^2$, we then have

$$\|\varphi_y\| = \|y\|.$$

Theorem 9.4 (Riesz Representation Theorem). Let \mathcal{H} be a Hilbert space. The map

$$\theta: \mathcal{H} \to \mathcal{H}'$$
$$y \mapsto \varphi_y$$

is a conjugate linear bijection, and $\|\varphi_y\| = \|y\|$.

Proof. Conjugate linearity is clear.

Injectivity

$$\varphi_y = \varphi_{y'} \Rightarrow \varphi_y(x) = \varphi_{y'}(x) \quad \forall x$$

SO

$$\langle x, y = \langle x, y' \rangle = 0 \quad \Rightarrow \langle y - y', y - y' \rangle = 0$$

and so y = y'.

Surjectivity Let $\varphi \in H'$. We now find $y \in \mathcal{H}$ with $\varphi = \varphi_y$. If $\varphi = 0$, take y = 0. Suppose $\varphi \neq 0$. Then KER $\varphi \neq \mathcal{H}$. But KER φ is a closed subspace of \mathcal{H} . So

$$H = (\text{Ker } \varphi) \oplus (\text{Ker } \varphi)^{\perp}.$$

Hence (KER φ) $^{\perp} \neq \{0\}$. Pick $z \in (KER \varphi)^{\perp}, z \neq 0$. For each $x \in \mathcal{H}$, the element

$$x - \frac{\varphi(x)}{\varphi(z)} z \in \text{Ker } \varphi$$

Note that $\varphi(z) \neq 0$ since $z \notin \text{Ker } \varphi$. Then

$$0 = \langle x - \frac{\varphi(x)}{\varphi(z)} z, z \rangle$$
$$= \langle x, z - \frac{\varphi(x)}{\varphi(z)} ||z||^2$$

and so

$$\varphi(x) = \langle x, \frac{\overline{\varphi(z)}}{\|z\|^2} z \rangle \quad \forall x \in \mathcal{H},$$

and so letting $y = \frac{\overline{\varphi(z)}}{\|z\|^2} z$, we have $\varphi = \varphi_y$.

Example 9.5. From Hahn-Banach given $y \in \mathcal{H}$ there exists $\varphi \in \mathcal{H}'$ such that

$$\|\varphi\| = 1$$

and $\varphi(y) = ||y||$. We can be very constructive in the Hilbert case, and let

$$\varphi(x) = \langle x, \frac{y}{\|y\|} \rangle$$

Example 9.6. All continuous linear functionals on $L^2([a,b])$ are of the form

$$\varphi(f) = \int_{a}^{b} f(x)\overline{g(x)} dx$$

for some $g \in L^2([a, b])$.

Example 9.7 (Adjoint operators). Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces. Let $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. The **adjoint** of T is $T^* \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ given by

$$\langle Tx, y \rangle_2 = \langle x, T^*y \rangle_1$$

for all $x \in \mathcal{H}_1, y \in \mathcal{H}_2$

Exercise 9.8. Check all of the above.

Exercise 9.9. Prove $T^* = \overline{T^t}$ where T^t is the transpose.

10. Lecture 10 - Wednesday 30 March

Definition 10.1 (Orthonormal system). As subset $S \subseteq \mathcal{H}$ is an **orthonormal system** (orthonormal) if

$$\langle e, e' \rangle = \delta_{e,e'} \quad \forall e, e' \in S$$

Definition 10.2 (Complete orthonormal system or Hilbert basis). An orthonormal system S is **complete** or a **Hilbert basis** if

$$\overline{\operatorname{span} S} = \mathcal{H}$$

Remark. By Gram-Schmidt and Zorn's Lemma, every Hilbert space has a complete orthonormal system.

Example 10.3. (1) ℓ^2 . Then

$$S = \{e_i \mid i \ge 1\}$$

is orthonormal and is complete.

(2) $L^2_{\mathbb{C}}([0,2\pi])$. Then

$$S = \{ \frac{1}{2\pi} e^{int} \mid n \in \mathbb{Z} \}$$

is orthonormal and is complete. Completeness follows from Stone-Weierstrass theorem.

(3) $L^2_{\mathbb{R}}([0, 2\pi])$. Then

$$S = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \cos nt, \frac{1}{\sqrt{\pi}} \sin nt \mid n \ge 1 \right\}$$

is orthonormal and is complete, again by Stone-Weierstrass.

We want to look at series $\sum_{e \in S} ...$, which is tricky if S is not countable.

Lemma 10.4. If $\{e_k \mid k \geq 0\}$ is orthonormal, then

$$\sum_{k=0}^{\infty} a_l e_k$$

converges in H if and only if

$$\sum_{k=0}^{\infty} |a_k|^2$$

converges in \mathbb{K} .

If either series converges, then

$$\left\| \sum_{k=0}^{\infty} a_k e_k \right\|^2 = \sum_{k=0}^{\infty} |a_k|^2$$

Note. If $x_n \to x, y_n \to y$, then

$$\langle x_n, y_n \rangle \to \langle x, y \rangle$$

Proof. If $\sum_{k=0}^{\infty} a_k e_k$ converges to x, then

$$\langle x, x \rangle = \lim_{n \to \infty} \langle \sum_{k=0}^{n} a_k e_k, \sum_{k=0}^{n} a_k e_k \rangle$$
$$= \lim_{n \to \infty} \sum_{k=0}^{n} |a_k|^2$$

Conversely, if $\sum_{k=0}^{\infty} |a_k|^2$ converges, then writing $x_n = \sum_{k=0}^n a_k e_k$, we have

$$||x_m - x_n||^2 = ||\sum_{k=n+1}^m a_k e_k||^2$$

$$= \sum_{k=n+1}^m ||a_k e_k||^2 \text{ by Pythagoras}$$

$$= \sum_{k=n+1}^m |a_k|^2 \to 0$$

and so (x_n) is Cauchy, and hence converges by completeness of \mathcal{H} .

Lemma 10.5. Let $\{e_1, \ldots, e_n\}$ be orthonormal. Then

$$\sum_{k=1}^{n} |\langle x, e_k \rangle|^2 \le ||x||^2$$

for each $x \in \mathcal{H}$.

Proof. Let $y = \sum_{k=1}^{n} \langle x, e_k \rangle e_k$. Let z = x - y. We claim that $z \perp y$. We have

$$\begin{split} \langle x,y \rangle &= \langle x-y,y \rangle \\ &= \langle x,y \rangle - \|y\|^2 \\ &= \sum_{k=1}^n \overline{\langle x,e_k \rangle} \, \langle x,e_k \rangle - \sum_{k=1}^n |\langle x,e_k \rangle|^2 \\ &= 0. \end{split}$$

So

$$||x||^2 = ||y + z||^2$$

$$= ||y||^2 + ||z||^2$$
 Pythagoras
$$\ge ||y||^2 = \sum_{k=1}^n |\langle x, e_k \rangle|^2$$

We want to write expressions like $\sum_{e \in S} \langle x, e \rangle e$.

Corollary. Let $x \in \mathcal{H}$ and S orthonormal. Then

$$\{e \in S \mid \langle x, e \rangle \neq 0\}$$

is countable.

Proof.

$$\{e \in S \mid \langle x, e \rangle \neq 0\} = \bigcup_{k \ge 1} \{e \in S \mid |\langle x, e \rangle| > \frac{1}{k}$$

From the lemma,

$$\#\{e\in S\,|\,|\,\langle x,e\rangle\,|>\frac{1}{k}\}\leq k^2\|x^2\|$$

For if this number were greater than $k^2\|x\|^2$, then the LHS in Lemma is greater than $\frac{1}{k^2}k^2\|x\|^2$. \Box Therefore:

Corollary (Bessel's Inequality). If S is orthonormal, then

$$\sum_{e \in S} |\langle x, e \rangle|^2 \le ||x||^2$$

for all $x \in \mathcal{H}$

Proof. $\sum_{e \in S} |\langle x, e \rangle|^2$ is a sum of countably many positive terms, and so order is not important. \square We want to write $\sum_{e \in S} \langle x, e \rangle e$. This sum is over a countable set, but is the order important?

Theorem 10.6. Let S be orthonormal. Let $M = \overline{span S}$. Then

$$P_M x = \sum_{e \in S} \langle x, e \rangle e$$

where the sum can be taken in any order.

Proof. Fix $x \in H$. Choose an enumeration

$$\{e_k \mid k > 0\} = \{e \in S \mid \langle x, e \rangle \neq 0\}.$$

By Bessel's inequality, we have

$$\sum_{k=0}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2$$

and so the LHS converges. By Lemma 10.4, we know

$$y = \sum_{k=0}^{\infty} \langle x, e_k \rangle e_k \in M$$

converges in \mathcal{H} .

Write $x = y + (x - y) = M + M^{\perp}$. We claim $(x - y) \in M^{\perp}$. Then $P_M x = y$ from characterisation of projection operator. Let $e \in S$. Then

$$\langle x - y, e \rangle = \lim_{n \to \infty} \left\langle x - \sum_{k=0}^{n} \langle x, e_k \rangle e_k, e \right\rangle$$
$$= \lim_{n \to \infty} (\langle x, e \rangle - \sum_{k=0}^{n} \langle x, e_k \rangle \langle e_k, e \rangle)$$
$$= \langle x, e \rangle - \sum_{k=0}^{\infty} \langle x, e_k \rangle \langle e_k, e \rangle.$$

If $e \in \{e' \in S \mid \langle x, e' \rangle \neq 0\}$, then $e = e_j$ for some j, and so

$$\langle x - y, e \rangle = \langle x, e_j \rangle - \langle x, e_j \rangle = 0$$

If $\langle x,e \rangle = 0$, then $e \neq e_j$ for all j, and so $\langle e_j,e \rangle = 0$, and so

$$\langle x - y, e \rangle = 0 - 0 = 0.$$

Thus $x - y \in (\text{span } S)^{\perp}$.

Exercise 10.7. Show that

$$x - y \in \overline{(\operatorname{span} S)}^{\perp} = M^{\perp}.$$

11. Lecture 11 - Monday 4 April

Recall that if $\{x_1,\ldots\}$ is a countable orthonormal system in a Hilbert space \mathcal{H} . Then

$$\sum_{k=1}^{\infty} a_k e_k < \infty \iff \sum_{k=1}^{\infty} |a_k|^2 < \infty$$

and

$$\|\sum_{k=1}^{\infty} a_k e_k\|^2 = \sum_{k=1}^{\infty} |a_k|^2 \tag{*}$$

We also had the following.

Theorem 11.1. Let S be orthonormal in \mathcal{H} . Let $M = \overline{span S}$. Then

$$P_{M}x = \sum_{e \in S} \langle x, e \rangle e \quad \forall x \in \mathcal{H}$$

where the sum has only countable many terms and convergence is unconditional.

Theorem 11.2. Let S be orthonormal in \mathcal{H} . Then following are equivalent.

- (a) S is a complete orthonormal system $(\overline{span S} = \mathcal{H})$.
- (b) $x = \sum_{e \in S} \langle x, e \rangle e$ for all x (Fourier series).
- (c) $||x||^2 = \sum_{e \in S} |\langle x, e \rangle|^2$ for all x (Parseval's formula).

Proof. (a) \Rightarrow (b). If $M = \overline{\text{span } S} = \mathcal{H}$, then

$$P_M x = x = \sum_{e \in S} \langle x, e \rangle e$$

by Theorem 11.1.

- (b) \Rightarrow (c). By the infinite Pythagoras theorem (\star).
- (c) \Rightarrow (a). Let $M = \overline{\text{span } S}$. Suppose that $z \in M^{\perp}$. Then $z = 0 + z \in M + M^{\perp}$. Hence

$$0 = \|P_M z\|^2 = \|\sum_{e \in S} \langle z, e \rangle e\|^2 = \sum_{e \in S} |\langle z, e \rangle|^2 = \|z\|^2$$

which implies z = 0, so $M = \mathcal{H}$, and so S is complete.

Remark. Consider $L^2([0,2\pi])$, and let $S = \{e_n \mid n \in Z\}$. Then we can write

$$f = \sum_{n \in \mathbb{Z}} c_n e_n$$

where $c_n = \langle f, e_n \rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(t) e^{-int} dt$.

We do not claim that convergence is pointwise, what we have proven is convergence is in L^2 ,

$$||f - \sum_{|n| \le N} c_n e_n||_2 \to 0$$

as $N \to \infty$. This is not the same as pointwise or uniform convergence $(\|\cdot\|_{\infty})$.

11.1. **Stone-Weierstrass theorem.** This is a useful tool to show an orthonormal system is complete. In fact, this theorem is about uniformly approximating elements of C(X), where X is a compact Hausdorff space. it is a generalisation of the Weierstrass approximation theorem.

Theorem 11.3 (Weierstrass approximation theorem). Let $f \in \mathcal{C}([a,b])$ and let $\epsilon > 0$ be given. Then there exists a polynomial p(x) such that

$$|f(x) - p(x)| < \infty \quad \forall x \in [a, b],$$

that is, $||f - p||_{\infty} < \epsilon$.

Corollary. This implies the following important results:

- Continuous functions can be uniformly approximated by polynomials.
- $\mathcal{P}([a,b])$, the space of polynomials on [a,b], is dense in $\mathcal{C}([a,b])$.
- $\overline{\mathcal{P}([a,b])} = \mathcal{C}([a,b]).$

We now prove Stone's 1930's generalisation.

First some setup: Let X be a compact Hausdorff space throughout. We then know that $\mathcal{C}(X)$ is a vector space. It also has sensible vector multiplication,

$$(fg)(x) = f(x)g(x).$$

Thus C(X) is a unital, commutative, associative ring. As we have

$$f(\lambda g) = \lambda(fg)$$

then $\mathcal{C}(X)$ is a unital, commutative, associative algebra over \mathbb{K} .

Definition 11.4 (Subalgebra). A subalgebra of C(X) is a subset A which is closed under scalar multiplication, vector addition, and vector multiplication. A is unital if it contains the constant function f(x) = 1.

Example 11.5. $\mathcal{P}([a,b])$ is a subalgebra of $\mathcal{C}([a,b])$.

When is \mathcal{A} dense in $\mathcal{C}(X)$?

Theorem 11.6 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a subalgebra of C(X). If

- (1) A is unital,
- (2) $f \in \mathcal{A} \Rightarrow f^* \in \mathcal{A}$, where $f^*(x) = \overline{f(x)}$,
- (3) A separates points of X.

Then $\overline{\mathcal{A}} = \mathcal{C}(X)$.

Definition 11.7. \mathcal{A} separates points of X if, given $x \neq y$, there is a function $f \in \mathcal{A}$ with $f(x) \neq f(y)$.

Corollary. (a) $\mathcal{P}([a,b])$ is dense in $\mathcal{C}([a,b])$, as f(x) = x separates points.

(b) Trigonometric polynomials are dense in

$$\{f \in \mathcal{C}([0, 2\pi]) \mid f(0) = f(2\pi)\}.$$

(c) Trigonometric polynomials are dense in $L^2([0,2\pi])$, and

$$S = \{e_n \mid n \in \mathbb{Z}\}$$

is complete.

Setup

Lemma 11.8. The function f(t) = |t| can be uniformly approximated by polynomials on [-1,1]

Proof. The binomial theorem says

$$(1+x)^{1/2} = \sum_{n=0}^{\infty} {1 \choose 2 \choose n} x^n \quad \forall x \in [-1,1]$$

We then have

$$|t| = \sqrt{t^2} = \sqrt{1 + (t^2 - 1)} = \sum_{n=0}^{\infty} {1 \choose 2 \choose n} (t^2 - 1)^n \quad t \in [-\sqrt{2}, \sqrt{2}]$$

Now let $p_N(t) = sum_{n=0}^N (\frac{1}{2})(t^2 - 1)^n$, and

$$||t| - p_N(t)| = |\sum_{n=N+1}^{\infty} {1 \choose n} (t^2 - 1)^n| \le \sum_{n=N+1}^{\infty} |{1 \choose 2 \choose n}|$$

and so $||t| - p_n||_{\infty} \to 0$ as $N \to \infty$ on [-1, 1].

12. Lecture 12 - Wednesday 6 April

Theorem 12.1 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a subalgebra of C(X). If

- (1) A is unital,
- (2) $f \in \mathcal{A} \Rightarrow f^* \in \mathcal{A}$, where $f^*(x) = \overline{f(x)}$,
- (3) A separates points of X.

Then $\overline{\mathcal{A}} = \mathcal{C}(X)$.

Proof. We first prove for $\mathcal{C}_{\mathbb{R}}(X)$.

Lemma 12.2. Let A be a unital subalgebra of $C_{\mathbb{R}}(X)$. Then

- (a) $|f| \in \overline{\mathcal{A}}$,
- (b) $\min(f_1,\ldots,f_n), \max(f_1,\ldots,f_n) \in \overline{\mathcal{A}}$

for all $f, f_1, \ldots, f_n \in \mathcal{A} \subseteq \mathcal{C}_{\mathbb{R}}(X)$.

Proof. (a) Replace f by $\frac{f}{\|f\|_{\infty}}$ so we can assume that $\|f\|_{\infty} = 1$. From the previous lemma, we know for each $n \geq 1$ there is a polynomial $p_n : [-1,1] \to \mathbb{R}$ such that $||t| - p_n(t)| < \frac{1}{n}$ for all $t \in [-1,1]$.

Since $|f(x)| \le ||f||_{\infty} = 1$ for all $x \in X$, we have

$$|||f| - p_n(f)|| \le \frac{1}{n}$$

But $p_n(f)$ is a finite linear combination of $1, f, f^2, f^3, \ldots$ and so in in \mathcal{A} , as \mathcal{A} is unital. Thus $|f| \in \overline{\mathcal{A}}$.

(b) Use the formulas

$$\max(f,g) = \frac{f+g-|f-g|}{2}, \quad \min(f,g) = \frac{f+g-|f-g|}{2} \in \overline{\mathcal{A}}$$

and induction.

Proof of Stone-Weierstrass for $\mathcal{C}_{\mathbb{R}}(X)$. Let $f \in \mathcal{C}_{\mathbb{R}}(X)$ and let $\epsilon > 0$ be given. We need to find $g \in \mathcal{A}$ such that

$$|f(z) - g(z)| < \epsilon \quad \forall z \in X$$

Step 0. We can assume that A is closed.

Exercise 12.3. Why?

Step 1. Let $x, y \in X$ be fixed.

Proposition 12.4. There exists $f_{xy} \in \mathcal{A}$ with

$$f_{xy}(x) = f(x), \quad f_{xy}(x) = f(y)$$

Proof. If x = y then trivial (take $f_{xy}(z) = f(x)\mathbf{1}(z)$).

If $x \neq y$, since A separates points, there is $h \in \mathcal{A}$ with $h(x) \neq h(y)$. Then take

$$f_{xy} = ah + b1 \in \mathcal{A}$$

we can invert the coefficient matrix to find our coefficients a and b.

Step 2. Let $x \in X$ be fixed.

Proposition 12.5. There exists $f_x \in A$ such that

- $\bullet \ f_x(x) = f(x).$
- $f_x(z) < f(z) + \epsilon$

Proof. For each $y \in X$, let

$$O_y = \{ z \in X \mid f_{xy}(z) < f(z) + \epsilon \}$$

where f_{xy} is the function from Step 1. These are all open sets (why?) and thus

$$X = \bigcup_{y \in X} O_y$$

since $y \in O_y$.

By compactness of X, we have

$$X = \bigcup_{i=1}^{m} O_{y_i}$$

Letting $f_x = \min(f_{xy_1}, \dots, f_{xy_n})$. Then

• Since $f_{xy_i}(x) = f(x)$ for all i,

$$f_x(x) = f(x)$$

• If $z \in X$, then $z \in O_{y_i}$ for some i, and so

$$f_x(z) \le f_{xy_i}(z) < f(z) + \epsilon$$

as required.

Step 3.

Proposition 12.6. There exists a function $g \in A$ such that

$$|f(z) - g(z)| < \epsilon$$

for all $z \in X$.

Proof. For each $x \in X$, let

$$U_x = \{ z \in X \mid f_x(z) > f(x) - \epsilon \}$$

where f_x is from Step 2. These sets U_i are open and since $x \in U_x$, for an open cover, we can write

$$X = \bigcup_{x \in X} U_x = \bigcup_{j=1}^n U_{x_j}.$$

Define $g = \max(f_{x_1}, \dots, f_{x_n})$. If $z \in X$,

- $g(z) = f_{x_i}(z)$ for some i, which is less than $f(z) + \epsilon$ from Step 2.
- If $z \in U_{x_j}$ for some $j = 1, \ldots, n$, then

$$g(z) \ge f_{x_j}(z) > f(x) - \epsilon.$$

Exercise 12.7. Where did we use the Hausdorff property?

We now prove for $\mathcal{C}_{\mathbb{C}}(X)$.

Let

$$\mathcal{A}_{\mathbb{R}} = \{ f \in \mathcal{A} \mid f \text{ is real valued} \}.$$

THen $\mathcal{A}_{\mathbb{R}}$ is an \mathbb{R} -subalgebra of $\mathcal{C}_{\mathbb{R}}(X)$. It is unital, as $1 \in \mathcal{A}$ and it is real valued.

We now show $\mathcal{A}_{\mathbb{R}}$ separates points. If $x \neq y$, there is $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. Write f = u + iv with u, v real valued. Either $u(x) \neq u(y)$ or $v(x) \neq v(y)$, and so $\mathcal{A}_{\mathbb{R}}$ separates points.

Hence $\mathcal{A}_{\mathbb{R}}$ is dense in $\mathcal{C}_{\mathbb{R}}$.

Now, let $f \in \mathcal{C}_{\mathbb{C}}(X)$. Then write f = u + iv. Then $u, v \in \mathcal{C}_{\mathbb{R}}(X)$. Then given $\epsilon > 0$, there exists $u_1, v_1 \in \mathcal{A}_{\mathbb{R}}$ such that

$$||u - u_1||_{\infty} \le \frac{\epsilon}{2}, \quad ||v - v_1||_{\infty} \le \frac{\epsilon}{2}$$

Writing $f_1 = u_1 + iv_1 \in \mathcal{A}$, we have

$$||f - f_1||_{\infty} \le ||(u - u_1) + i(v - v_1)||_{\infty} \le ||u - u_1||_{\infty} + ||v - v_1||_{\infty} < \epsilon$$

and thus \mathcal{A} is dense in $\mathcal{C}_{\mathbb{C}}(X)$.

13. Lecture 13 - Monday 11 April

13.1. Applications of Stone-Weierstrass theorem.

Corollary. Polynomials are dense in C([a,b]).

Proof. $\mathcal{A} = \mathcal{P}([a,b])$ is an algebra, is unital, is closed under complex conjugation, and separates points. Thus, \mathcal{A} is dense in $\mathcal{C}([a,b])$.

Definition 13.1 (Trigonometric polynomials). A trigonometric polynomial is an expression

$$\sum_{n\in\mathbb{Z}}c_ne^{inn}$$

with finitely many $c_n \neq 0$. So these are polynomials in $s = e^{it}$ and $s^{-1} = \overline{s} = e^{-it}$.

Corollary. The space A of all trigonometric polynomials is dense in $C(\Pi)$, where $\Pi = \{z \in \mathbb{C} \mid |z| = 1\}$

Proof. \mathcal{A} is a sub-algebra of $\mathcal{C}(\Pi)$, it is unital, closed under complex conjugation,

$$\overline{\sum_{n\in\mathbb{Z}} c_n e^{int}} = \sum_{n\in\mathbb{Z}} \overline{c_{-n}} e^{int}$$

and separates points. T is a compact Hausdorff space, and thus Stone-Weierstrass states that \mathcal{A} is dense in $\mathcal{C}(\Pi)$.

Corollary. The orthonomal system

$$S = \{ \frac{1}{\sqrt{2\pi}} e^{int} \mid n \in \mathbb{Z} \}$$

is complete in $L^2([0,2\pi])$.

Proof. span $S = \mathcal{A}$ is a space of trigonometric polynomials, which is dense in $\mathcal{C}(\Pi)$. Define

$$\Phi: \mathcal{C}_p([0,2\pi])] \to \mathcal{C}(\Pi)$$
$$f \mapsto \tilde{f}$$

where $C_p([0,2\pi]) = \{f \in C([0,2\pi]) | f(0=f(2\pi))\}$. Then Φ is an isometric isomorphism, and therefore functions of the form $f(t) = \sum c_n e^{int}$ is dense in $C_p([0,2\pi])$.

By the construction of the Lebesgue integral, simple functions

$$\sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$$

are dense in $L^2([0,2\pi])$.

Exercise 13.2. Given $f \in L^2([0,2\pi])$ and $\epsilon > 0$, there exists $g \in \mathcal{C}_p([0,2\pi])$ such that $||f-g||_2 < \epsilon$.

Thus \mathcal{A} is dense in $L^2([0,2\pi])$.

Corollary. The following are separable (have a countable dense subset):

- (a) C([a,b]),
- (b) $L^p([a,b])$, $1 \le p < \infty$

Proof. (a) We have $\mathcal{P}([a,b])$ is dense in $\mathcal{C}([a,b])$ and set $\mathcal{P}_{\mathbb{Q}}([a,b])$ with rational coefficients is dense in $\mathcal{P}([a,b])$. Clearly, $\mathcal{P}_{\mathbb{Q}}([a,b])$ is countable, and thus is dense in $\mathcal{C}([a,b])$.

(b) Use the fact that C([a,b]) is dense in $L^p([a,b])$.

Corollary. Let X be a compact metric space. Then C(X) is separable.

Proof. As X is a compact metric space, then X is separable.

Exercise 13.3. Why?

Let $\{x_n \mid n \geq 1\}$ be a countable dense subset of X. For each $n \geq 1$ and $m \geq 1$ define

$$f_{n,m}:X\to\mathbb{K}$$

by

$$f_{n,m}(x) = \inf_{z \notin B(x_n, \frac{1}{m})} d(x, z)$$

We then claim $f_{n,m}$ is continuous. Now, let \mathcal{A} be the space of all \mathbb{K} -linear combinations of

$$f_{n_1, m_1}^{k_1}, \dots, f_{n_l, m_l}^{k_l}, k_1, \dots, k_l \in \mathcal{N}.$$
 (*)

This is a sub-algebra of C(X), as A is unital, closed under conjugation, and separates points - if $z_1, z_2 \in X$ with $z_1 \neq z_2$, Choose n, m such that $z_1 \in B(x_n, \frac{1}{m})$, $z_n \notin B(x_n, \frac{1}{m})$. Thus the sub-algebra A is dense by Stone-Weierstrass.

The subset of \mathbb{Q} -linear combinations of (\star) is countable and dense.

Lemma 13.4. If X is compact metric space then X is separable.

Proof. For each $m \geq 1$,

$$X = \bigcup_{x \in X} B(x; \frac{1}{m})$$

has a finite subcover

$$X = \bigcup_{n=1}^{N_m} B(x_{m,n} \frac{1}{m})$$

and thus the subset of all $\{x_{m,n}\}$ is a countably dense subset.

Corollary.

$$\frac{pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Proof. $S = \{\frac{1}{\sqrt{2\pi}}e^{int} \mid n \in \mathbb{Z}\}$ is complete, and so Parseval's formula holds,

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |\langle f, e_n \rangle|^2.$$

Apply to f(x) = x.

A common strategy is to prove for polynomials, and then Stone-Weierstrass proves it for continuous functions.

Corollary. If $f \in \mathcal{C}([a,b] \times [c,d])$ then

$$\int_a^b \int_c^d f(x,y) \, dy dx = \int_c^d \int_a^b f(x,y) \, dx dy$$

Proof. By direct calculation, the result is true for two-variable polynomials. Let $f \in \mathcal{C}([a,b] \times [c,d])$ and $\epsilon > 0$ be given. By Stone-Weierstrass, the space of polynomials in 2 variables is dense in $\mathcal{C}([a,b] \times [c,d])$ and so there exists a polynomial p(x,y) with

$$|f(x,y) - p(x,y)| < \frac{\epsilon}{(b-a)(d-c)}.$$

The result then follows by direct calculation.

14. Lecture 14 - Wednesday 13 April

The following is at the core of two of the cornerstone theorems of functional analysis - the uniform boundedness principle and the open mapping theorem.

Theorem 14.1 (Baire's theorem). Let X be a complete metric space. If U_1, U_2, \ldots are open dense subsets of X, then

$$U = \bigcap_{n=1}^{\infty} U_n$$

is dense in X.

Proof. Let $x \in X$ and $\epsilon > 0$ be given. We need to show that

$$B(x,\epsilon) \cap U \neq \emptyset.$$

Lemma 14.2. There exists sequences (x_n) in X and (ϵ_n) in \mathbb{R}^+ with the property that

- (a) $x_1 = x$, $\epsilon_1 = \epsilon$.
- $(h) \epsilon_m + 0$
- (c) $\overline{B(x_{n+1}, \epsilon_{n+1})} \subseteq B(x_n, \epsilon_n) \cap U_n \text{ for all } n \ge 1.$

Proof. Let x_1, \ldots, x_n and $\epsilon_1, \ldots, \epsilon_n$ be chosen. By density of U_n ,

$$B(x_n, \epsilon_n) \cap U_n \neq \emptyset.$$

Choose $x_{n+1} \in B(x_n, \epsilon_n) \cap U_n$. Choose $\epsilon'_{n+1} > 0$ such that $B(x_{n+1}, \epsilon'_{n+1}) \subseteq B(x_n, \epsilon_n) \cap U_n$ (openness). We have $\epsilon'_{n+1} \leq \epsilon_n$. Choose $0 \leq \epsilon_{n+1} \leq \min(\frac{\epsilon'_{n+1}}{2}, \frac{1}{n+1})$, then we have

$$\overline{B}(x_{n+1}, \epsilon_{n+1}) \subseteq B(x_{n+1}, \epsilon'_{n+1})$$

$$\subseteq B(x_n, \epsilon_n) \cap U_n$$

and $\epsilon_{n+1} < \epsilon_n$ with $\epsilon_{n+1} < \frac{1}{n+1}$.

Given the lemma, the theorem follows. If $m \ge n$, then by (c),

$$B(x_m, \epsilon_m) \subseteq B(x_n, \epsilon_n) \cap U_n \tag{*}$$

In particular, $x_m \in B(x_n, \epsilon_n)$. Thus, $d(x_n, x_m) < \epsilon_n$ for all $m \ge n$. Thus (x_n) is Cauchy, and so $x_n \to \zeta$ in X by completeness. By (\star) , we then have $d(x_n, \zeta) \le \epsilon_n$ for all $n \ge 1$. So $\zeta \in \overline{B(x_n, \epsilon_n)}$. So by $(c), \zeta \in \overline{B(x_{n+1}, \epsilon_{n+1})} \subseteq B(x_n, \epsilon_n) \cap U_n$.

Thus
$$\zeta \in B(x, \epsilon)$$
 and thus $\zeta \in U = \bigcap_{n=1}^{\infty} U_n$.

The following corollary is often used

Corollary. Let X be a complete metric space. If C_1, C_2, \ldots are closed with $X = \bigcup_{n=1}^{\infty}$ then $Int(C_n) \neq \emptyset$ for some n.

Proof. If $\operatorname{Int}(C_n) = \emptyset$ for all n then $U_n = X \setminus C_n$ are open and dense. So by Baire's theorem, $\bigcap_{n=1}^{\infty} U_n$ is sense, and in particular, $\bigcap_{n=1}^{\infty} U_n \neq \emptyset$. We have

$$X = \bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} (X \setminus U_n)$$
$$= X \setminus (\bigcap_{n=1}^{\infty} U_n)$$
$$\subsetneq X,$$

a contradiction.

There are three cornerstone theorems.

- Hahn-Banach,
- Uniform Boundedness,
- Open Mapping.

Theorem 14.3 (Uniform boundedness). Let X, Y be Banach spaces. Let T_{α} , $\alpha \in A$, a family of continuous linear operators $T_{\alpha}: X \to Y$. Then if

$$\sup_{\alpha \in A} \|T_{\alpha}x\| < \infty$$

for each fixed $x \in X$, then

$$\sup_{\alpha \in A} \|T_{\alpha}\| < \infty$$

Remark. Rather amazing - you get a global bound from pointwise bounds.

Proof. For each $n \geq 1$, let

$$X_n = \{ x \in X \mid ||T_{\alpha}x|| \le n \,\forall \alpha \in A \}$$

These are **closed** (T_{α} is continuous) and

$$X = \bigcup_{n=1}^{\infty} X_n$$

by the hypothesis.

By the corollary to Baire's theorem, we know there exists $n_0 \ge 1$ with $\operatorname{Int}(X_{n_0}) \ne \emptyset$. Choose $x_0 \in \operatorname{Int}(X_{n_0})$, and let r > 0 such that

$$B(x_0, r) \subseteq \operatorname{Int}(X_{n_0}).$$

If $||z|| \le 1$ then $x_0 + rz \in \overline{B}(x_0, r)$. So $x_0 + rz \in X_{n_0}$, and

$$||T_{\alpha}(x_0+rz)|| \le n_0 \,\forall \alpha \in A,$$

but $|||a|| - ||b||| \le ||a + b||$, so

$$||T_{\alpha}(rz)|| - ||T_{\alpha}(x_0)|| \le ||T_{\alpha}(x_0 + rz)|| \le n_0.$$

So $r||T_{\alpha}z|| \leq n_0 + n_0$, and

$$||T_{\alpha}z|| \le \frac{2n_0}{r} \, \forall ||z|| \le 1, \forall \alpha \in A$$

For a general $x \in X$,

$$||T_{\alpha}x|| = ||T_{\alpha}(\frac{x}{||x||})||x|| \le \frac{2n_0}{r}||x||$$

and thus $||T_{\alpha}|| \leq \frac{2n_0}{r}$, which implies

$$\sup_{\alpha \in A} \|T_{\alpha}\| < \infty \qquad \qquad \Box$$

15. Lecture 15 - Monday 18 April

Recall, the Fourier series of $f \in L^2([-\pi, \pi])$ is

$$\sum_{k \in \mathbb{Z}} \langle f, e_k \rangle \, e_k$$

where $e_k(t) = \frac{e^{ikt}}{\sqrt{2\pi}}$. This converges to f in the L^2 norm.

Exercise 15.1. If f is 2π -periodic and continuous, does the Fourier series converge pointwise?

There are explicit (complicated) examples, but the easiest existence is using the uniform boundedness principle.

Proposition 15.2. There is a 2π periodic continuous function whose Fourier series does not converge at 0.

Proof. Let $C_p([-\pi, \pi]) = \{ f \in C([-\pi, \pi]) \mid f(-\pi) = f(\pi) \}$. This is a Banach space with $\| \cdot \|_{\infty}$. If $f \in C_p$, let

$$f_n = \sum_{|k| \le n} \langle f, e_k \rangle e_k.$$

Remark. We can now define, for each $n \geq 1$, a linear operator $T_n : \mathcal{C}_p \to \mathbb{K}$ by

$$T_n(f) = f_n(0).$$

If $f_n(0)$ converges (as $n \to \infty$) for each $f \in \mathcal{C}_p$, then

$$\sup_{n\geq 1}|T_nf|=\sup_{n\geq 1}|f_n(0)|<\infty$$

for all $f \in \mathcal{C}_p$, which by uniform boundedness implies

$$\sup_{n\geq 1} \|T_n\| \leq \infty. \tag{*}$$

We now show that (\star) is false.

We have

$$f_n(x) = \sum_{|k| \le n} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt} dt e^{ikx}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \left(\sum_{|k| \le n} e^{-ik(x-t)} \right) dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt$$

where $D_n(t) = \sum_{|k| \le n} e^{ikt}$ is the **Dirichlet Kernel**. The Dirichlet kernel is real, and even, with

$$D_n(t) = \frac{\sin(n + \frac{1}{2})t}{\sin\frac{t}{2}}.$$

Note. T_n is continuous, with norm $||T_n|| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt$.

Proof.

$$|T_n(f)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| |D_n(t)| dt$$

$$\le \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt\right) ||f||_{\infty}$$

and so $||T_n|| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt$.

Going the other way, let

$$s_t = \begin{cases} 1 & D_n(t) \ge 0 \\ -1 & D_n(t) < 0 \end{cases}.$$

We have seen hat set functions can be approximated in L^1 -norm by continuous (periodic) functions. So if $\epsilon > 0$ is given, there is a $g \in \mathcal{C}_p$ such that

$$\left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (g(t) - s(t)) D_n(t) dt \right| < \epsilon.$$

g can be chosen with $||g||_{\infty} = 1$.

So

$$\left| T_n(g) - \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| \, dt \right| < \epsilon.$$

Thus

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt - |T_n(g)| < \epsilon.$$

So

$$|T_n(g)| \ge \frac{\|g\|_{\infty}}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt - \epsilon.$$

Since $\epsilon > 0$ was arbitrary,

$$||T_n|| \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt.$$

All that remains is to show that

$$||T_n|| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt \to \infty$$

We have

$$||T_n|| = \frac{1}{\pi} \int_0^{\pi} |D_n(t)| dt$$

$$= \frac{1}{\pi} \int_0^{\pi} \frac{|\sin(n + \frac{1}{2})t|}{|\sin\frac{t}{2}|} dt$$

$$\geq \frac{2}{\pi} \int_0^{\pi} \frac{|\sin(n + \frac{1}{2})t|}{t} dt$$

$$= \frac{2}{\pi} \int_0^{(n + \frac{1}{2})\pi} \frac{\sin v}{v} dv$$

$$\geq \frac{2}{\pi} \int_0^{n\pi} \frac{\sin v}{v} dv$$

$$= \frac{2}{\pi} \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} \frac{|\sin v|}{v} dv$$

$$\geq \sum_{k=1}^n \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin v| dv$$

$$= \frac{4}{\pi^2} \sum_{k=1}^n \frac{1}{k} \to \infty$$

as $n \to \infty$.

Thus there exists $f \in \mathcal{C}_p$ such that the Fourier series of f diverges at x = 0.

15.1. The open mapping theorem. This theorem is tailor-made to deal with inverse operators.

Definition 15.3 (Open mapping). Let X, Y be metric spaces. A function $f: X \to Y$ is **open** if open sets in X are mapped to open sets in Y.

Theorem 15.4 (Open mapping theorem). Let X, Y be Banach spaces. If $T \in \mathcal{L}(X, Y)$ is surjective then T is open.

Corollary (Bounded inverse theorem). Let X, Y be Banach spaces. If $T \in \mathcal{L}(X, Y)$ is bijective, then

$$T^{-1} \in \mathcal{L}(Y, X)$$
.

Proof. Let $O \subseteq X$ be open. Then $(T^{-1})^{-1}(O) = T(O)$ is open (by the open mapping theorem). Thus T^{-1} is continuous.

Corollary. Let $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ be Banach spaces. If

$$||x||_1 \le C||x||_2 \quad \forall x \in X$$

then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Proof.

$$i: (X, \|\cdot\|_2) \to (X, \|\cdot\|_1)$$

 $x \mapsto x$

is linear, surjective and injective, and also continuous, as

$$||i(x)|| = ||x||_1 \le C||x||_2.$$

So the bounded inverse theorem gives

$$i^{-1}: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$$

is continuous. Thus there exists A > 0 such that $||i^{-1}(x)||_2 \le A||x||_1$, which implies $||x||_2 \le A||x||_1$. So

$$\frac{1}{A}||x||_2 \le ||x||_1 \quad \forall x \in X$$

More generally, if $T \in \mathcal{L}(X,Y)$ is bijective, then by the bounded inverse theorem,

$$c\|x\| \le \|Tx\| \le C\|x\|$$

where $c = \frac{1}{\|T^{-1}\|}$, $C = \|T\|$.

16. Lecture 16 - Wednesday 20 April

Lemma 16.1. Let X be a Banach space and Y a normed space. Then for $T \in \mathcal{L}(X,Y)$, the following are equivalent.

- (a) T is open
- (b) There exists r > 0 such that $B(0,r) \subseteq T(\overline{B(0,1)})$
- (c) There exists r > 0 such that $B(0,r) \subseteq T(\overline{B(0,1)})$.

Proof. $(a) \Rightarrow (b), (c)$. As B(0,1) is open, the set T(B(0,1)) is open in Y. Since $0 \in T(B(0,1))$ there exists > 0 such that the set

$$B(0,r) \subseteq T(B(0,1)) \subseteq T(\overline{B(0,1)}) \subseteq \overline{T(\overline{B(0,1)})}.$$

 $(c) \Rightarrow (b)$. Assume that there exists r > 0 such that

$$B(0,r) \subseteq \overline{T(\overline{B(0,1)})}.$$

We now show that $B(0, \frac{r}{2}) \subseteq T(\overline{B(0, 1)})$ which proves (b). Let $y \in B(0, \frac{r}{2})$. Then $2y \in B(0, r)$ and since $B(0, r) \subseteq \overline{T(\overline{B(0, 1)})}$ there exists $x_1 \in \overline{B(0, 1)}$ such that

$$||2y - Tx_1|| \le \frac{r}{2}$$

Hence $4y - 2Tx_1 \in B(0,r)$ and by the same argument as before there exists $x_2 \in \overline{B(0,1)}$ such that

$$||4y - 2Tx_1 - Tx_2|| \le \frac{r}{2}$$

Continuing this way we construct a sequence $(x_n) \in \overline{B(0,1)}$ such that

$$||2^n y - 2^{n-1} T x_1 - \dots - 2 T x_{n-1} - T x_n|| \le \frac{r}{2}$$

for all n. Dividing by 2^n we obtain

$$||y - \sum_{k=1}^{n} 2^{-k} T x_k|| \le \frac{r}{2^{n+1}}$$

Hence $y = \sum_{k=1}^{\infty} 2^{-k} T x_k$. Since $||x_k|| \le 1$ for all $k \in \mathbb{N}$ we have that

$$\sum_{k=1}^{\infty} 2^{-k} ||x_k|| \le \sum_{k=1}^{\infty} 2^{-k} = 1$$

and so the series

$$x = \sum_{k=1}^{\infty} 2^{-k} x_k$$

converges absolutely in X as X is Banach and hence complete. We have also that $||x|| \le 1$ and so $x \in \overline{B(0,1)}$. Because T is continuous we have

$$Tx = \lim_{n \to \infty} \sum_{k=1}^{n} 2^{-k} Tx_k = y$$

by construction of x. Hence $y \in T(\overline{B(0,1)})$ and (b) follows.

 $(b) \Rightarrow (a)$. By (b) and the linearity of T we have

$$T(\overline{B(0,\epsilon)}) = \epsilon T(\overline{B(0,1)})$$

for all $\epsilon > 0$. Since the map $x \mapsto \epsilon x$ is a homeomorphism on Y the set $T(\overline{B(0,\epsilon)})$ is a neighbourhood of zero for all $\epsilon > 0$. Now let $U \subseteq X$ be open and $y \in T(U)$. As U is open there exists $\epsilon > 0$ such that

$$\overline{B(x,\epsilon)} = x + \overline{B(0,\epsilon)} \subseteq U$$

where y = Tx. Since $z \mapsto x + z$ is a homeomorphism and T is linear we have

$$T(\overline{B(x,\epsilon)}) = Tx + T(\overline{B(0,\epsilon)}) = y + T(\overline{B(0,\epsilon)}) \subseteq T(U).$$

Hence $T(\overline{B(x,\epsilon)})$ is a neighbourhood of y in T(U). As y was arbitrary in T(U) it follows that T(U) is open.

Lemma 16.2. Let X be a normed vector space and $S \subseteq X$ convex with S = -S. If \overline{S} has a non-empty interior, then \overline{S} is a neighbourhood of zero.

Proof. First note that \overline{S} is convex. If $x,y\in S$ and $x_n,y_n\in S$ with $x_n,y_n\to x,y$ then $tx_n+(1-ty_n)\in S$ for all n and $t\in [0,1]$. Letting $n\to\infty$ we get $tx+(1-t)y\in \overline{S}$ for all $t\in [0,1]$ and so \overline{S} is convex. We also easily have $\overline{S}=-\overline{S}$. If \overline{S} has a non-empty interior, there exists $z\in \overline{S}$ and $\epsilon>0$ such that $B(z,\epsilon)\subseteq \overline{S}$. Therefore $z\pm h\in \overline{S}$ whenever $\|h\|<\epsilon$ and since $\overline{S}=-\overline{S}$ we also have $-(z\pm h)\in \overline{S}$. By the convexity of \overline{S} we have

$$y = \frac{1}{2}((x+h) + (-x+h)) \in \overline{S}$$

whenever $||h|| < \epsilon$. Hence $B(0, \epsilon) \subseteq \overline{S}$, and so \overline{S} is a neighbourhood of zero.

Theorem 16.3 (Open mapping theorem). Suppose that X and Y are Banach spaces. If $T \in \mathcal{L}(X,Y)$ is surjective, then T is open.

Proof. As T is surjective we have

$$Y = \bigcup_{n \in \mathbb{N}} \overline{T(\overline{B(0,n)})}$$

with $[T(\overline{B(0,n)})]$ closed for all $n \in \mathbb{N}$. Since Y is complete, by a corollary to Baire's theorem, there exists $n \in \mathbb{N}$ such that $\overline{T(\overline{B(0,n)})}$ has non-empty interior. Since the map $x \mapsto nx$ is a homeomorphism and T is linear, the set $\overline{T(\overline{B(0,1)})}$ has non-empty interior as well. Now $\overline{B(0,1)}$ is convex and $\overline{B(0,1)} = -\overline{B(0,1)}$. By linearity of T we have that

$$T(\overline{B(0,1)}) = -T(\overline{B(0,1)})$$

is convex as well. Since we know that $\overline{T(\overline{B(0,1)})}$ has non-empty interior, the previous lemma implies that $\overline{T(\overline{B(0,1)})}$ is a neighbourhood of zero, and thus there exists r > 0 such that

$$B(0,r) \subseteq \overline{T(\overline{B(0,1)})}$$

and since X is Banach the previous lemma shows that T is open.

17. Lecture 17 - Monday 1 May

Exercise 17.1. If X, Y are vector spaces, and if $T: X \to Y$ is linear, then $\Gamma(T)$ is a subspace of $X \times Y$. Moreover, if X, Y are normed vectors paces, with

$$||(x,Tx)||_{\Gamma} = ||x|| + ||Tx||.$$

Theorem 17.2 (Closed Graph theorem). Let X, Y be Banach spaces, and $T \in Hom(X, Y)$. Then $T \in \mathcal{L}(X, Y)$ if and only if $\Gamma(T)$ is closed in $X \times Y$.

Proof. Suppose $T \in \mathcal{L}(X,Y)$. If $x_n \to x$ in X, then

$$(x_n, Tx_n) \to (x, Tx)$$

by continuity of T, and so $\Gamma(T)$ is closed.

Conversely, suppose that $\Gamma(T)$ is closed in $X \times Y$. Define a norm $\|\cdot\|_{\Gamma}$ on X by $\|x\|_{\Gamma} = \|x\| + \|Tx\|$. Since $\Gamma(T)$ is closed, and since $(X, \|\cdot\|)$ is Banach, then $(X, \|\cdot\|_{\Gamma})$ is also a Banach space (exercise). Note that $\|x\| \leq \|x\|_{\Gamma}$. So by a corollary to the Open Mapping theorem, $\|\cdot\|$ and $\|\cdot\|_{\Gamma}$ are equivalent. So there is c > 0 with

$$||x||_{\Gamma} \le c||x|| \quad \forall x \in X.$$

So $||x|| + ||Tx|| \le c||x||$, and so $||Tx|| \le (c-1)||x||$, and so T is continuous.

17.1. Spectral Theory. The eigenvalues of an $n \times n$ matrix T over \mathbb{C} are the $\lambda \in \mathbb{C}$ with

$$\det(\lambda I - T) = 0$$

that is, $\lambda I - T$ is not invertible.

Remark. Showing existence of eigenvalues is equivalent to the fundamental theorem of algebra.

Remark. We need our base field to be \mathbb{C} to get reasonable spectral theory.

Definition 17.3. Write $\mathcal{L}(X) = \mathcal{L}(X, X)$.

Definition 17.4. Let X be a Banach space over \mathbb{K} , and let $T \in \mathcal{L}(X)$. Then the spectrum of T is

$$\sigma(T) = \{ \lambda \in \mathbb{K} \mid \lambda I - T \text{ is not invertible} \}.$$

Remark. $\lambda I - T$ is non invertible if either $\lambda I - T$ is not injective, or $\lambda I - T$ is not surjective.

Remark. If $\dim(X) < \infty$, then $X \setminus \mathrm{KER}(T) \simeq \mathrm{im}(T)$, and so T is injective if and only if T is surjective. This fails in the infinite dimensional case - consider the left and right shift operators on ℓ^2 .

Definition 17.5 (Eigenvalue). $\lambda \in \mathbb{K}$ is an eigenvalue of $T \in \mathcal{L}(X)$ if there is $x \neq 0$ with $Tx = \lambda x$, i.e. λ is an eigenvalue if and only if $\lambda I - T$ is not injective.

Theorem 17.6. Let $X \neq \{0\}$ be a Banach space over \mathbb{C} , and let $T \in \mathcal{L}(X)$. Then $\sigma(T)$ is a non-empty, compact (closed and bounded) subset of

$$\{\lambda \in \mathbb{C} \mid |\lambda| \le ||T||\}$$

Example 17.7. Let $L, R : \ell^2 \to \ell^2$ be the left and right shift operators.

Then ||L|| = 1, and so $\sigma(L) \subseteq \overline{D}(0,1)$. If $|\lambda| < 1$, then

$$L(\lambda, \lambda^2, \lambda^3, \dots) = (\lambda^2, \lambda^3, \lambda^4, \dots) = \lambda(\lambda, \lambda^2, \lambda^3, \dots)$$

and so λ is an eigenvalue. Thus $D(0,1) \subseteq \sigma(L) \subseteq \overline{D}(0,1)$. But $\sigma(L)$ is closed, and so $\sigma(L) = \overline{D}(0,1)$. Are the λ with $|\lambda| = 1$ eigenvalues? No - suppose $|\lambda| = 1$ and $x \neq 0$ with $Lx = \lambda x$.

Then

$$L^n(x) = \lambda^n x.$$

Thus, $x_{n+1} = \lambda^n x_1$. Then $x = (x_1, \lambda, x_1, \lambda^2 x_1, \dots)$ which is not in ℓ^2 . Then ||R|| = 1, and so $\sigma(R) \subseteq \overline{D}(0, 1)$.

Note. $LRx = L(0, x_1, ...) = (x_1, x_2, ...)$, so

$$LR = I$$
 (*)

Remark. Unlike $\dim(X) < \infty$, (\star) does NOT say that R is invertible (RL = I).

Consider the operator $L(\lambda I - R) = \lambda L - I = -\lambda(\lambda^{-1}I - L)$. If $0 < |\lambda| < 1$, then we know that $\lambda^{-1}I - L$ is invertible (as $\lambda^{-1} \notin \sigma(L)$). So if $\lambda I - R$ were invertible, then L is invertible, which is false. Thus $\lambda \in \sigma(R)$. Hence

$$D(0,1)\setminus\{0\}\subset\sigma(R)\subset\overline{D}(0,1).$$

Since $\sigma(R)$ is closed, $\sigma(R) = \overline{D}(0,1)$.

18. Lecture 18 - Wednesday 4 May

Theorem 18.1. Let $X \neq \{0\}$ be a Banach space over \mathbb{C} . Let $T \in \mathcal{L}(X)$. Then $\sigma(T)$ is a nonempty, compact subset of

$$\{\lambda \in \mathbb{C} \mid |\lambda| < ||T||\}.$$

Lemma 18.2. With above assumptions $\sigma(T) \subseteq \{\lambda \in \mathbb{C} \mid |\lambda| \leq ||T||\}$.

Proof. We need to show that if $|\lambda| > ||T||$ then $\lambda I - T$ is invertible.

Technique: Geometric series. We guess

$$(\lambda I - T)^{-1} = \frac{1}{\lambda I - T} = \sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}}.$$

We now verify this guess. Since

$$\sum_{k=0}^{\infty}\frac{\|T^k\|}{|\lambda|^{k+1}}\leq \sum_{k=0}^{\infty}\frac{\|T\|^k}{|\lambda|^{k+1}}<\infty,$$

the series $S = \sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}}$ converges in X.

We now show that S is the inverse of $\lambda I - T$. As we are working in infinite dimensions, we ned to check left and right inverses. Let $S_n = \sum_{k=1}^{n-1} \frac{T^k}{\lambda^{k+1}}$. Then

$$S_n(\lambda I - T) = \left(\sum_{k=0}^{n-1} \frac{T^k}{\lambda^{k+1}}\right) (\lambda I - T)$$
$$= I - \frac{T^n}{\lambda^n} \to I$$
$$(\lambda I - T)S_n = I - \frac{T^n}{\lambda^n} \to I$$

and so $S(\lambda I - T) = (\lambda I - T)S$ and so $\lambda I - T$ is invertible.

Exercise 18.3. Show that if ||I - T|| < 1 then T is invertible with inverse $\sum_{k=0}^{\infty} (I - T)^k$ Hint: Consider

$$\frac{1}{T} = \frac{1}{I - (I - T)}.$$

In particular, the ball B(I,1) in $\mathcal{L}(X)$ consists of invertible elements.

The following is used to show $\sigma(T)$ is closed and nonempty, it is also interesting in its own right.

Proposition 18.4. Let X be Banach over \mathbb{K} . Let $GL(X) = \{T \in \mathcal{L}(X) \mid T \text{ invertible. Then } T\}$

- (a) GL(X) is a group under composition of operators.
- (b) GL(X) is open in $\mathcal{L}(X)$.
- (c) The map

$$\varphi: GL(X) \to GL(X)$$

$$T \mapsto T^{-1}$$

is continuous.

Proof. (a) The open mapping theorem tells us that if $T \in GL(X)$ then $T^{-1} \in \mathcal{L}(X)$, and so $T^{-1} \in GL(X)$. The rest is clear.

(b) Let $T_0 \in GL(X)$. We claim

$$B\left(T_0, \frac{1}{\|T_0^{-1}\|}\right) \subseteq GL(X).$$

We have

$$||I - T_0^{-1}T|| = ||T_0^{-1}(T_0 - T)||$$

$$\leq ||T_0^{-1}|| ||T_0 - T||$$

$$< 1 \text{ as } T \in B\left(T_0, \frac{1}{||T_0^{-1}||}\right)$$

(c) We have

$$||T_0^{-1} - T^{-1}|| = ||T^{-1}(T - T_0)T_0^{-1}|$$

$$\leq ||T^{-1}||T - T_0|| ||T_0^{-1}|| \tag{*}$$

If $||T - T_0|| \le \frac{1}{2||T_0^{-1}||}$, then

$$||I - TT_0^{-1}|| = ||(T_0 - T)T_0^{-1}||$$

$$\leq ||T_0 - T|| ||T_0^{-1}||$$

$$\leq \frac{1}{2}.$$

We then have

$$||T_0T^{-1}|| = ||(TT_0^{-1})^{-1}||$$

$$= ||\sum_{k=0}^{\infty} (I - TT_0^{-1})^k||$$

$$\leq \sum_{k=0}^{\infty} ||I - TT_0^{-1}||^k$$

$$\leq 2$$

Hence $||T^{-1}|| = ||T_0^{-1}(T_0T^{-1})|| \le ||T_0^{-1}|| ||T_0T^{-1}|| \le 2||T_0^{-1}||$, and from (\star) , we have

$$||T_0^{-1} - T^{-1}|| \le 2||T_0^{-1}||^2||T - T_0||$$

and so $T \mapsto T^{-1}$ is continuous.

Corollary. $\sigma(T)$ is closed.

Proof. Let

$$f: \mathbb{C} \to \mathcal{L}(X)$$

 $\lambda \mapsto \lambda I - T$

This is continuous, as

$$||f(\lambda) - f(\lambda_0)|| = ||(\lambda - \lambda_0)I||$$
$$= |\lambda - \lambda_0|$$

and

$$\sigma(T) = f^{-1}\left(\mathcal{L}(X)\backslash \mathrm{GL}(X)\right)$$

which is the inverse image of a closed set, and hence is closed.

So $\sigma(T)$ is a compact subset of $\{\lambda \in \mathbb{C} \mid |\lambda| \leq ||T||\}$. Write $\rho(T) = \mathbb{C} \setminus \sigma(T)$ (the **resolvent set**), and let $R_T = R : \rho(T) \to \mathcal{L}(X)$ with $R_T(\lambda) = (\lambda I - T)^{-1}$.

Theorem 18.5. Let $\mathbb{K} = \mathbb{C}$ and $X \neq \{0\}$ and $T \in \mathcal{L}(X)$. Then $\sigma(T) \neq \emptyset$.

Proof. We use Lioville's theorem - a bounded entire function must be constant.

Let $\varphi = \mathcal{L}(X)'$ (hence $\varphi : \mathcal{L}(X) \to C$.) Let

$$f_{\varphi}: \rho(T) \to \mathbb{C}$$

 $\lambda \mapsto \varphi(R(\lambda))$

Lemma 18.6. f_{φ} is analytic on $\rho(T)$.

Proof. We show f_{φ} is differentiable. Consider

$$\frac{f_{\varphi}(\lambda) - f_{\varphi}(\lambda_0)}{\lambda - \lambda_0} = \varphi\left(\frac{R(\lambda) - R(\lambda_0)}{\lambda - \lambda_0}\right)
= \varphi\left(\frac{(\lambda I - T)^{-1} - (\lambda_0 I - T)^{-1}}{\lambda - \lambda_0}\right)
= \varphi\left(\frac{(\lambda_0 I - T)^{-1}((\lambda_0 - \lambda)I)(\lambda I - T)^{-1}}{\lambda - \lambda_0}\right)
= -\varphi\left((\lambda_0 I - T)^{-1}(\lambda I - T)^{-1}\right)
\to -\varphi\left((\lambda_0 I - T)^{-2}\right)$$

as $\lambda \to \lambda_0$, where we use the fact that φ is continuous and $T \to T^{-1}$ is continuous. So f_{φ} is analytic on $\rho(T)$ for all $\varphi \in \mathcal{L}(X)'$.

Now suppose that $\sigma(T) = \emptyset$. Then $f_{\varphi} : \mathbb{C} \to \mathbb{C}$ is analytic.

Lemma 18.7. f_{φ} is bounded.

Proof. If $|\lambda > ||T||$, then

$$f_{\varphi}(\lambda) = \left| \varphi \left((\lambda I - T)^{-1} \right) \right|$$

$$= \left| \varphi \left(\sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}} \right) \right|$$

$$\leq \|\varphi\| \left\| \sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}} \right\|$$

$$\leq \|\varphi\| \sum_{k=0}^{\infty} \frac{\|T\|^k}{|\lambda|^{k+1}}$$

$$= \frac{\|\varphi\|}{|\lambda| - \|T\|} \to 0$$

as $|\lambda| \to \infty$. So f_{φ} is bounded, entire, and thus $f_{\varphi} = c$ by Lioville's theorem. By the above, $f_{\varphi}(\lambda) = 0$ for all λ . Hence $\varphi(R(\lambda)) = 0$ for all λ, φ .

Thus from Hahn-Banach, $R(\lambda) = 0$ for all λ which is a contradiction, as the zero operator is not invertible if $X \neq \{0\}$.

19. Lecture 19 - Monday 9 May

Theorem 19.1 (Spectral mapping theorem (polynomials)). Let T be an $n \times n$ matrix over \mathbb{C} . If we know all the eigenvalues of T, then we know the eigenvalues of every polynomial $p(T) = a_0 + a_1T + \cdots + a_nT^n$. Specifically,

$$\{eigenvalues\ of\ p(T)\} = \{p(\lambda) \mid \lambda\ is\ an\ eigenvalue\ of\ T\}$$

Therefore

$$\sigma(p(T)) = p(\sigma(T)).$$

This is called the **spectral mapping theorem** (for matrices/polynomials).

This also holds for X Banach over \mathbb{C} , and $T \in \mathcal{L}(X)$.

Lemma 19.2. Let $\mathbb{C}[t]$ be the algebra of polynomials in t with complex coefficients. Multiplication is defined as usual.

Lemma 19.3. Let X be Banach over \mathbb{C} . Let $T \in \mathcal{L}(X)$. Then

$$\varphi: \mathbb{C}[t] \to \mathcal{L}(X)$$

$$p \mapsto p(T)$$

is an algebra homomorphism (multiplication corresponds to composition in $\mathcal{L}(X)$.)

Proof. Simply check

$$\varphi(p_1 + p_2) = \varphi(p_1) + \varphi(p_2)$$
$$\varphi(p_1 p_2) = \varphi(p_1)\varphi(p_2)$$
$$\varphi(\alpha p) = \alpha \varphi(p)$$

for all $p_1, p_2, p \in \mathbb{C}[t], \alpha \in \mathbb{C}$.

Theorem 19.4. Let X be Banach over \mathbb{C} , and let $T \in \mathcal{L}(X)$. Then

$$\sigma(p(T)) = p(\sigma(T)).$$

Proof. If p = c is constant, then p(T) = cI has spectrum

$$\sigma(p(T)) = \sigma(cI) = \{c\}$$

On the other hand,

$$p(\sigma(T)) = \{c\}$$

Now, suppose that p is non constant. Let $\mu \in \mathbb{C}$ fixed. By the fundamental theorem of algebra, we can factorise $\mu - p(t)$ as

$$\alpha(t-\lambda_1)^{m_1}\dots(t-\lambda_n)^{m_n}$$

where $\lambda_1, \ldots, \lambda_n$ are the distinct roots of $\mu - p(t)$. Note that $\mu = p(\lambda_i)$ for each i. Applying $\psi : \mathbb{C}[t] \to \mathcal{L}(X)$ from above, we have

$$\mu I - p(T) = \alpha (T - \lambda_1 I)^{m_1} \dots (T - \lambda_n I)^{m_n}$$

Exercise 19.5. If $T_1, \ldots, T_n \in \mathcal{L}(X)$ which commute with each other, then $T_1 \ldots T_n$ is invertible if and only if the individual elements are invertible.

We know

$$\mu \in \sigma(p(T)) \iff \mu - p(T) \text{ is not invertible}$$

$$\iff T - \lambda I \text{ non invertible for some } i$$

$$\iff \lambda \in \sigma(T) \text{ for some } i$$

$$\iff \mu = p(\lambda_i) \in p(\sigma(T))$$

and so

$$\sigma(p(T)) = p(\sigma(T))$$

Definition 19.6 (Spectral radius). Let $X \neq \{0\}$ be a Banach space over \mathbb{C} . The **spectral radius** of $T \in \mathcal{L}(X)$ is

$$r(T) = \sup\{|\lambda| \mid \lambda \in \sigma(T)\}$$
$$= \max\{|\lambda| : \lambda \in \sigma(T)\}$$

Note.

$$r(T) \le ||T||$$

since $\sigma(T) \subseteq \{\lambda \in \mathbb{C} \mid |\lambda| \leq ||T||\}$. Strict inequality can (and often does) occur.

Example 19.7. Let

$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Then consider $T: \mathbb{C}^2 \to \mathbb{C}^2$ where $||(x,y)||_2 = \sqrt{|x|^2 + |y|^2}$. Then

$$||T|| = \sup\{||Tx||_2 \mid x \in \mathbb{C}^2\}$$
$$= \sqrt{\lambda_{max}(T^*T)}$$

where

$$T^* = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

is conjugate transpose. Then ||T|| = 1. But $\sigma(T) = \{0\}$, and so r(T) = 0 < 1 = ||T||.

Theorem 19.8 (Gelfand, 1941). Let $X \neq \{0\}$ be Banach over \mathbb{C} , and let $T \in \mathcal{L}(X)$. Then

$$r(T) = \lim_{n \to \infty} ||T^n||^{1/n}.$$

In particular, the limit exists.

Proof. By the spectral mapping theorem,

$$\sigma(T^n) = \{\sigma(T)\}^n = \{\lambda^n \mid |\lambda \in \sigma(T)\}.$$

So

$$r(T) = r(T^n)^{1/n}$$

$$\leq ||T^n||^{1/n}.$$

So

$$r(T) \le \liminf_{n \to \infty} ||T^n||^{1/n}$$

Now, we must show that

$$\limsup_{n \to \infty} ||T^n||^{1/n} \le r(T).$$

Let $\varphi \in \mathcal{L}(X)$ and let

$$f_{\varphi}: \rho(T) \to \mathbb{C}$$

 $\lambda \mapsto \varphi((\lambda I - T)^{-1})$

We saw that f_{φ} is analytic on $\rho(T)$. We also have

$$f_{\varphi}(\lambda) = \sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} \varphi(T^n) \tag{*}$$

if $|\lambda| > ||T||$. By general theory of Laurent series, (\star) actually holds for all $\lambda \in \rho(T)$. In particular, it holds if $|\lambda| > r(T)$.

Thus,

$$\lim_{n\to\infty}\frac{1}{\lambda^{n+1}}\varphi(T^n)=0\quad \boxed{|\lambda|>r(T)}$$

Sp for each $\varphi \in \mathcal{L}(X)'$, and each $|\lambda| > r(T)$, there is $C_{\lambda,\varphi}$ such that

$$\left| \varphi \left(\frac{1}{\lambda^{n+1}} T^n \right) \right| \le C_{\lambda, \varphi} \quad \forall n \ge 0$$

Then by the principle of uniform boundedness, there exists a constant C_{λ} such that

$$\left\| \frac{1}{\lambda^{n+1}} T^n \right\| \le C_\lambda \quad \forall n \ge 0$$

So $||T^n||^{1/n} \leq |\lambda|(C_{\lambda}|\lambda|)^{1/n}$, which gives

$$\limsup_{n\to\infty}\|T^n\|^{1/n}\leq\lambda$$

for all $|\lambda| > r(T)$. So

$$\limsup_{n \to \infty} ||T^n||^{1/n} \le r(T)$$

We used the following lemma.

Lemma 19.9. Let X be a normed vector space, $A \subseteq X$ a subset. We say that

- (1) A is **bounded** if there exists C > 0 with $||x|| \le C$, for all $x \in A$.
- (2) A is weakly bounded if for each $\varphi \in X'$, there exists $C_{\varphi} > 0$ such that

$$|\varphi(x)| \le C_{\varphi}$$

for all $x \in A$.

Then we have

$$A \subseteq X$$
 is bounded \iff weakly bounded

Proof. A bounded $\Rightarrow ||x|| \leq C$ for all $x \in A \Rightarrow |\varphi(x)| \leq ||\varphi|| ||x|| \leq ||\varphi|| C$. So A is weakly bounded. Now, suppose A is weakly bounded. For each $x \in X$, let $\hat{x} \in X''$ with

$$\hat{x}(\varphi) = \varphi(x).$$

So $|\hat{x}(\varphi)| \leq C_{\varphi}$ for all $x \in A$. By the principle of uniform boundedness,

$$\|\hat{x}\| \leq C$$

for all $x \in A$, and since $\|\hat{x}\| = \|x\|$. Thus A is bounded.

20. Lecture 20 - Wednesday 11 May

We now turn to compact operators. In general, calculating $\sigma(T)$ is difficult, but for compact operators on a complex Banach space, we have a fairly explicit theory.

Theorem 20.1. Let X be a complex Banach space, with $\dim(X) = \infty$. Let $T: X \to X$ be a compact operator. Then

- (1) $0 \in \sigma(T)$.
- (2) $\sigma(T)\setminus\{0\} = \sigma_p(T)\setminus\{0\}$, that is, each $\lambda \in \sigma(T)\setminus\{0\}$ is an eigenvalue of T (0 may or may not be an eigenvalue.)

- (3) We are in exactly one of the cases:
 - $\sigma(T) = \{0\}.$
 - $\sigma(T)\setminus\{0\}$ is finite (nonempty).
 - $\sigma(T)\setminus\{0\}$ is a sequence of points converging to 0.
- (4) Each $\lambda \in \sigma(T) \setminus \{0\}$ is isolated, and the eigenspace KER $(\lambda I T)$ is finite dimensional. where $\sigma_n(T)$ is the **point spectrum of** T, where

$$\sigma_p(T) = \{ \lambda \in \mathbb{K} \mid \lambda I - T \text{ is not injective} \}$$

$$= \{ \lambda \in \mathbb{K} \mid \text{there exits nonzero vector } x \text{ with } (\lambda I - T)x = 0 \}$$

$$= \{ \text{eigenvalues of } T \}$$

Proof. We shall prove these results next week.

Definition 20.2. Let X, Y be normed vector spaces. An operator $T : X \to Y$ is **compact** if T is linear, and if $B \subseteq X$ is bounded then T(B) is relatively compact (a set is relatively compact if its closure is compact.) Symbolically,

$$B \subseteq X$$
 bounded $\Rightarrow \overline{T(B)}$ compact

Lemma 20.3. If T is compact, then T is continuous.

Proof. The closed ball $B = \{x \in X \mid ||x|| \le 1\}$ is bounded, and so if T is a compact operator, then $\overline{T(B)}$ is compact, and hence bounded. Hence $||Tx|| \le M$ for all $||x|| \le 1$, so T is continuous, with $||T|| \le M$.

We now recall definitions of compactness

Theorem 20.4 (Characterisations of compactness). Let X be a metric space. The following are equivalent.

- (1) X is compact (every open cover has a finite subcover).
- (2) X is sequentially compact (every sequence in X has a convergent subsequence)

Lemma 20.5. Let X be a compact set. Let $Y \subseteq X$. If $Y \subseteq X$ is closed, then Y is compact.

Lemma 20.6. Let V be a finite dimensional vector space. If $X \subseteq V$ is closed and bounded, then X is compact.

Theorem 20.7 (Characterisations of compact operators). Let X, Y be normed vector spaces over \mathbb{K} . Let $T \in \mathcal{L}(X,Y)$. Then the following are equivalent.

- (a) T is compact.
- (b) $\overline{T(B)}$ is compact, where $B = \{x \in X \mid ||x|| \le 1\}$.
- (c) If $(x_n)_{n\geq 1}$ is bounded in X, then $(Tx_n)_{n\geq 1}$ has a convergent subsequence (sequentially compact).

Proof. $(a) \Rightarrow (b)$ by definition.

 $(b)\Rightarrow (a)$. Suppose (b) holds. Let $B_1\subseteq X$ be bounded. Then $B_1\subseteq \alpha B$ for some $\alpha>0$. So

$$\overline{T(B)} \subseteq \overline{T(\alpha B)} = \alpha \overline{T(B)}$$

which is a closed subset of a compact set, and hence compact.

- $(a) \Rightarrow (c)$. Suppose T is compact. Let $(x_n)_{n\geq 1}$ be bounded sequence in X. Then $T(B) = \{Tx_n \mid n \geq 1\}$ is relatively compact. So $\overline{T(B)}$ is compact, and hence is sequentially compact, and so has a convergence subsequence.
- $(c) \Rightarrow (a)$. Let $B \subseteq X$ be bounded. Let $(y_n)_{n\geq 1}$ be a sequence in T(B). Then there is $x_n \in B$ with $Tx_n = y_n$. So $(x_n)_{n\geq 1}$ is a bonded sequence. By assumption $(Tx_n)_{n\geq 1}$ has a convergent subsequence. So $\overline{T(B)}$ is sequentially compact, and hence compact.

Corollary. The set {compact operators $T: X \to Y$ } is a vector space. That is, if T_1, T_2 are compact, then $T_1 + T_2$ and αT_1 are compact.

Proof. Exercise. Use (c) from the characterisation of compact operators.

Corollary.

$$\mathcal{K}(X,Y) \subseteq \mathcal{L}(X,Y) \subseteq Hom(X,Y)$$

where K(X,Y) is the set of compact operators $T:X\to Y$.

Example 20.8 (Finite rank operators). Let X, Y be normed vector spaces, and let $T \in \mathcal{L}(X, Y)$. If $\dim(\operatorname{Im} T) < \infty$, then T is said to have **finite rank**. Then if T has finite rank, then T is compact.

Proof. Let (x_n) be a bounded sequence in X. Then $||Tx_n|| \le ||T|| ||x_n||$ so (Tx_n) is a bounded sequence in IM T. But IM T is finite dimensional, and so $\overline{\{Tx_n \mid n \ge 1\}}$ is compact (closed and bounded), and so $(Tx_n)_{n\ge 1}$ has a convergent subsequence. By (c) in Theorem 20.7, T is compact.

Lemma 20.9. Let X,Y be normed vector spaces. If $T \in \mathcal{L}(X,Y)$ has finite rank, then there exists $y_1,\ldots,y_n \in \operatorname{IM} T$ and $\varphi_1,\ldots,\varphi_n \in X'$ with $Tx = \sum_{j=1}^n \varphi_j(x)y_j$ for all $x \in X$, with $n = \dim(\operatorname{IM} T)$.

Proof. Choose a basis y_1, \ldots, y_n of IM T. For each $j = 1, \ldots, n$, define $\alpha_j \in (\text{Im } T)'$ by

$$\alpha_j(a_1y_1+\cdots+a_ny_n)=a_j$$

i.e. coordinate projection. By Hahn-Banach, we can extend a_j to a continuous linear functional $\tilde{a}_j \in Y'$. Let $\varphi_j = \tilde{a}_j \circ T : X \to \mathbb{K}$. So $\varphi_j \in X'$. Since

$$y = \sum_{j=1}^{n} \tilde{a}_{j}(y)y_{j} \quad \forall y \in \text{Im } T$$

we have

$$Tx = \sum_{j=1}^{n} \tilde{a}_{j}(Tx)y_{j}$$

$$= \sum_{j=1}^{n} (\alpha_{j} \circ T)(x)y_{j}$$

$$= \sum_{j=1}^{n} \varphi_{j}(x)y_{j} \quad \forall x \in X.$$

21. Lecture 21 - Monday 16 May

Recall that the closed unit ball in X is compact if and only if $\dim(X) < \infty$. Then it follows that the identity map $I: X \to X$ is compact if and only if $\dim(X) < \infty$. Hence,

$$\mathcal{K}(X) \subseteq \mathcal{L}(X) \subseteq \text{Hom}(X, X)$$

when $\dim(X) = \infty$.

Consider a sequence of compact operators T_n . If T_n is compact and $T_n \to T$, then T is compact.

Lemma 21.1 (Riesz's Lemma). Let X be a normed vector space. Let $Y \subsetneq X$ be a proper **closed** subspace. Let $\theta \in (0,1)$ be given. Then there exists x with ||x|| = 1 such that $||x - y|| \ge \theta$ for all $y \in Y$.

Proof. Pick any $z \in X \setminus Y$. Let $\alpha = \inf_{y \in Y} \|z - y\| > 0$ since Y is closed. Then by the definition of the infimum, there is $y_0 \in Y$ with $\alpha \leq \|z - y_0\| \leq \frac{\alpha}{\theta}$. Now let $x = \frac{x - y_0}{\|z - y_0\|}$. Then $\|x\| = 1$. Now,

$$||x - y|| = \left\| \frac{z - y_0}{||z - y_0||} - y \right\|$$

$$= \frac{1}{||z - y_0||} ||z - y_-| + ||z - y_0||y||$$

$$\geq \frac{\theta}{\alpha} \alpha = \theta$$

Corollary. Let X be a normed vector space. The closed unit ball $\overline{B}(0,1)$ is compact if and only if $\dim(X) < \infty$.

Proof. If $\dim(X) < \infty$ then $\overline{B}(0,1)$ is compact (since closed and bounded if and only if compact in finite dimensions). Now suppose $\dim(X) = \infty$. Build a sequence (x_n) with $||x_n|| = 1$ with no convergent subsequence. Choose finite dimensional subspaces

$$\{0\} = X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \dots$$

These are all closed (finite dimensional spaces are complete, and hence closed). Use the lemma to choose $x_k \in X_k$ with $||x_k|| = 1$, $||x_k - x|| \ge \frac{1}{2}$ for all $x \in X_{k-1}$. So $x_k - x|| \ge \frac{1}{2}$ for all $x \in X_j (j \le k-1)$. So $||x_n - x_m|| \ge \frac{1}{2}$ for all $m, n \ge 1$. So (x_n) has no convergent subsequence, and so $\overline{B}(0,1)$ is not compact.

Corollary. $I: X \to X$ is compact if and only if $\dim(X) < \infty$.

Proof. Recall T is compact if and only if $T(\overline{B}(0,1))$ is relatively compact.

21.1. **Limits of compact operators.** One way to show that an operator is compact is to apply the following.

Proposition 21.2. Let X be a normed vector space, and let Y be Banach. Suppose that $T_n \in \mathcal{K}(X,Y)$ for each $n \geq 1$. If $T_n \to T$ (in operator norm, $||T_N - T|| \to 0$) then T is compact.

Proof. Let (x_n) be a bounded sequence in X. We now construct a subsequence (x'_n) for which (Tx'_n) converges.

- Since T_1 is compact, (x_n) has a subsequence $x_n^{(1)}$ such that $(T_1x_n^{(1)})$ converges.
- Since T_2 is compact and $x_n^{(1)}$ is bounded, there is a subsequence $x_n^{(2)}$ such that $T_2x_n^{(2)}$ converges.
- Continuing, we can form a subsequence $x_n^{(k)}$ such that $T_k x_n^k$ converges.

Let $x'_n = x_n^{(n)}$. Then (x'_n) is a subsequence of $(x_n^{(1)})$, and $(x'_n)_{n\geq 2}$ is a subsequence of $(x_n^{(2)})$, etc. So for each fixed $k \geq 1$, $(T_k x'_n)$ converges.

We now show Tx'_n is Cauchy, and hence converges. We have

$$||Tx'_m - Tx'_n|| \le ||Tx'_m - T_kx'_m|| + ||T_Kx'_m - T_kx'_n|| + T_kx'_n - Tx'_n||$$

where k is to be chosen. Suppose $||x_n|| \leq M$ for all $n \geq 1$. Then

$$||Tx'_m - Tx'_n|| \le 2M||T - T_k|| + ||T_kx' + m - T_kx'_n||$$

Let $\epsilon > 0$ be given. Since $||T - T_k|| \to 0$ as $k \to \infty$, fix a k for which $||T - T_k|| \le \frac{\epsilon}{3M}$. For this fixed k, we know $(T_k x_n')$ converges, and so is Cauchy. So there exists N < 0 such that $||T_k x'm - T_k x_n'|| < frac{\epsilon}{3}$ for all m, n < N. Hence $||Tx_m' - Tx_n'|| \le \frac{2M}{\epsilon} 3M + \frac{\epsilon}{3} = \epsilon$ for all m, n > N, so is Cauchy, and so converges.

Example 21.3. Let $K(x,y) \in L^2(\mathbb{R}^2)$. Define $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$Tf(x) = \int_{\mathbb{R}} K(x, y) f(y) \, dy$$

(Hilbert-Schimidt Integral operator)

Proposition 21.4. T is compact.

Proof. Note that $||Tf||_2 \leq ||K||_2 ||f||_2$ for all $f \in L^2(\mathbb{R})$, where $||K||_2 = \left(\iint_{\mathbb{R}^2} |K(x,y)|^2 dx dy\right)^{1/2}$. So T is continuous, with $||T|| \leq ||K||_2$. We now exhibit T as a limit of finite rank (hence compact) operators, with $T_n : L^2(\mathbb{R}) \to L^2(\mathbb{R})$. Once can see that there is a sequence $K_n \in L^2(\mathbb{R}^2)$ of the form

$$K_n(x,y) = \sum_{k=1}^{N_n} \alpha_k^{(n)}(x) \beta_k^{(n)}(y)$$

with $K_n \to K$ in $L^2(\mathbb{R}^2)$. Then $||T_n - T|| \le ||K_n - K||_2 \to 0$, and so $T_n \to T$. Hence

$$T_n f(x) \sum_{k=1}^{N_n} \int_{\mathbb{R}} \alpha_k^{(n)}(x) \beta_k^{(n)}(y) f(y) dy$$

$$= \sum_{k=1}^{N_n} \left\langle f, \overline{\beta_k^{(n)}} \right\rangle \alpha_k^{(n)}(x)$$

and so $T_n f = \sum_{k=1}^{N_n} \langle f \rangle$, $\overline{\beta_k^{(n)}} \alpha_k^{(n)}$ from which we use that T_n has finite rank.

22. Lecture 22 - Wednesday 18 May

Theorem 22.1. Let X be a complex Banach space, with $\dim(X) = \infty$. Let $T: X \to X$ be a compact operator. Then

- (1) $0 \in \sigma(T)$.
- (2) $\sigma(T)\setminus\{0\} = \sigma_p(T)\setminus\{0\}$, that is, each $\lambda \in \sigma(T)\setminus\{0\}$ is an eigenvalue of T (0 may or may not be an eigenvalue.)
- (3) We are in exactly one of the cases:
 - $\sigma(T) = \{0\}.$
 - $\sigma(T)\setminus\{0\}$ is finite (nonempty).
 - $\sigma(T)\setminus\{0\}$ is a sequence of points converging to 0.
- (4) Each $\lambda \in \sigma(T) \setminus \{0\}$ is isolated, and the eigenspace KER $(\lambda I T)$ is finite dimensional.

where $\sigma_p(T)$ is the **point spectrum of** T, where

$$\sigma_p(T) = \{ \lambda \in \mathbb{K} \mid \lambda I - T \text{ is not injective}$$

$$= \{ \lambda \in \mathbb{K} \mid \text{there exits nonzero vector } x \text{ with } (\lambda I - T)x = 0$$

$$= \{ \text{eigenvalues of } T \}$$

Compact operators are very well behaved with respect to composition.

Proposition 22.2. Let X, Y, Z be normed vector spaces.

- (a) If $T \in \mathcal{K}(X,Y)$ and $S \in \mathcal{L}(Y,Z)$, then $ST \in \mathcal{K}(X,Z)$.
- (b) If $S \in \mathcal{L}(X,Y)$ and $T \in \mathcal{K}(Y,Z)$, then $TS \in \mathcal{K}(X,Z)$.

- *Proof.* (a) Let (x_n) be a bounded sequence in X. Since T is compact, Tx_n has a convergent subsequence, say $T_{x_{n_k}} \to y \in Y$. Then (STx_n) has a convergent subsequence, namely $STx_{n_k} = S(T_{n_k}) \to Sy$ by continuity of S. So ST is compact.
- (b) Let $B \subseteq X$ be bounded. Then S(B) is bounded in Y, as S is continuous. So TS(B) = T(S(B)) is relatively compact since T is compact. Hence TS is compact.

Corollary (Part (1) of theorem). If X is infinite dimensional Banach space, then $0 \in \sigma(T)$.

Proof. If $0 \notin \sigma(T)$ then T is invertible. By bounded inverse theorem T^{-1} is continuous, and then $I = TT^{-1}$ is compact, which is a contradiction.

Theorem 22.3 (Part (3) of theorem). Let X be a normed vector space. Let $T \in \mathcal{K}(X)$. Then T has at most countably many eigenvalues. If T has infinitely many eigenvalues, then they can be arranged in a sequence converging to zero.

Proof. We show that for each N > 0, we have

$$\#\{\lambda \in \sigma_p(T) \mid |\lambda| \ge N\} < \infty \tag{*}$$

Suppose that there is N > 0 such that (\star) fails. So $\lambda_1, \lambda_2, \ldots$ are distinct eigenvalues with $|\lambda_n| \ge N$ for $n = 1, 2, \ldots$ Let $x_n \ne 0$ be an eigenvector. $Tx_n = \lambda_n x_n$, $n = 1, 2, \ldots$ Let $X_n = \text{span } \{x_1, \ldots, x_n\}$. Since $\{x_n \mid \ge 1\}$ are linearly independent, we have

$$X_1 \subsetneq X_2 \subsetneq \dots$$

and each X_n is closed (finite dimensional).

By Reisz's Lemma from previous lecture, choose $y_n \in X_n$ such that $||y_n|| = 1$ and $||y_n - x|| \ge \frac{1}{2}$ for all $x \in X_{n-1}$. So (y_n) is bounded in X. We show that Ty_n has no convergence subsequence, contradicting compactness of T.

Let m > n. Then

$$||Ty_m - Ty_n|| = ||\lambda_m y_m - (\lambda_m y_m - Ty_m + Ty_n)|$$

$$= |\lambda_m| ||y_m - (\text{something in } X_{m-1})||$$

$$\geq \frac{1}{2} |\lambda_m| \geq \frac{1}{2} N$$

as required.

Note that $y_m = a_1 x_1 + \cdots + a_m x_m$. Then

$$\lambda_m y_m - T y_m = \lambda_m a_1 x_1 + \dots + \lambda_m a_m x_m - (a_1 \lambda_1 x_1 + \dots + a_m \lambda_m x_m)$$
$$= a_1 (\lambda_m - \lambda_1) x_1 + \dots + a_{m-1} (\lambda_m - \lambda_{m-1}) x_{m-1} \in X_{m-1}$$

and $Ty_n \in X_{m-1}$ since n < m.

22.1. Projections.

Definition 22.4 (Projection operator). Let X be a vector space. A linear operator $P: X \to X$ is called a projection if $P^2 = P$.

Proposition 22.5. If $P: X \to X$ is a projection then I - P is a projection, and

Im
$$I - P = \text{Ker } P$$
, Ker $I - P = \text{Im } P$

Proof. If $P^2 = P$ then $(I-P)^2 = I-2P+P^2 = I-P$ and so I-P is a projection. Let $x \in \text{Im } I-P$. Then x = (I-P)y for some $y \in X$. So $Px = P(I-P)y = (P-P^2)y = 0$. So $x \in \text{KER } P$ and $\text{Im } I-P \subseteq \text{KER } P$. If $x \in \text{KER } P$ the Px = 0. So (I-P)x = x, and $x \in \text{Im } (I-P)$.

Definition 22.6 (Direct sum). Let X be a vector space, and let X_1, X_2 be subspaces. Then $X = X_1 \oplus X_2$ (direct sum) if

$$X = X_1 + X_2$$

and $X_1 \cap X_2 = \{0\}$. Equivalently, $X = X_1 \oplus X_2$ if and only if each $x \in X$ can be written in exactly one way as $x = x_1 + x_2$ with $x_1 \in X_1, x_2 \in X_2$.

Theorem 22.7 (Equivalence of direct sums and projections). Let X be a vector space.

(a) If $P: X \to X$ is a projection, then

$$X = (\operatorname{Im} P) \oplus (\operatorname{Ker} P)$$

(b) If $X = X_1 \oplus X_2$, there exists a unique projection with

Im
$$P = X_1$$
, Ker $P = X_2$.

Specifically, $Px = x_1$ if $x = x_1 + x_2$.

Proof. (a) Let $P: X \to X$ be a projection. Then we show $X = (\operatorname{Im} P) \oplus (\operatorname{Im} I - P)$, x = Px + (I - P)x. This shows that $X = \operatorname{Im} P + \operatorname{Im} I - P$. If $x \in \operatorname{Im} P \cap \operatorname{KER} P$ then x = Py and Px = 0. Hence, $Px = P^2y = P^y = 0$ and so x = 0.

(b) Exercise.

Proposition 22.8. Let X be Banach. Let $X = X_1 \oplus X_2$. Let $P : X \to X$ be the corresponding projection operator. Then

$$P \in \mathcal{L}(X) \iff X_1, X_2 \ closed$$

Proof. (\Rightarrow). Suppose P is continuous. Then $X_1 = \operatorname{IM} P = \operatorname{KER} I - P$ and $X_2 = \operatorname{KER} P$ are both closed. For example, if $x_n \in \operatorname{KER} P$ and $x_n \to x$, then $0 = Px_n \to Px$ and so $x \in \operatorname{KER} P$.

(\Leftarrow). Suppose that X_1, X_2 are closed. Since $X = X_1 \oplus X_2$, we can define a new norm $\|\cdot\|'$ by $\|x\|' = \|x_1\| + \|x_2\|$ where $x = x_1 + x_2$.

Exercise 22.9.

- (a) Show that $\|\cdot\|'$ is a norm.
- (b) Show that $(X, \|\cdot\|')$ is Banach. This relies on the fact that $(X, \|\cdot\|)$ is Banach and X_1, X_2 are closed.

Note that $||x|| = ||x_1 + x_2|| \le ||x_1|| + ||x_2|| = ||x||'$, and so by a corollary to the open mapping theorem, there is a c > 0 with $||x||' \le c||x||$ for all $x \in X$, and so

$$||Px|| = ||x_1|| \le ||x_1|| + ||x_2|| = ||x||' \le c||x||$$

and hence P is continuous.

23. Lecture 23 - Monday 23 May

Corollary. Let X be Banach, and let M be a finite dimensional subspace. Then there exists a closed N with

$$X = M \oplus N$$
.

Proof. Let v_1, \ldots, v_n be a basis of M. Define, for each $j = 1, \ldots, n$, $\varphi_j \in M'$ by $\varphi_j(a_1v_1 + \cdots + a_nv_n) = a_j$. Then using Hahn-Banach to extend $\tilde{\varphi}_j \in X'$. Let $P: X \in X$ be defined by

$$Px = \sum_{j=1}^{n} \tilde{\varphi}_{j}(x)v_{j}.$$

Then we need only check that P is linear and continuous, IM P=M, and $P^2=P$. Now take $N=\mathrm{Ker}\ P$ and then $X=M\oplus N$.

We are now ready to prove the following theorem.

Theorem 23.1. Let X be Banach, and let $T \in \mathcal{K}(X)$, and let $\lambda \in \mathbb{K} \setminus \{0\}$. For all $k \in \mathbb{N}$, we have

- (a) $\underbrace{\operatorname{Ker} (\lambda I T)^k}_{generalised\ eigenspace}$ is finite dimensional.
- (b) Im $(\lambda I T)^k$ is closed.

Proof. Reductions. Since KER $(\lambda I - T)^k = \text{KER } (I - \lambda^{-1}T)^k$, and similarly for the image, by replacing $T \in \mathcal{K}(X)$ by $\lambda T \in \mathcal{K}(X)$, we can assume that $\lambda = 1$.

Also, we have

$$(I - T)^k = \sum_{n=0}^k {k \choose n} (-1)^n T^n$$

$$= I - T \sum_{n=1}^k {k \choose n} (-1)^{n-1} T^{n-1}$$

$$= I - \tilde{T}$$
continuous

where \tilde{T} is the composition of compact and continuos operators, and so is compact. So we can take $\lambda = 1, k = 1$.

(a) The closed unit ball in Ker I-T is

$$\{x \in \text{Ker } I - T \mid ||x|| \le 1\} = \{Tx \mid x \in \text{Ker } I - T, ||x|| \le 1\}$$

$$\subseteq \overline{T(\overline{B}(0,1))}$$

which is compact as T is compact. Hence, the closed unit ball in KER I-T is compact, and thus KER I-T is finite dimensional.

(b) Let S = I - T. We then need to show that IM S is closed. Since KER S is finite dimensional from above, there is a **closed** subspace N with

$$X = (\text{Ker } S) \oplus N$$

Note that IM S = S(X) = S(N), and that $S|_N : N \to X$ is injective.

Suppose that S(N) is not closed. So there is a sequence (x_n) in N such that $Sx_n \to y \in X \setminus S(N)$. Then there are two cases

Case 1 ($||x_n|| \to \infty$). Let $y_n = \frac{1}{||x_n||} x_n$. Then $Sy_n = \frac{1}{||x_n||} Sx_n \to 0$. But $(y_n)_{n\geq 1}$ is bounded in X, and so there exists a subsequence y_{n_k} such that $Ty_{n_k} \to z$ (as T is compact). Hence $y_{n_k} = Sy_{n_k} + Ty_{n_k} \to 0 + z$. Thus $z \in N$ (as $y_{n_k} \in N$, and N is closed), and ||z|| = 1.

So $Sy_{n_k} \to 0$, but $Sy_{n_k} \to Sz$ with $z \in N \setminus \{0\}$, by the continuity of S. This contradicts the injectivity of $S|_N$.

Case 2 ($||x_n||$ does not tend to infinity). So (x_n) has a bounded subsequence (x_{n_k}) . Since T is compact, (x_{n_k}) has a subsequence such that $(Tx_{n_{k_l}})$ converges, to z_1 say. By replacing x_n by this subsequence we can assume that $Sx_n \to y$, and that $Tx_n \to z$. A before, we can write

$$x_n = Sx_n + Tx_n \to y + z.$$

So x_n converges to $x \in N$. So $Sx_n \to Sx \in S(N)$ by continuity, but we assume that $Sx_n \to y \in X \setminus S(N)$, which achieves our contradiction.

24. Lecture 24 - Wednesday 25 May

Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a linear operator. Then in the simplest case, T has n distinct eigenvalues, and the corresponding eigenvectors are linearly independent, forming a basis for \mathbb{C}^n .

Hence, $\mathbb{C}^n = \mathbb{C}x_1 \oplus \cdots \oplus \mathbb{C}x_n$ and the matrix of T relative to this basis is simply diagonal with $\lambda_1, \ldots, \lambda_n$.

This is not always possible, because there is not always a basis of eigenvectors. Instead look at the generalised eigenspace,

$$\{x \in \mathbb{C}^n \mid (\lambda I - T)^k x = 0 \text{ for some } k \ge 1.$$

But $\{0\} \subseteq \text{KER } (\lambda I - T)^1 \subseteq \text{KER } (\lambda I - T)^2 \subseteq \dots$ and since $\dim(\mathbb{C}^n) < \infty$ this must stabilise. Let $r \geq 1$ be the fist time that $\text{KER } (\lambda I - T)^r = \text{KER } (\lambda I - T)^{r+1}$. Then the generalised λ -eigenspace is just $\text{KER } (\lambda I - T)^r$. There **is** a basis of \mathbb{C}^n consisting of generalised eigenvectors, and the matrix of T relative to this basis is in block form.

Definition 24.1 (Complete reduction). Let $T: X \to X$ be linear. If $X = X_1 \oplus X_2$ be can write

$$Tx = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

where we identify $x_1 + x_2 \iff (x_1, x_2)$. Here,

$$T_{11}: X_1 \rightarrow X_1$$

$$T_{12}: X_2 \to X_1$$

$$T_{21}: X_2 \to X_2$$

$$T_{22}: X_2 \to X_2$$

we say that $X = X_1 \oplus X_2$ completely reduces T (well adapted to T) if

$$Tx = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

We write $T = T_1 \oplus T_2$.

Exercise 24.2. If $X = X_1 \oplus X_2$ completely reduces $T = T_1 \oplus T_2$, then

- (a) Ker $T = \text{Ker } T_1 \oplus \text{Ker } T_2$
- (b) Im $T = \text{Im } T_1 \oplus \text{Im } T_2$
- (c) T is injective if and only if T_1, T_2 are injective
- (d) T is surjective if and only if T_1, T_2 are surjective
- (e) If T is bijective, then $X = X_1 \oplus X_2$ completely reduces $T^{-1} = T_1^{-1} \oplus T_2^{-1}$.

Corollary. Let $X = X_1 \oplus X_2$ be Banach, with X_1, X_2 closed subspaces. If $X = X_1 \oplus X_2$ completely reduces $T = T_1 \oplus T_2 \in \mathcal{L}(X)$, then

- (a) $T_1 \in \mathcal{L}(X_1), T_2 \in \mathcal{L}(X_2)$
- (b) $\sigma(T) = \sigma(T_1) \cup \sigma(T_2)$
- (c) $\sigma_p(T) = \sigma_p(T_1) \cup \sigma_p(T_2)$

Proof. Exercise.

Consider the following chains

$$\{0\}\subseteq \operatorname{Ker} \, S^1\subseteq \operatorname{Ker} \, S^2\subseteq \dots$$

$$X\supseteq \operatorname{Im} \, S^1\supseteq \operatorname{Im} \, S^2\supseteq \dots$$

where X is a vector space and $S \in \text{Hom}(X, X)$. It is easy to see that if Ker $S^r = \text{Ker } S^{r+1}$ then Ker $S^r = \text{Ker } S^{r+k}$. Similarly for images (p. 109 in Daners.)

There is no reason that these should stabilise in general.

Theorem 24.3. Let X be Banach, $T \in \mathcal{K}(X), \lambda \neq 0$. Then both chains (with $S = \lambda I - T$) stabilise.

Proof. Without loss of generality, assume $\lambda = 1$, so we can write S = I - T. Suppose that the kernel chain does not stabilise. Since we assume

$$\operatorname{Ker} \, S^1 \subseteq \operatorname{Ker} \, S^2 \subseteq \operatorname{Ker} \, S^3 \subseteq$$

We know that these are closed (being finite dimensional) subspaces. So Reisz's Lemma gives $x_n \in \text{Ker } S^n$ with $||x_n|| = 1$, $||x_n - x|| \ge \frac{1}{2}$ for all $x \in \text{Ker } S^{n+1}$. This is a bounded sequence. We claim that Tx_n has no convergent subsequence.

Let m > n. Then

$$||Tx_m - Tx_n|| = ||(I - T)x_n - (I - T)x_m + x_m - x_n||$$

$$= ||Sx_n - Sx_m - x_m - x_n||$$

$$= ||x_m - \underbrace{(Sx_m - Sx_n + x_n)}_{\text{in KER } S^{m-1}}||$$

$$\geq \frac{1}{2}$$

The image argument is similar - using the fact that the images are closed - proved in the previous lecture. \Box

Theorem 24.4. Let X be a vector space, $S \in Hom(X,X)$. Suppose that

$$\alpha(S) = \inf\{r \ge 1 \mid \text{Ker } S^r = \text{Ker } S^{r+1}\}$$
$$\delta(S) = \inf\{r \ge 1 \mid \text{Im } S^r = \text{Im } S^{r+1}\},$$

the ascent and descent of S respectively, are both finite.

Then

- (a) $\alpha(S) = \delta(S) = r$, say
- (b) $X = \operatorname{Ker} S^r \oplus \operatorname{Im} S^r$
- (c) The direct sum in (b) completely reduces S.

Proof. Daner's notes, p. 109.

Corollary. Let X be Banach, $T \in \mathcal{K}(X)$, $\lambda \neq 0$. Let $r = \alpha(\lambda I - T) = \delta(\lambda I - T)$. Then $X = \text{Ker } (\lambda I - T)^r \oplus \text{Im } (\lambda I - T)^r$ and this completely reduces $\mu I - T$, $\mu \in \mathbb{K}$.

Corollary. If X is Banach, $T \in \mathcal{K}(X), \lambda \neq 0$ then $\lambda I - T$ is injective if and only if $\lambda I - T$ is surjective.

Proof.

$$\lambda I - T \text{ injective}$$

$$\Rightarrow 0 \in \text{Ker } (\lambda I - T)^1 = \text{Ker } (\lambda I - T)^2$$

$$\Rightarrow \alpha(\lambda I - T) = 1$$

$$\Rightarrow \delta(\lambda I - T) = 1$$

$$\Rightarrow X = \underbrace{\text{Ker } (\lambda I - T)}_{=\{0\}} \oplus \text{Im } (\lambda I - T)$$

$$\Rightarrow X = \text{Im } (\lambda I - T)$$

$$\Rightarrow X \text{ is surjective}$$

The other direction is similar.

Corollary. Let X be Banach, $T \in \mathcal{K}(X)$. Thus each $\lambda \in \sigma(T) \setminus \{0\}$ is an eigenvalue.

Proof. Immediate from the previous corollary.

25. Lecture 25 - Monday 30 May

Recall the following.

Corollary. Let X be Banach, $T \in \mathcal{K}(X)$, $\lambda \neq 0$. Let $r = \alpha(\lambda I - T) = \delta(\lambda I - T)$. Then $X = \text{Ker } (\lambda I - T)^r \oplus \text{Im } (\lambda I - T)^r$ and this completely reduces $\mu I - T, \mu \in \mathbb{K}$.

Also note that IM KER $(\lambda I - T)^r$ is closed, and KER $(\lambda I - T)^r$ is finite dimensional.

Exercise 25.1. Let $\lambda 1, \ldots, \lambda_n \in \sigma(T) \setminus \{0\}$. Let $N_j = \text{Ker } (\lambda_j I - T)_j^r$ be the generalised λ_j -eigenspace. Show that there exists closed subspaces M with

$$X = N_1 \oplus N_2 \oplus \cdots \oplus M$$

with $T = T_1 \oplus T_2 \oplus \cdots \oplus T_M$, and so spectral theory tells us how to diagonalise T.

In Hilbert spaces we can say even more. Recall that the adjoint of $T \in \mathcal{L}(\mathcal{H})$ is defined by

$$\langle Tx, y \rangle = \langle x, T^*y \rangle \quad \forall x, y \in \mathcal{H}$$

Then $T^* \in \mathcal{L}(\mathcal{H})$.

Definition 25.2 (Self-adjoint). $T \in \mathcal{L}(\mathcal{H})$ is

- (a) Hermitian (self-adjoint) if $T^* = T$.
- (b) Unitary if $T^*T = TT^* = I$.
- (c) Normal if $T^*T = TT^*$.

Remark. For matrices, we have

- (a) Hermitian if and only if $\overline{A^T} = A$.
- (b) Unitary if and only if the columns of A are orthonormal.
- (c) Hermitian and unitary operators are normal.

Proposition 25.3. Let \mathcal{H} be Hilbert over \mathbb{C} . IF $T \in \mathcal{L}(\mathcal{H})$ is normal, then r(T) = ||T||.

Proof. For Hermitian operators it is easy. We have

$$||T||^2 = ||T^*T|| = ||T^2||.$$

By induction , we then have $||T||^{2^n} = ||T^{2^n}||$. So

$$\begin{split} r(T) &= \lim_{n \to \infty} \|T^n\|^{1/n} \\ &= \lim_{n \to \infty} \|T^{2^n}\|^{1/2^n} \\ &= \|T\|. \end{split}$$

For normal operators, we have

$$\begin{split} \|T^2\|^2 &= \|(T^2)^*T^2\| \\ &= \|T^*(T^*T)T\| \\ &= \|T^*TT^*T\| \quad \text{normal} \\ &= \|(T^*T)^*(T^*T)\| \\ &= \|T^*T\|^2 \\ &= \|T^4\| \end{split}$$

and then we have $||T^2|| = ||T||^2$ and the proof follows by induction.

Corollary. Let \mathcal{H} be a Hilbert space over \mathbb{C} .

(a) If $T \in \mathcal{L}(\mathcal{H})$ is unitary, then

$$\sigma(T) \subseteq \mathbb{T} = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$$

(b) If $T \in \mathcal{L}(\mathcal{H})$ is Hermitian, then

$$\sigma(T) \subseteq \mathbb{R}$$
.

Proof.

- (a) On practice sheet. Use the fact that $\sigma(T^*) = \overline{\sigma(T)}$.
- (b) Let $\lambda = a + ib \in \sigma(T)$. So $\lambda I T$ is not invertible. Hence, $(\lambda + it)I (T + itI)$ is not invertible for all $t \in \mathbb{R}$. Then

$$\begin{split} \|\lambda + it\|^2 &\leq r(T + itI)^2 \\ &\leq \|T + itI\|^2 \\ &= \|(T + itI)^*(T + itI)\| \\ &= \|(T - itI)(T + itI)\| \\ &= \|T^2 + t^2I\| \\ &\leq \|T^2 + t^2 \end{split}$$

However, the left hand side is equal to

$$a^2 + b^2 + 2bt + t^2,$$

and so we obtain

$$a^2 + b^2 + 2bt \le ||T||^2 \quad \forall t \in \mathbb{R}$$

and so b = 0.

Lemma 25.4. Let \mathcal{H} be Hilbert over \mathbb{C} . Let $T \in \mathcal{L}(\mathcal{H})$, and let

$$M_{\lambda} = \{x \in \mathcal{H} \mid Tx = \lambda x\} = \text{Ker } \lambda I - T$$

be the λ -eigenspace of T. Then

- (a) $M_{\lambda} \perp M_{\mu}$ if $\lambda \neq \mu$.
- (b) If T is normal, each M_{λ} is T and T^* invariant. That is,

$$T(M_{\lambda}) \subseteq M_{\lambda}, \quad T^*(M_{\lambda}) \subseteq M_{\lambda}.$$

Proof.

(a) Let $u \in M_{\lambda}, v \in M_{\mu}$. Then

$$(\lambda - \mu) \langle u, v \rangle = \langle \lambda u, v \rangle - \langle u, \overline{\mu}v \rangle$$
$$= \langle Tu, v \rangle - \langle u, T^*v \rangle$$
$$= \langle Tu, v \rangle - \langle Tu, v \rangle$$
$$= 0$$

and so $\langle u, v \rangle = 0$.

(b) If T is normal, then KER $T = \text{KER } T^*$ as

$$||Tx||^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle$$
$$= \langle x, TT^*x \rangle = \langle T * x, T^*x \rangle$$
$$= ||T^*x||^2.$$

Similarly, if T is normal then $\lambda I - T$ is normal. Then

$$M_{\lambda} = \text{Ker } \lambda I - T \quad (T \text{ invariant})$$

= Ker $\overline{\lambda} I - T^* \quad (T^* \text{ invariant}).$

The spectral theory for compact normal operators in a Hilbert space is particularly nice, as the following theorem demonstrates.

Theorem 25.5. Let $T \in \mathcal{L}(\mathcal{H})$ be compact and normal. Then

$$\mathcal{H} = \overline{\bigoplus_{\lambda \in \sigma(T)} M_{\lambda}},$$

the closure of the span of the eigenspaces, and \mathcal{H} has an orthonormal basis consisting of eigenvectors. Moreover, T acts diagonally with respect to this basis.

Proof. Let

$$M = \overline{\bigoplus_{\lambda \in \sigma(T)} M_{\lambda}},$$

a closed subspace. Hence $H = M \oplus M^{\perp}$, where

$$M^{\perp} = \{ x \in \mathcal{H} \mid \langle x, m \rangle = 0 \, \forall m \in M \}.$$

We must show that $M^{\perp} = \{0\}$. Assume the contrary. Then consider $\tilde{T} = M^{\perp} \to \mathcal{H}$ be the restriction of T to M^{\perp} . Then we have

$$\tilde{T}:M^{\perp}\to M^{\perp}$$

is compact and normal (Exercise). Then

- (a) $\sigma(\tilde{T}) = \{0\}$. Then $r(\tilde{T}) = 0$, and so $\|\tilde{T}\| = 0$, and so $\tilde{T} = 0$. Then each $x \in M^{\perp} \setminus \{0\}$ satisfies $\tilde{T}x = 0 = 0x$, and so $x \in M_0$ with $M^{\perp} \subseteq M_0 \subseteq M$, a contradiction (from direct sum decomposition). Hence $M = \{0\}$.
- (b) $\sigma(\tilde{T}) \neq \{0\}$. So there is an eigenvalue $\lambda \in \sigma(T) \setminus \{0\}$. So there is $x \in M^{\perp} \setminus \{0\}$ with $\tilde{T}x = \lambda x$. o $Tx = \lambda x$, and so $x \in (M_{\lambda} \cap M^{\perp}) \setminus \{0\}$, a contradiction. Hence $M^{\perp} = \{0\}$.

Choose an orthonormal basis for each M_{λ} , and combine to get an orthonormal basis of \mathcal{H} , using $M_{\lambda} \perp M_{\mu}$.

26. Lecture 26 - Wednesday 1 June

26.1. Fredholm alternative for compact operators on a Hilbert space. Recall that for matrices, we have the following result, known as the Fredholm alternative.

Theorem 26.1 (Fredhold alternative (Finite dimensional spaces)). Let $A : \mathbb{C}^n \to \mathbb{C}^n$ be linear. Then exactly one of the following two things occur:

- (1) Ax = 0 has only the trivial solution x = 0, in which case Ax = b has a unique solution for each $b \in \mathbb{C}^n$.
- (2) Ax = 0 has a non-trivial solution, in which case Ax = b has either no solutions, or infinitely many solutions.

Definition 26.2 (Hilbert-Schmidt integral operators).

$$T: L^{2}([a,b]) \to L^{2}([a,b])$$
$$(Tf)(x) \mapsto \int_{a}^{b} K(x,y)f(y) \, dy$$

where $||K||_2$ is finite. These are compact operators.

Consider equations of the following form

$$\lambda f(x) - \int_a^b K(x, y) f(y) \, dy = g(x),$$

where $\lambda \neq 0$ and $g \in L^2$ are given. This can be rewritten in the form

$$(\lambda I - T)f = g.$$

Then we have the following theorem, due to Fredholm.

Theorem 26.3 (Fredholm alternative (Hilbert spaces)). Let \mathcal{H} be Hilbert over \mathbb{C} , and let $T \in \mathcal{K}(\mathcal{H})$. Then exactly one of the following occurs.

(a) $(\lambda I - T) = 0$ has only the trivial solution, in which case $(\lambda I - T)x = b$ has a unique solution for each $b \in \mathcal{H}$.

(b) $(\lambda I - T)x = 0$ has a non trivial solution, in which case $(\lambda I - T)x = b$ has a solution if and only if $b \perp y$ for every solution y of the equation

$$(\overline{\lambda}I - T^*)y = 0$$

This is finite dimensional, as it is the kernel of $(\lambda I - T)^*$.

Proof.

- (a) If $(\lambda I T)x = 0$ has only the trivial solution, then KER $\lambda I T = \{0\}$ and so it is injective. Hence λ is not an eigenvalue, and so λ is not a spectral value. So $\lambda I T$ is invertible, and so $(\lambda I T)x = b$ has a unique solution $x = (\lambda I T)^{-1}b$, which can be expanded into a series expression if $|\lambda| > r(T)$.
- (b) Suppose $(\lambda I T)x = 0$ has a non-trivial solution. Then

$$(\lambda I - T)x = b \text{ has a solution}$$

$$\iff b \in \text{Im } \lambda I - T \text{ which is closed}$$

$$\iff b \in ((\text{Im } \lambda I - T)^{\perp})^{\perp}$$

$$\iff b \in (\text{Ker } \overline{\lambda} - T^*)^{\perp}$$

$$\iff b \perp y \quad \forall y \in \text{Ker } \overline{\lambda} I - T^*.$$

Proposition 26.4 (Miscelaneous).

- (a) If M is a closed subspace of \mathcal{H} , then $M = M^{\perp \perp}$.
- (b) If $S: \mathcal{H} \to \mathcal{H}$ and $S \in \mathcal{L}(\mathcal{H})$, then $(\operatorname{Im} S)^{\perp} = \operatorname{Ker} S^*$.

Proof.

- (a) Let $m \in M$, then $\langle m, x \rangle = 0$ for all $x \in M^{\perp}$, and so $m \in (M^{\perp})^{\perp} = M^{\perp \perp}$, and so $M \subseteq M^{\perp \perp}$. Let $x \in M^{\perp \perp}$. Since M is closed, $\mathcal{H} = M \oplus M^{\perp}$, and so $x = m + m^{\perp}$. So $x - m \in M^{\perp \perp} + M \subseteq M^{\perp \perp}$, and so $x - m = m^{\perp} \in M^{\perp \perp}$. But M^{\perp} is closed, and so $\mathcal{H} = M^{\perp} \oplus M^{\perp \perp}$. So x - m = 0, and $x = m \in M$.
- (b)

$$(\operatorname{Im} S)^{\perp} = \{x \in \mathcal{H} \mid \langle x, sy \rangle = 0 \quad \forall y \in \mathcal{H} \}$$
$$= \{x \in \mathcal{H} \mid \langle S^*x, y \rangle = 0 \quad \forall y \in \mathcal{H} \}$$
$$= \{x \in \mathcal{H} \mid S^*x = 0 \}$$
$$= \operatorname{KER} S^*$$