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1. LECTURE 1 - MONDAY 28 FEBRUARY
Definition 1.1 (Norm). Let X be a vector space. A norm on X is a function || -] : X — R
satisfying
e ||z| > 0 with equality if and only if x = 0.
o [loz| = |af].
o lz+yll < llzll + [ly|l for all z,y € X.

We call the pair (X, || - ||) a normed vector space.

Theorem 1.2 (Reverse triangle inequality). Let X be a normed vector space. For any x,y € X,

we have
) =yl < llz —yll

Definition 1.3 (Complete space). Let X be a normed vector space. Then X is complete if every

Cauchy sequence in X converges to some x € X.
Definition 1.4 (Banach space). A Banach space is a complete normed vector space.

2. LECTURE 2 - WEDNESDAY 2 MARCH

Proposition 2.1 (Convergence). Let (V|- ||) be a normed vector space. A sequence () in V

converges to x € V if given € > 0, there exists N such that ||x — x,|| < € whenever n < N.
Lemma 2.2. If z, — z, then ||z, || — ||z|| € R.

Proof. [[|an]| — [lz]|| < [lz = nll — 0. 0
Proposition 2.3. Every convergent sequence is Cauchy.

Definition 2.4 (Banach space). A complete, normed, vector space is called a Banach space
Proposition 2.5. (K,|-|) is complete.

Proposition 2.6. (¢7,] -||p) is a Banach space for all 1 < p < oo

Proof. A general proof outline follows.

e Use completeness of R to find a candidate for the limit.

e Show this limit function is in V.

e Show that z,, - x in V.

(n)

Let 2(™ be a Cauchy sequence in 7. Since |x§n) — xgn)| < ||z — 2™, we know that z; isa

()

;1= x; exists, and is our limit candidate.
We now show that > 72, |2;|? < co. We have O

Cauchy sequence in K. Hence, lim,,_,o,

Proposition 2.7. (¢([a,b]),] - |lec) is @ Banach space
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Proposition 2.8. If1 < p < oo, then (¢([a,b]), || - ||p) is mot a Banach space.

Proof. Consider a sequence of functions that is equal to one on [0, %], Zero on [% + 1.1], and linear

n’

between. This is a Cauchy sequence that does not converge to a continuous function. O

3. LECTURE 3 - MONDAY 7 MARCH
We’ve seen that (¢([a,D]), || - ||,) is not complete for 1 < p < oo.

Theorem 3.1 (Completion). Let (V,||-||) be a normed vector space over K. There exists a Banach
space (V1, || - |l1) such that (V,|| - ||) is isometrically isomorphic to a dense subspace of (V1, || - |l1)-

Furthermore, the space (V1,] - ||1) is unique up to isometric isomorphisms.

Proof. Rather straightforward - construct Cauchy sequences, append limits, quotient out (as dif-

ferent sequences may converge to the same limit). O
Definition 3.2. (V4,|| - |l1) is called the completion of (V, || - ||).

Definition 3.3 (Dense). If X is a topological space and Y C X, then Y is dense in X if the
closure of Y in X equals X, that is, Y = X.
Alternatively, for each x € X, there exists (y,) in Y such that y,, — «.

Definition 3.4 (Isomorphism of vector spaces). Two normed vector spaces (X, ||-]|X) and (Y, ||-||Y)

are isometrically isomorphic if there is a vector space isomorphism ¥ : X — Y such that
W)y =zllx VzeX

Example 3.5. Let ¢y = {(z;)|#{i,x; # 0} < oo}. The completion of £y, || - ||, is (€7, - ||p),

because,

e /; is a subspace of (P,

e It is dense, since we can easily construct a sequence in ¢y converging to arbitrary x € (7.

Example 3.6 ( LP spaces). Let u be the Lebesgue measure on R. Let

b
LP([a,b]) = {measurable f : [a,b] — K| / | fIP dp < oo}

1/p
Let || fll, = (fabmpdu) . Since ||fl[, = 0 <= f = Oa.e, we quotient out by the rule
f=9g < f—g=0a.e., and then our space of equivalence classes forms a normed vector space,
denoted LP([a, b]).

Theorem 3.7 (Riesz-Fischer). (L”([a,b]),-||p) is the completion of (Cla,b], ||-||p), and is a Banach

space.

Proof. Properties of the Lebesgue integral. O
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Remark.
e Let X be any compact topological space, let C(X) = {f : X — K| f is continuous}, and
let || flloo = sup,ex ||f(x)]. Then C(X, | - ||o) is Banach.
e Let X be any topological space. Then the set of all continuous and bounded functions with
the supremum norm forms a Banach space.
e Let (S, A, 1) be a measure space. Then we can define the £P and LP analogously, and they

are also Banach.

Definition 3.8 (Linear operators on normed vector spaces). Let X, Y be vector spaces over K. A
linear operator is a function 7' : X — Y such that
T(x+y)=T(x)+T(y)
T(az) = oT(x)

for all x,y, .
We write Hom(X,Y) ={T: X —» Y |T is linear}

Definition 3.9. T : X — Y is continuous at x € X if for all ¢ > 0, there exists § > 0 such that
[z —yllx <& = [Tz —Tylly, <e

Definition 3.10.
L(X,Y)={T:X — Y |T is linear and continuous}

Remark. If dim(X) < oo then Hom(X,Y) = £(X,Y). This is not true if X has infinite dimension.

Definition 3.11 (Bounded linear operator). Let T': X — Y be linear, then T is bounded if T
maps bounded sets in X to bounded sets in Y. That is: for each M > 0 there exists M’ > 0 such
that

lzllx < M = |Tz|ly <M

4. LECTURE 4 - WEDNESDAY 9 MARCH

Consider the space £(X,Y), the set of all linear and continuous maps between two normed vector

spaces X and Y.

Theorem 4.1 (Fundamental theorem of linear operators). Let (X, |- ||x) and Y, | - ||y be normed
vector spaces. Let T € Hom(X,Y), the set of all linear maps from X toY. Then the following are

all equivalent.

1) T is uniformly continuous
2) T is continuous

3) T is continuous at 0
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4) T is bounded
5) There exists a constant ¢ > 0 such that

[Tzlly <cllzfx VoeX

Proof. 1) = 2) = 3) is clear.
3) = 4). Since T is continuous at 0, given e = 1 > 0, there exists § such that

|Tz —T0|| <1 whenever [ X —0| <4,

i.e. that ||z <d = ||Tz| < 1. Let y € X. The ”H%HH <4, and so ||T (%) || << 1. Hence,

)
Tl Tyl <1
[yl
and so Il
Yy
Tyl < =2
Iyl < %

for all y € X. Thus, for all ||y|| < M, we have ||Ty|| < M’, where M’ = & "and so T is bounded.
4) = 5). If T is bonded, given M =1 > 0, there exists ¢ > 0 such that ||z|]| < 1= ||Tz| < ¢

Then
i
|W(MSc
I

T2 — Tyl = |T(x —y)l| <cllz -yl

Hence, ||Tz|| < c||z||.
5) = 1). If 5) holds, then

So if € is given, taking § = <, we have

C’
1Tz — Tyl < cllz — vy <cE =e. O
c

Corollary. If T € Hom(X,Y), then T continuous <= T bounded <= ||Tx| < c||z| for all
e X.

Definition 4.2 (Operator norm). The operator norm of T' € L(x,y), ||T| is defined by any one

of the following equivalent expressions.

(a) [IT]| = inffc > 0|[|Tz|| < ¢z}

)
(b) (|7 = sup, .o 15k
() 1T = supyy<, 1T
() 7] = SUP||z||=1 [Tz

Proposition 4.3. The operator norm is a norm on L(x,y).

Proof. The following are simple to verify.

(a) |IT|| > 0, with equality if and only if T = 0.
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(b) [T} = | T
() 1S+ Tl < IS+ 7]

Example 4.4 (Calculating || T||). To calculate ||T||, try the following.

1) Make sensible calculations to find ¢ such that
ITz|| < el

for all x € X.
2) Find z € X such that [|Tz|| = ¢||z]|.

5. LECTURE 5 - TUESDAY 15 MARCH

Remark. Ignore 12, Q3(b), Q8 on the practice sheet, as we will be ignoring Hilbert space theory for
the time being.

Definition 5.1 (Algebraic dual). Let (X, | - ||) be a normed vector space over K. The algebraic
dual of X is
X* =Hom(X,K) = {p: X = K| is linear}.

Elements of X™* are called linear functionals.

Definition 5.2 (Continuous dual (just dual)). The continuous dual (just dual) of X is
X' =L(X,K)={p: X — K| is linear and continuous}.

Remark. X* 2 X' if dim(X) = oc.

Example 5.3. Let (p([a,b]),] - |loc) be the normed vector space of polynomials p : [a,b] — K.

(a) The functional D : ([0, 1]) — K given by D(p) = p(1) is linear, but not continuous.
(b) The functional I : p([0,1]) — K given by I(p) = fol p(t) dt is linear and continuous.

Proof. (a) Linearity is clear. The p,(t) = t" for all ¢ € [0,1]. Then |D(pn)| = nl|pn]lco- So D is

not continuous, as continuity implies that there exists ¢ such that
[Tz < cllz].-

(b) Exercise: Show ||I|| = 1.
U

Describing the continuous dual space X' is one of the first things to do when trying to understand

a normed vector space. It is generally pretty difficult to describe X’.

Proposition 5.4 (Dual of the ¢? space for (1 < p < 00)). Let 1 < p < co. Let g be the “dual” of
p, defined by % + % = 1. Then (¢P) is isometrically isomorphic to ¢9.
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Remark (Observation before proof). Let 1 < p < co. Let e; = (0,0,...,1,0,...) where 1 is in the
i-th place.

1) If x = (x;) € P, then
Xr = Zmiei
=1

in the sense that the partial sums converge to x.

2) If ¢ : ¢ — K is linear and continuous, then
o(z) = zip(es)
i=1
Proof of observations. Let S, = " | x;e;. Then

”"17 - Sn”g = ||(0507 s Tt Tng2y - - )||£

oo

2 el

1=n+1

— 0 as it is the tail of a convergent sum.
Write ¢(z) as
w(x) =p( lim S,) (continuity)

n—oo

Jim (p(5))

(5]

i=1

= nh_)rr;O;xiap(ei) (linearity)

= Z%“P(ei) U
i=1

Proof. Define a map 6 by
6: 01— (£r)
Y= Py
where ¢, (z) = x;y; for all z € (7.

(1) ¢, is linear, as ¢, (z + 2') = ¢y (x) + @, (z’) (valid as sums converge absolutely.)

(2) ¢, is continuous, as

oy (@) = 1Y wiyal <Y Jwiyl < lellyllylly
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by Holder’s inequality. From the fundamental theorem of linear operators, as |p,(z)] <
llzllpllyllg, we have that ¢, is continuous, and that
leyll < llyllq (%)

(3) 0 is linear.
(4) 0 is injective, as
0y) =0(y) = @y = vy = @y(z) = @y (z) Vo el
= pyle;) =py(e;) VieN=y, =y, VieN=y=y
(5) 0 is surjective. Let ¢ € (¢P). Let y = (¢(e1),...,0(en)s---) = (Y1,---,Yn,-..). We now show
y € (1.
Let (™ € (2 be defined by

lyil?

(n) _ Yi
0 otherwise

ifi <mandy; #0

Then - N
pa™) =3 aMp(e) = > [yl (1)
=1

i=1
by Observation 2) above.

On the other hand, we know

lp(@™) < ez,
oo 1/p
= lle| (Z |x§”>|p>
=1
n 1/p
_ ol (z |yz-|<q-l>p)
=1

n 1/p
= ol <Z Iyilq> as1/p+1/q=1. (%)
i=1

Now, using () and (%), we have

n mn 1/p
S Il < el (z w)
=1 =1

and so we must have
lyllq < el (o %)

and so y € (9.
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We also have, by (*),
1Yllq < lleeyll

(6) Finally, we show that 6 is an isometry. By (*) and (x x ), we have

10 = lleyll = llyllq

as required. O

6. LECTURE 6 - WEDNESDAY 16 MARCH

How big is X'? When is X' # {0}7 Examples suggest that X’ is big with a rich structure.

6.1. The Hahn-Banach theorem. The Hahn-Banach theorem is a cornerstone of functional
analysis. It is all about extending linear functionals defined on a subspace to linear functionals on

the whole space, while preserving certain properties of the original functional.

Definition 6.1 (Seminorm). A let X be a vector space over K. A seminorm on X is a function
p: X — R such that

(1) plz+y) <p(x)+ply) Ve,yeX
(2) p(Az) = |Ap(z) Ve X, AeK

Theorem 6.2 (General Hahn-Banach). Let X be a vector space over K. Let p : X — R be a
seminorm on X. Let Y C X be a subspace of X. If f: Y — K is a linear functional such that

Ilf(y)l <ply) YyeY

then there is an extension f: X — K such that

is linear

(y)=fly) VyeyY
o [f(x)|<p(x) VreX

7
i

Remark. This is great.
e Y can be finite dimensional (and we know about linear functionals on finite dimensional
spaces)
o If p(x) = ||z||, then
[f@)] < el voeX
and so f € X’

Corollary. Let (X,| - ||) be a normed vector space over K. For each y € X, with y # 0, there is
v € X' such that

o) =1yl and |¢l|=1
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Proof. Fix y #01in X. Let Y = {Ky} = {\y|) € K}, a one-dimensional subspace.
Define f:Y — K, f(Ay) = Ally||. This is linear. Set p(x) = ||z||. Then

|f(Ay) = p(Ay)
and so by Hahn-Banach, there exists f : X — K such that
e [ is linear
o fOw)=f0y) VAEK
o [f(@) <] VzeX
Then we have f € X’ and ||f|| = 1 as required. O

6.2. Zorn’s Lemma.

Theorem 6.3 (Axiom of Choice is equivalent to Zorn’s Lemma). See handout for proof that

AC. = Z.L.

Definition 6.4 (Partially ordered set). A partially ordered set (poset) is a set A with a relation
< such that

(1) a<aforallacA,
(2) If a <band b < athen a = b,
(3) fa<band b<e¢, thena <c

Definition 6.5 (Totally ordered set). A totally ordered set is a poset (A, <) such that ifa,b € A
then either a < b or b < a.

Definition 6.6 (Chain). A chain in a poset (4, <) is a totally ordered subset of A.

Definition 6.7 (Upper bound). Let (A4, <) be a poset. An upper bound for B C A is an element
u € A such that b < for all b € B.

Definition 6.8 (Maximal element). A maximal element of a poset (4, <) is an element m € A

such that m < z implies x = m, that is,
m<zT=T=m

Example 6.9. Let S be any set. Let P(S) be the power set of S (the set of all subsets of 5).
Define a < b <= a C b. Maximal element is S

Theorem 6.10 (Zorn’s Lemma). Let (A, <) be a poset. Suppose that every chain in A has an

upper bound. Then A has (at least one) mazximal element.

Example 6.11 (Application - all vector spaces have a basis).
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Definition 6.12 (Linearly independent). Let X be a vector space over F. We call B C X linearly
independent if

M1+ F AT, =0=2 A ==X, =0
for all finite {x1,...,z,} C B.

Definition 6.13 (Span). We say B C X spans X if each z € X can be written as
r=Mx1+ -+ ATy

for some Ay,..., A, € Fand {z1,...,2,} C B.

Definition 6.14 (Hamel basis). A Hamel basis is a linearly independent spanning set. Equivalently,
B C X is a Hamel basis if and only if each € X can be written in exactly one way as a finite

linear combination of elements of B.
Theorem 6.15. Every vector space has a Hamel basis

Proof. Let L = {linearly independent subsets}, with subset ordering. Let C be a chain in L. Let
u = ,cca Then

(1) ue L,
(2) w is an upper bound for C.

So Zorn’s Lemma says that L has a maximal element b.

Then b is a Hamel basis.

e b is linearly independent.
e If Span(b) # X, there exists X € X\Span(b), and b’ = b J{z} € L is linearly independent,

contradicting maximality of b.

O

Remark. If X, || -||) is Banach, every Hamel basis is uncountable.

7. LECTURE 7 - MONDAY 21 MARCH

Proof of Hahn-Banach Theorem Discussion of Dual operators

Theorem 7.1 (Hahn-Banach theorem over R). Let X be a real linear space and let p(z) be a
seminorm on X . Let M be a real linear subspace of X and fo a real-valued linear functional defined
on M. Let fy satisfy fo(x) < p(z) on M. Then there exists a real valued linear functional F defined
on X such that

(i) F is an extension of fo, that is, F(z) = fo(z) for all x € M, and
(i) F(x) <p(x) on X.
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Proof. We first show that fy can be extended if M has codimension one. Let zyp € X\M and
assume that span(M U {zo}) = X. As z9 ¢ M be can write z € X uniquely in the form

r=m -+ axg

for & € R. Then for every ¢ € R, the map f. € Hom(X,R) given by f.(m + az) = fo(m) + ca is
well defined, and f.(m) = fo(m) for all m € M. We now show that we can choose ¢ € R such that
fe(z) < p(x) for all x € X. Equivalently, we must show

fo(m) + ca < p(m + axg)

for all m € M and « € R. By positive homogeneity of p and linearity of f we have
fo(m/a)+c<plzg+m/a) a>0
fo(=m/a) —c<p(—x9 —m/a) a<0

Hence we need to choose ¢ such that

¢ < p(xo +m) — fo(m)

¢ > —p(—x0+m)+ fo(m).
This is possible if

—p(=z0 +m1) + fo(m1) < p(xo +m2) — fo(ma)
for all my, mo € M. By subadditivity of p we can verify this condition since
fo(m1 +m2) < p(mimz) = p(m1 — o +m2 — x0) < p(m1 — x0) + p(m2 + x0)

for all mq,ms € M. Hence ¢ can be chosen as required.
Hence D(F') = X, and the theorem is proven. O

Theorem 7.2 (Hahn-Banach over C). Suppose that ¢ is a seminorm on a complex vector space X
and let M sub a subspace of X. If fo € Hom(M, C) is such that | fo(x)| < p(x) for all x € M, then
there exists an extension f € Hom(X,C) such that f|p = fo and |f(z)] < p(x) for all x € X.

Proof. Split fj into real and imaginary parts
fo(z) = go(x) + iho(z).

By linearity of f, we have

0 =ifo(x) — foliz) = igo(x) — ho(x) — go(iz) — iho(iz)
= —(go(ix) + ho()) + i(go(x) — ho(iz))

and so ho(z) = —go(iz). Therefore,

fo(z) = go(x) — igo(iz)
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for all x € M. We now consider X as a vector space over R, Xg. Now considering Mg as a
subspace of Xg. GSince go € Hom(Mg,R) and go(z) < |fo(x)| < p(z) and so by the real Hahn-
Banach, there exists g € Hom(Xg, R) such that g|a;, = go and g(x) < p(z) for all x € Xg. Now set
F(z) = g(z) — ig(ix) for all x € Xg. Then by showing f(ixz) = if(x), we have that f is linear.

We now show |f(z)| < p(z). For a fixed z € X choose A € C such that Af(z) = |f(x)|. Then
since |f(x)| € R and by definition of f, we have

[f(@)] = Af ()] = f(Az) = g(Az) < p(Az) = |Ap(x) = p(z)

as required. O

8. LECTURE 8 - WEDNESDAY 23 MARCH
Definition 8.1 (Inner product). Let X be a vector space over K. An inner product is a function
() X xX =K
such that

(1) (& +y,2) = (x,2) + (4, 2)
(2) {ax,2) = a(z, 2)
(3) (z,y) = (y,2)

(z,2) >

(4) (x 0 with equality if and only if z =0
We then have

, T

<$’y+ Z> = <$7y> + <$,Z>
and

(x,az) =alx, 2)

Definition 8.2 (Inner product space). Let (X, (-,-)) be an inner product space. Defining
lz|| = v/{z,z) turns X into a normed vector space. To prove the triangle inequality, we use the

Cauchy-Swartz theorem.
Theorem 8.3 (Cauchy-Schwarz). In an inner product space (X, (-,-)), we have
[z, )l < llllllyll Vz,y e X
Proof.
0<{(zx—Ay,z— \y)
= (z,2) = (2, Ay) = Ay, 2) + (Ay, Ay)

= ll2ll* = Ma, y) — My, 2) + APyl
= ||=[|* — 2Re(A(y, =)) + [Pyl
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Set A\ = {&Y%  Then

e
2 2
0< ||.’£||2 _ 2Re(|<x’yz‘ )+ ‘<x»y2|
1yl Iyl
2
_ ||.13||2 _ |<x,y2|
lyl
as required. 0
Corollary.
l +yll < [lzf| + [yl
Definition 8.4 (Hilbert space). If (X, (,-)) is complete with respect to || - || then it is called a

Hilbert space.

Example 8.5. (a) (2, where (z,y) = Y2 2;7;.
Cauchy-Schwarz then says

(o) o0 o0
i=1 i=1 i=1

(b) L2([a,b]), where (f,g) = [* f(x)g(x) dx.
Cauchy-Swartz then says

b
| / H@)a@ dr < ...

Definition 8.6 (Orthogonality). Let (X, (-,-)) be inner product spaces. Then z,y € X are orthog-
onal if (z,y) = 0 where z,y # 0.

Theorem 8.7. Let z;,...,x, be pairwise orthogonal elements in (X, (-,-)). Then

n n
1Y il = Il
i=1 i=1
Theorem 8.8 (Parallelogram identity). In (X, (-,-)) we have
Iz +ylI* + o =yl = 201z + llylI*) (%)
forall z,y € X.

Remark. If (X, - ||) is a normed vector space which satisfies parallelogram identity then X is an
inner product space with inner products defined by the polarisation equation
(e +ylI* = llz = yl?) K=R

1
{.y) = j 2 2 . SN2 2
1 (lz+yll? = llz = yl* + ille + iyl — ifz —iyl?) K=C
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Definition 8.9 (Projection). Let X be a vector space over K. A subset M of X is convex if for
any x,y € M, then
ter+(1—t)ye M Vitel0,1]

Theorem 8.10 (Projection). Let (H,(-,-,)) be a Hilbert space. Let M C H be closed and convez.

Let x € H. THen there exists a unique point m, € M which is closest to x, i.e.
— = inf — =d
o~ mell = inf o —m|
Proof. For each k > 1 choose my, € M such that

1
& < ||z —mp|? < d*+ Z
Each m,, exists as d is defined as the infimum over all m.
Then

[ —my||* = ||(my, — 2) — (my, — 2)|?

= 2llmi — @[|* + 2]}y — @[|* = [Img +my — 22|

T

2 2
<24+ S +2d® + 5 — 4 5

l k

and as my,/2 +my /2 € M, we have || 252" — g||2 > ¢%. Then

1 1
— 2 <924 =
[y — my|” < (k + l)
Thus (my) is Cauchy. So my — m, € M as H is complete and M is closed. We then have
|z —m,| =d

and so now we show that m, is unique.

Suppose that there exists m/, € M with ||@ — m/|| = d. Then by the above inequality, we have
my —m!
e = |2 = 2y, — a? + 2, - al? - 4= o) <0
from above. g

Definition 8.11 (Projection operator). Let (H,(-,-,)) be a Hilbert space. Let M C H be closed
and convex. Define
PM TH—->H
by Py (x) = m, from above. This is the projection of H onto M.
Definition 8.12 (Orthogonal decomposition). If S C H, let

St ={reH|(r,y) =0 VyeSs.
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We call S+ the orthogonal component.

9. LECTURE 9 - MONDAY 28 MARCH

Theorem 9.1 (From previous lecture). If M C H, then the projection of H onto M is

P,:H—-H
T = myg
where my € M is the unique element with ||z — my|| = infpenr ||l —m||.

Lemma 9.2. Let M C H be closed subspace. Then x — Pyx € M~ for all x € H.

Proof. Let m € M. We need to show (z — Ppyz,m) = 0. This is clear if m = 0. Without loss of

generality, assuming m # 0, we can assume ||m|| = 1. Then write
x — Pyx =2 — (Pyx + (x — Pyx,m)m) + (x — Pyz, m)m.
Let the bracketed term be m’. Then © — m' L (x — Pyra, m)m because
(x —m/, (x — Pyyx,mym) = (x — Pyrz,m){x —m', m)
= C{x — Py — (& — Pyrx, m)ym,m)
= C((x = Py, m) — (& — Py, m||m|)
=0.
So ||z — Pyz||? = ||z —m/||? + [{(z — Py, m)|%. So ||z — Pyz||? > ||z — Puz||* + |(x — Pyz,m)|?
by definition of Pp;x. Thus,
(x — Pyz,my =0
and thus ¢ — Pyyz € M+, O

Theorem 9.3. The following theorem is the key fundamental result. Let (H,(-,-,)) be a Hilbert
space. Let M be a closed subspace of H. Then

H=MeM".
That is, each © € H can be written in exactly one way as x = m + m>* with m € M, m*+ € M=+,

Proof. Existence - Let © = P,z + (x — Pyx).
Uniqueness - Let © = 21 + 21, * = 29 + x5 with 21,29 € M, 21,75 € M+ . Then
xl—xgzxi—xf e Mt
Then
(x1 — m2, 21 — ) = 0= x1 = To.

Thus 71 = 77 O
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Corollary. Let M C H be a closed subspace. Then we have

(a) Py € L(H,H).

(b) |[Pul < 1.

(c) ImP,, = M,KER Py = M~
(d) P% =Py

(¢) Pyo =1— Py

Proof. (c), (d), (e) exercises.
(a). Let x,y € H. Write v = x1 + 21 and y = y1 +yi- with 1,y; € M and zi,y{- € M*. Then
v=y=(w1+y)+ (21 +u1)

and so
Py(z+y)=a1+u
and similarly Pys(oz) = aPya. We also have
l2[|* = | Py + (2 — Paga)|?
= [Pyl + o — Paal®
> || Pz

and so ||Py] < 1. O

9.1. The dual of a Hilbert space. If y € H is fixed, then the map
py: H—=K
x = (x,y)
is in H’. Linearity is clear, and continuity is proven by Cauchy-Swartz,

oy (@)| = (2, )] < lyllll=]].

So [leyll < llyll- Since |y (y)| = [lyl[*, we then have
eyl = llyll-
Theorem 9.4 (Riesz Representation Theorem). Let H be a Hilbert space. The map
0: H—H
Y= oy

is a conjugate linear bijection, and ||¢y|l = |yl

Proof. Conjugate linearity is clear.
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Injectivity

Oy = Py = py(x) = 0y (z) Vo
SO
(ry=(z.y)=0 ={-y,y—y)=0
and so y = y/.
Surjectivity Let ¢ € H'. We now find y € H with ¢ = ¢,. If ¢ = 0, take y = 0. Suppose
@ # 0. Then KER ¢ # H. But KER ¢ is a closed subspace of H. So
H = (KER ¢) @ (KER @)

Hence (KER @)t # {0}. Pick 2z € (KER ¢)*, z # 0. For each x € H, the element

- Z;Ej;z € KEr ¢

Note that ¢(z) # 0 since z ¢ KER . Then
0= (z— #(@) 2z, 2)
(2)

— (a2 = L5 al?

and so -
o(z) = (x, ('Dz(fgd Vo € H,

and so letting y = ﬁ’z(zg z, we have ¢ = @,. O

Example 9.5. From Hahn-Banach given y € H there exists ¢ € H’ such that

el =1

and ¢(y) = |ly|]|]. We can be very constructive in the Hilbert case, and let
Y

pla) = (z, HT/H>

Example 9.6. All continuous linear functionals on L?([a, b]) are of the form

b
o) = [ ragte o
for some g € L?([a, b]).

Example 9.7 (Adjoint operators). Let H1, H2 be Hilbert spaces. Let T' € L(H1,Hz2). The adjoint
of T'is T* € L(Ha,H1) given by

(T, y)2 = (=, T"yh
for all x € Hi,y € Ho
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Exercise 9.8. Check all of the above.

Exercise 9.9. Prove T* = Tt where T* is the transpose.

10. LECTURE 10 - WEDNESDAY 30 MARCH

Definition 10.1 (Orthonormal system). As subset S C H is an orthonormal system (orthonor-
mal) if

(e,€') = e Ve €8
Definition 10.2 (Complete orthonormal system or Hilbert basis). An orthonormal system S is

complete or a Hilbert basis if
span S = H

Remark. By Gram-Schmidt and Zorn’s Lemma, every Hilbert space has a complete orthonormal

system.

Example 10.3. (1) ¢2. Then
S={e|i>1}

is orthonormal and is complete.

(2) L([0,27]). Then
1 .
S = {gemtm €Z}

is orthonormal and is complete. Completeness follows from Stone-Weierstrass theorem.

(3) L&([0,27]). Then

1
S={—= cosnt, sinnt |n > 1}

W\f NG

is orthonormal and is complete, again by Stone-Weierstrass.

We want to look at series > which is tricky if S is not countable.

ecS

Lemma 10.4. If {ex |k > 0} is orthonormal, then

0
E ai€g
k=0

converges in H if and only if

converges in K.

If either series converges, then
2

00 )
> axer|| = il
k=0 k=0




PMH3 - FUNCTIONAL ANALYSIS

Note. If z,, —» z,y, — y, then
(T, yn) = (z,y)

Proof. If 3777, aker, converges to x, then
n n
(z,z) = ngg(;() akek, ;0%61«)

n
= lim Z|ak|2
n—oo
k=0

Conversely, if 77 |ax|? converges, then writing z,, = Y_j_ arex, we have

m

lzm —all* =1 > arexl?
k=n-+1

m

= Z larer||* by Pythagoras
k=n+1

m

= > Jal*—=0

k=n+1

and so (z,) is Cauchy, and hence converges by completeness of H.

Lemma 10.5. Let {e1,...,e,} be orthonormal. Then

D) P < Jlz)?

k=1
for each x € H.
Proof. Let y =>"7_, (z,ex) e. Let z =2 —y. We claim that z L y. We have

(z,y) = (x —y,y)

= (z,y) — |yl
= Z (z,ex) (z,ex) — Z |, ex) |?
k=1 k=1
=0.
So
2] = [ly + =

= |ly||* + ||z||* Pythagoras

n
> yl? = [ e I
k=1

21
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We want to write expressions like ) g (z,¢€) e.
Corollary. Let x € H and S orthonormal. Then
{ee S| (z,¢) 0}
is countable.

Proof. )
{ee S| (z,e) #0} = U{€€5||<3«“’€>|>E

E>1

From the lemma,
1
#{c € S|l (z,e)| > £} <K*[|2|
For if this number were greater than k?||z||%, then the LHS in Lemma is greater than 5 k?||z[?. O

Therefore:

Corollary (Bessel’s Inequality). If S is orthonormal, then

> lze) P < Jalf?

ecsS
forallz e H

Proof. y_ s (7, e€) |2 is a sum of countably many positive terms, and so order is not important. [
We want to write ) g (7, e) e. This sum is over a countable set, but is the order important?

Theorem 10.6. Let S be orthonormal. Let M = span S. Then

Pyz = Z (z,e)e

e€eS

where the sum can be taken in any order.

Proof. Fix x € H. Choose an enumeration
{ex |k >0} ={ec S| (x,e) #0}.
By Bessel’s inequality, we have

oo
D) [P < Jlz)?
k=0

and so the LHS converges. By Lemma , we know
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converges in H.
Write x = y+ (2 —y) = M + M~+. We claim (z—y) € M*. Then Pyz = y from characterisation
of projection operator. Let e € S. Then

(x —y,e) = nh_)rréo <x - kz_o (x,ex) ex, e>

= lim ((z,e) — Z (z,ex) (ex, €))

n— 00
k=

= (z,e) — Z (z, ex) (ex, €) .

k=0

Ifeec{e €S| (x,e) #0}, then e = e; for some j, and so
(x—y,e) = (,¢;) = (x,¢5) =0
If (z,e) =0, then e # e, for all j, and so (e;,e) =0, and so
(x —y,e)=0—-0=0.
Thus z — y € (span S)L.

Exercise 10.7. Show that
1

x —y € (span S) M*.

11. LECTURE 11 - MONDAY 4 APRIL

Recall that if {x;....} is a countable orthonormal system in a Hilbert space H. Then

oo (oo}

Zakek <00 — Z|ak|2 < 0

k=1 k=1
and - -

1Y " arex® =D lan? (%)
k=1 k=1

We also had the following.
Theorem 11.1. Let S be orthonormal in H. Let M = span S. Then

PM;v:Z<x7e>e Ve eH

ecS

where the sum has only countable many terms and convergence is unconditional.

Theorem 11.2. Let S be orthonormal in H. Then following are equivalent.
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(a) S is a complete orthonormal system (span S =H).
(b) x =73 cq{x,e)e for all x (Fourier series).
(¢) ||lz|l? =X cq | (x.e) |* for all x (Parseval’s formula,).

Proof. (a) = (b). If M =span S = H, then

PMx:x:Z<a?,e)e

ecS

by Theorem .

(b) = (c). By the infinite Pythagoras theorem (x).
(c) = (a). Let M = span S. Suppose that z € M+. Then z =0+ z € M + M~. Hence

0=|Puzl® =D (zehell> = [(ze) P = |2|°

ecsS ecS

which implies z = 0, so M = H, and so S is complete. O

Remark. Consider L?([0,27]), and let S = {e, |n € Z}. Then we can write

f = chen

neEZ

where ¢, = (f,en) = = [27 f(t)e=t dt.
We do not claim that convergence is pointwise, what we have proven is convergence is in L?,

Hf_ Z CnenHQ —0

[n|<N
as N — oo. This is not the same as pointwise or uniform convergence (|| - ||oo)-
11.1. Stone-Weierstrass theorem. This is a useful tool to show an orthonormal system is com-

plete. In fact, this theorem is about uniformly approximating elements of C(X), where X is a

compact Hausdorff space. it is a generalisation of the Weierstrass approximation theorem.

Theorem 11.3 (Weierstrass approximation theorem). Let f € C([a,b]) and let € > 0 be given.
Then there exists a polynomial p(x) such that

|[f(z) = p(a)| < oo V€ la,b],
that is, || f — plleo < €.

Corollary. This implies the following important results:

e Continuous functions can be uniformly approzimated by polynomials.
e P([a,b]), the space of polynomials on [a,b], is dense in C([a,b]).

e P([a,b]) = C([a,b]).

We now prove Stone’s 1930’s generalisation.
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First some setup: Let X be a compact Hausdorff space throughout. We then know that C(X)

is a vector space. It also has sensible vector multiplication,

(f9)(x) = f(x)g(x).

Thus C(X) is a unital, commutative, associative ring. As we have

f(Ag) = Af9)
then C(X) is a unital, commutative, associative algebra over K.

Definition 11.4 (Subalgebra). A subalgebra of C(X) is a subset A which is closed under scalar
multiplication, vector addition, and vector multiplication. A is unital if it contains the constant
function f(z) = 1.

Example 11.5. P([a,b]) is a subalgebra of C([a, b]).
When is A dense in C(X)?

Theorem 11.6 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a
subalgebra of C(X). If

(1) A is unital,

(2) fe A= f* € A, where f*(x) = f(z),

(3) A separates points of X.

Then A= C(X).

Definition 11.7. A separates points of X if, given x # y, there is a function f € A with f(z) #
f).

Corollary. (a) P([a,b]) is dense in C([a,b]), as f(x) = x separates points.

(b) Trigonometric polynomials are dense in
{r eC([0,2n]) [ f(0) = f(2m)}.
(c) Trigonometric polynomials are dense in L?([0,2x]), and
S={e,|neZ}
is complete.
Setup
Lemma 11.8. The function f(t) = |t| can be uniformly approximated by polynomials on [—1,1]

Proof. The binomial theorem says

(14 2)Y2 = i (i):p" Vo € [-1,1]

n=0
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‘We then have

o 1
tH=VE =1+ -1)=)_ (Z)(t2—1)” te[-v2,V72]
n=0
Now let pn(t) = sumn_o(%)(t2 —1)™, and
> 1 > 1
I -owl =1 3 (Z)@-vr1s 3 1(2)]
n=N+1 n=N+1
and so |||t| — pnlleo — 0 as N — oo on [—1,1]. O

12. LECTURE 12 - WEDNESDAY 6 APRIL

Theorem 12.1 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a
subalgebra of C(X). If

(1) A is unital,

(2) f e A= f* € A, where f*(z) = f(x),

(8) A separates points of X.

Then A =C(X).

Proof. We first prove for Cr(X).

Lemma 12.2. Let A be a unital subalgebra of Cr(X) . Then

(a) |fl €A,
(b) min(fy,..., fn),max(fi,..., fn) €A
forall f, f1,..., fn € ACCr(X).

Proof. (a) Replace f by W so we can assume that || f|lcc = 1. From the previous lemma, we
know for each n > 1 there is a polynomial p, : [~1,1] — R such that |[t| — p,(t)| < L for all
tel-1,1].

Since |f(z)| < ||flloc =1 for all x € X, we have

1
111 = pa(HIl < —

But p,(f) is a finite linear combination of 1, f, f2, f3,... and so in in A, as A is unital. Thus
|f| € A
(b) Use the formulas
_ft+9—1f—4

max(f,g) = ——————, min(f,g)

. :f+g_|f—g|ej

2
and induction.
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Proof of Stone-Weierstrass for Cr(X). Let f € Cr(X) and let € > 0 be given. We need to find
g € A such that
1f(z) —g9(z)| <e Vze X

Step 0. We can assume that A is closed.
Exercise 12.3. Why?
Step 1. Let x,y € X be fixed.

Proposition 12.4. There exists fz, € A with

fay(@) = (), fay(z) = f(y)
Proof. If x = y then trivial (take f,(2) = f(z)1(2)).
If x # y, since A separates points, there is h € A with h(z) # h(y). Then take
foy=0ah+ble A
we can invert the coeflicient matrix to find our coeflicients a and b. O

Step 2. Let « € X be fixed.

Proposition 12.5. There exists f, € A such that

o fu(x) = f(x).

o fo(2) < f(2) +e
Proof. For each y € X let

Oy = {2 € X | fay(2) < f(2) + ¢}
where f;, is the function from Step 1. These are all open sets (why?) and thus
x=Jo,
yeX

since y € O,.

By compactness of X, we have

Letting f, = min(fey,,. .., foy,). Then
e Since fyy, (z) = f(z) for all i,
fa() = f(x)
o If z € X, then z € O,, for some %, and so

fo(2) < fayi(2) < f(2) + e

as required.
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Step 3.

Proposition 12.6. There exists a function g € A such that

1f(z) —g(x)| <e
forall z € X.

Proof. For each x € X, let
Ue ={2€ X|fu(2) > f(x) — €}

where f, is from Step 2. These sets U; are open and since x € U,, for an open cover, we can write

x=uv= CJUIJ..
j=1

reX
Define g = max(fzy,..., fz,). ff z€ X,
o g(2) = fz,(2) for some ¢, which is less than f(z) + € from Step 2.

o If z € Uy, for some j =1,...,n, then

9(2) = fa;(2) > f2) — e

Exercise 12.7. Where did we use the Hausdorff property?

We now prove for Ce(X).
Let
Ar = {f € A| f is real valued}.

THen Ag is an R-subalgebra of Cr(X). It is unital, as 1 € A and it is real valued.

We now show Ag separates points. If & # y, there is f € A such that f(x) # f(y). Write
f = u+iv with u, v real valued. Either u(z) # u(y) or v(x) # v(y), and so Ag separates points.

Hence Ag is dense in Cg.

Now, let f € Cc(X). Then write f = u + iv. Then u,v € Cr(X). Then given € > 0, there exists
uy,v1 € Ag such that

hu—wlloe < 50 o —ville < 5

Writing fi = w1 + vy € A, we have

1 = filloo < ll(u =) +i(v —v1)]leo < [ = wr]loo +[Jv = v1]loc <€

and thus A is dense in Cc(X). O
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13. LECTURE 13 - MONDAY 11 APRIL

13.1. Applications of Stone-Weierstrass theorem.
Corollary. Polynomials are dense in C([a,b]).

Proof. A = P([a,b]) is an algebra, is unital, is closed under complex conjugation, and separates
points. Thus, A is dense in C([a, b]). O

Definition 13.1 (Trigonometric polynomials). A trigonometric polynomail is an expression

Z ¢ eint
n
nez
with finitely many ¢, # 0. So these are polynomials in s = e’ and s7! =35 = e 7.

Corollary. The space A of all trigonometric polynomials is dense in C(II), where Il = {z € C||z| =

1}

Proof. A is a sub-algebra of C(II), it is unital, closed under complex conjugation,

int __ — int
g cpemt = g C_npe

neEZ nez

and separates points. T' is a compact Hausdorff space, and thus Stone-Weierstrass states that A is
dense in C(II). O

Corollary. The orthonomal system
S = {\/%emt Inez)
is complete in L?([0,27]).
Proof. span S = A is a space of trigonometric polynomials, which is dense in C(II). Define
@ : C,([0,27])] — C(1T)
f=7

where C,([0,27]) = {f € C([0,2x]) | f(0 = f(2m))}. Then ® is an isometric isomorphism, and
therefore functions of the form f(t) = 3" cn,e™ is dense in C,([0, 27]).

By the construction of the Lebesgue integral, simple functions

n
i=1
are dense in L?([0, 27]).

Exercise 13.2. Given f € L*([0,2n]) and € > 0, there exists g € C,([0, 27]) such that || f —g|l2 < e.



PMH3 - FUNCTIONAL ANALYSIS 30

Thus A is dense in L2([0, 27]). O

Corollary. The following are separable (have a countable dense subset):

(a) C([a, b)),
(b) L¥([a,b]) , 1 <p < o0

Proof. (a) We have P([a,b]) is dense in C([a, b]) and set Pg([a, b]) with rational coefficients is dense
in P([a,b]). Clearly, Pg([a,b]) is countable, and thus is dense in C([a, b]).
(b) Use the fact that C([a,b]) is dense in LP([a, b]).

Corollary. Let X be a compact metric space. Then C(X) is separable.
Proof. As X is a compact metric space, then X is separable.
Exercise 13.3. Why?
Let {z, |n > 1} be a countable dense subset of X. For each n > 1 and m > 1 define
faom : X =K

by
fam(z) = inf  d(z,2)

Z¢B(In7%)

We then claim f,, ,, is continuous. Now, let A be the space of all K-linear combinations of

I s R Kk EN (%)

mi,mzy? ny,

This is a sub-algebra of C(X), as A is unital, closed under conjugation, and separates points -
if 21,20 € X with 21 # 29, Choose n,m such that z; € B(xn,%), Zn & B(xn,%). Thus the
sub-algebra A is dense by Stone-Weierstrass.

The subset of Q-linear combinations of (x) is countable and dense. O
Lemma 13.4. If X is compact metric space then X is separable.

Proof. For each m > 1,
1
X = B(x; —
U B )

zeX
has a finite subcover
N’"L 1
X = B m,n
nL:Jl (@mn—)
and thus the subset of all {z,,,,} is a countably dense subset. (]

Corollary.
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Proof. S = {\/%ei"t |n € Z} is complete, and so Parseval’s formula holds,

Hf”g = Z | <fa en> |2'

neZ
Apply to f(x) = x. O

A common strategy is to prove for polynomials, and then Stone-Weierstrass proves it for contin-

uous functions.

Corollary. If f € C([a,b] x [c,d]) then

/ab/cdﬂx,y)dydx:/chbf<x,y>dxdy

Proof. By direct calculation, the result is true for two-variable polynomials. Let f € C([a,b] X [¢, d])
and € > 0 be given. By Stone-Weierstrass, the space of polynomials in 2 variables is dense in
C([a,b] X [c,d]) and so there exists a polynomial p(x,y) with

€

|f(a:7y) —P(ﬂﬁay)| < m

The result then follows by direct calculation. O

14. LECTURE 14 - WEDNESDAY 13 APRIL
The following is at the core of two of the cornerstone theorems of functional analysis - the uniform

boundedness principle and the open mapping theorem.

Theorem 14.1 (Baire’s theorem). Let X be a complete metric space. If Uy, Us, ... are open dense
subsets of X, then

U= ﬁ U
n=1

is dense in X.
Proof. Let x € X and € > 0 be given. We need to show that
B(z,e)NU #£ 0.

Lemma 14.2. There exists sequences (x,) in X and (e,) in RT with the property that

(a) v1 =z, € = €.
(b) €, 10
(¢) B(nt1,€nt+1) C B(zn,en) NU, for alln > 1.

Proof. Let x1,...,x, and €1,...,€, be chosen. By density of U,,

B(xy, €,) NU, # 0.
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Choose #p4+1 € B(xpn,€n) N Uyp. Choose €, ; > 0 such that B(zni1,€,,,) € B(zp,e,) N U,

€;L+1 1
2 ' n+1

(openness). We have €, ; < €,. Choose 0 < €,41 < min( ), then we have

E(xnﬂv 6n+1) - B(fnJrlv 6;&1)

C B(zp,€e,) NU,

and €,41 < €, with €,41 < %_H O

Given the lemma, the theorem follows. If m > n, then by (c),
B@m,em) C B(xn, en) NU, ()

In particular, x,, € B(zy,€,). Thus, d(x,,z,) < €, for all m > n. Thus (z,,) is Cauchy, and so
z, — ¢ in X by completeness. By (%), we then have d(z,,() < e, for all n. > 1. So ¢ € B(zp, €n).
So by (c), ¢ € m C B(xn, €n) NUp.

Thus ¢ € B(x,€) and thus ¢ € U =, U,,. O

The following corollary is often used

Corollary. Let X be a complete metric space. If C1,Cs,... are closed with X = |J,2, then
Int(C,,) # 0 for some n.

Proof. If Int(C,,) = @ for all n then U, = X\C,, are open and dense. So by Baire’s theorem,
N2, U, is sense, and in particular, (\n = 1°U,, # (. We have

o0

x=|Jc. = D (X\Uy)

n=

X\() Un)
n=1
c X,
a contradiction. O

There are three cornerstone theorems.

e Hahn-Banach,
e Uniform Boundedness,

e Open Mapping.

Theorem 14.3 (Uniform boundedness). Let X,Y be Banach spaces. Let T, o € A, a family of

continuous linear operators Ty, : X — Y. Then if

sup ||Toz| < o0
a€cA



PMH3 - FUNCTIONAL ANALYSIS 33

for each fixed x € X, then
sup ||Tw|| < o
a€cA

Remark. Rather amazing - you get a global bound from pointwise bounds.

Proof. For each n > 1, let
X, ={z € X||Toz|| < nVa € A}

These are closed (7, is continuous) and

by the hypothesis.
By the corollary to Baire’s theorem, we know there exists ng > 1 with Int(X,,,) # @. Choose
xo € Int(X,,), and let r > 0 such that

B(zg,r) C Int(X,,).
If ||z|| <1 then x¢ + 72 € B(xo,7). So 7o + 72 € X, and
T (zo + 72)|| < noVa € A,
but [[ja]| = [|b]]| < [la + b]|, so
1Ta(r2)l] = |1 Ta(zo)ll < [ Ta(zo + r2)|| < 0.

So 7| Taz|| < no+ ng, and
2
ITaz] < Z0V]2ll < 1Va € 4
r

For a general x € X,

T 2n
T, = ||To(— < —
[Toz|l = |l a(HxH)HﬂfH < — Il
and thus [|T,| < 2%, which implies
sup ||To || < oo O
a€A

15. LECTURE 15 - MONDAY 18 APRIL

Recall, the Fourier series of f € L?([—m,7]) is

> (fren)en

kEZ
where e (t) = \';;; This converges to f in the L? norm.

Exercise 15.1. If f is 2w-periodic and continuous, does the Fourier series converge pointwise?
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There are explicit (complicated) examples, but the easiest existence is using the uniform bound-

edness principle.

Proposition 15.2. There is a 2w periodic continuous function whose Fourier series does not

converge at 0.

Proof. Let Cp([—m,7]) = {f € C([—m,7])| f(—n) = f(m)}. This is a Banach space with || - |loo. If
f ey, let

fo=Y_ (frex)en

|k[<n

Remark. We can now define, for each n > 1, a linear operator T), : C, — K by
To(f) = fa(0).
If f,(0) converges (as n — oo) for each f € C,, then
sup | T, f| = sup | f(0)] < o0
n>1 n>1
for all f € Cp, which by uniform boundedness implies
sup ||T,]| < oo. (%)
n>1
We now show that (x) is false.

We have

)= Y oo [ s arets

[k<n

1 [ ;

- f(t) Z e*lk(rft) dt
2 |k|<n

=X T 0D -ty dt

2 ), ¥

where Dy (t) = 324 <, e*t is the Dirichlet Kernel. The Dirichlet kernel is real, and even, with

sin(n + 1)t
2

Note. T, is continuous, with norm [T, || = 5= [7_|D,(t)| dt.

Proof.

[ F@D)

—T

< (5 [ IDaolae) 151

T (/)]

IN
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and so ||| < % ffﬂ | D, (t)]| dt.
Going the other way, let
1 D,(t)>0
~1 Dn(t)<0
We have seen hat set functions can be approximated in L!-norm by continuous (periodic) functions.

So if € > 0 is given, there is a g € C,, such that

1 U

o [ (a0 - soDu 0| <
g can be chosen with ||g|lcc = 1.

So -
To(g) — — [ [Du(t)]dt| <.
-5 [ D0t <«

Thus ) .

~ [ IDu)|dt - |T,, .

o 77T| ()] Tn(9)l <e€
So

Il [T
Tl = 2= [ 1, 0] de -

Since € > 0 was arbitrary,
1 T
7.l = 5 [ IDuo)] .

L

All that remains is to show that

1 s
T, = — D, )| dt —
1Tl =57 | 1Da(O]de > o

—Tr
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‘We have

1 T
1Tl = / 1D, ()] di

s

1 /’T |sin(n + 1)1
0

T |sin%|

dt

dt

v

T t

92 (n+3)m

_ 7/ 51nvdv
v 0 v

> g/”” Sinvdv

2 |smv|
Z/ —1)w
1 km )
Zm/1ﬂ|81nvdv
-5y
k=1

2 /’T |sin(n + 1)t
0

I \%

k‘\»—l

as n — 0o.
Thus there exists f € C, such that the Fourier series of f diverges at z = 0. (]

15.1. The open mapping theorem. This theorem is tailor-made to deal with inverse operators.

Definition 15.3 (Open mapping). Let X,Y be metric spaces. A function f : X — Y is open if

open sets in X are mapped to open sets in Y.

Theorem 15.4 (Open mapping theorem). Let X,Y be Banach spaces. If T € L(X,Y) is surjective
then T is open.

Corollary (Bounded inverse theorem). Let X,Y be Banach spaces. If T € L(X,Y) is bijective,
then
Tt e L(Y, X).

Proof. Let O C X be open. Then (T~1)~1(0O) = T(O) is open (by the open mapping theorem).

Thus 7! is continuous. 0
Corollary. Let (X, | -|l1) and (X, ]| - |2) be Banach spaces. If
el < Cllzlls Vo e X

then || - ||1 and || - ||2 are equivalent.



PMH3 - FUNCTIONAL ANALYSIS 37

Proof.
i (X[ l2) = (X )
T x
is linear, surjective and injective, and also continuous, as
li(@)]] = llzlly < Cllz]2.
So the bounded inverse theorem gives
(X ) = (X 2)

is continuous. Thus there exists A > 0 such that [|i=!(x)||2 < Al|z||1, which implies ||z||s < Al|z]|;.
So )
lzllz < llelly Vo e X O

More generally, if T € L(X,Y) is bijective, then by the bounded inverse theorem,
cllzll < [|Txf| < O]

where ¢ = ﬁ, C=|T].

16. LECTURE 16 - WEDNESDAY 20 APRIL

Lemma 16.1. Let X be a Banach space and Y a normed space. Then for T € L(X,Y), the

following are equivalent.

(a) T is open
(b) There exists r > 0 such that B(0,r)
(¢) There exists r > 0 such that B(0,r)

T(B(0,1))
T(B(0,1)).

-
<

Proof. (a) = (b),(c). As B(0,1) is open, the set T(B(0,1)) is open in Y. Since 0 € T(B(0,1))
there exists > 0 such that the set

B(0,r) € T(B(0,1)) € T(B(0,1)) € T(B(0, 1)).

(¢) = (b). Assume that there exists r > 0 such that

B(0,r) € T(B(0,1).
We now show that B(0, 5) € T'(B(0,1)) which proves (b). Let y € B(0,5). Then 2y € B(0,7) and

since B(0,7) C T'(B(0,1)) there exists x; € B(0,1) such that

12y — Ty || <

N3
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Hence 4y — 2Tz, € B(0,7) and by the same argument as before there exists zo € B(0, 1) such that

4y — 2Tz — Tao| <

N3

Continuing this way we construct a sequence (z,) € B(0,1) such that

12"y — 2" ' Twy — - = 2Ty — Ty <

N =

for all n. Dividing by 2" we obtain

n
_ r
||y*22 kTﬂka < ontt
k=1

Hence y = > 5o, 27 *Twy. Since ||zx|| < 1 for all k € N we have that
S b < 3724 -1
k=1 k=1
and so the series -
xr = Z Z_kmk
k=1

converges absolutely in X as X is Banach and hence complete. We have also that ||z|| < 1 and so

x € B(0,1). Because T is continuous we have

n—oo

Tr = lim Z 2 F Ty, =y
k=1

by construction of x. Hence y € T'(B(0, 1)) and (b) follows.
(b) = (a). By (b) and the linearity of T' we have

T(B(0,¢)) = €T'(B(0,1))

for all € > 0. Since the map = +— ex is a homeomorphism on Y the set T'(B(0, €)) is a neighbourhood
of zero for all € > 0. Now let U C X be open and y € T(U). As U is open there exists € > 0 such
that

B(xz,e) =x+ B(0,e) CU

where y = T'xz. Since z — x + z is a homeomorphism and 7' is linear we have

T(B(z,€)) = Tz + T(B(0,¢)) =y + T(B(0,¢)) CT(U).

Hence T(B(x,¢€)) is a neighbourhood of y in T'(U). As y was arbitrary in T(U) it follows that T'(U)
is open. U

Lemma 16.2. Let X be a normed vector space and S C X convex with S = —S. If S has a

non-empty interior, then S is a neighbourhood of zero.
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Proof. First note that S is convex. If x,y € S and x,,,y, € S with x,,,y, — z,y then tz, + (1 —
ty,) € S for all n and t € [0,1]. Letting n — oo we get tx + (1 —t)y € S for all ¢ € [0,1] and so
S is convex. We also easily have S = —S. If S has a non-empty interior, there exists z € S and
€ > 0 such that B(z,e) C S. Therefore z+h € S whenever ||h|| < € and since S = —S we also have
—(2 £ h) € S. By the convexity of S we have

y:%((x+h)+(—x+h))es

whenever ||h]| < e. Hence B(0,¢) C S, and so S is a neighbourhood of zero. O

Theorem 16.3 (Open mapping theorem). Suppose that X and Y are Banach spaces. If T €
L(X,Y) is surjective, then T is open.

Proof. As T is surjective we have

Y = | 7(B(0,n))

neN

with [T(B(0,n))] closed for all n € N. Since Y is complete, by a corollary to Baire’s theorem,

there exists n € N such that T(B(0,n)) has non-empty interior. Since the map = — nz is a

homeomorphism and T is linear, the set T'(B(0, 1)) has non-empty interior as well. Now B(0, 1) is
convex and B(0,1) = —B(0, 1). By linearity of T' we have that

T(B(0,1)) = =T(B(0,1))

is convex as well. Since we know that T'(B(0, 1)) has non-empty interior, the previous lemma implies

that T'(B(0,1)) is a neighbourhood of zero, and thus there exists r > 0 such that
B(0,r) CT(B(0,1))

and since X is Banach the previous lemma shows that T is open. O

17. LECTURE 17 - MONDAY 1 MAY

Exercise 17.1. If XY are vector spaces, and if T': X — Y is linear, then I'(T") is a subspace of

X x Y. Moreover, if X,Y are normed vectors paces, with
[(z, Tx)|[p = [lo]| + (| T[]

Theorem 17.2 (Closed Graph theorem). Let X,Y be Banach spaces, and T € Hom(X,Y'). Then
T € L(X,Y) if and only if T'(T) is closed in X X Y.

Proof. Suppose T € L(X,Y). If x,, = x in X, then
(zn, Tzy) — (z,T)

by continuity of T', and so I'(T") is closed.
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Conversely, suppose that I'(T) is closed in X XxY. Define a norm ||-||r on X by ||z||r = ||z|+]Tz]|.
Since I'(T) is closed, and since (X, || -||) is Banach, then (X, |- ||r) is also a Banach space (exercise).
Note that ||z|| < ||z|lr- So by a corollary to the Open Mapping theorem, || - || and || - ||r are

equivalent. So there is ¢ > 0 with
lellr < cllz] Vo € X.
So ||z|| + [|Tz|| < ¢||z||, and so ||Tz|| < (¢ — 1)||z||, and so T is continuous. O
17.1. Spectral Theory. The eigenvalues of an n x n matrix T over C are the A € C with
det(\l —=T) =0
that is, AI — T is not invertible.
Remark. Showing existence of eigenvalues is equivalent to the fundamental theorem of algebra.
Remark. We need our base field to be C to get reasonable spectral theory.
Definition 17.3. Write £(X) = L(X, X).
Definition 17.4. Let X be a Banach space over K, and let T' € £(X). Then the spectrum of T is
o(T) ={X € K| X[ — T is not invertible}.
Remark. AI — T is non invertible if either A\I — T is not injective, or A\I — T is not surjective.

Remark. If dim(X) < oo, then X\KER (T') ~ im(7T), and so T is injective if and only if T is
surjective. This fails in the infinite dimensional case - consider the left and right shift operators on
2.

Definition 17.5 (Eigenvalue). A € K is an eigenvalue of T € £(X) if there is © # 0 with Tz = Az,

i.e. A is an eigenvalue if and only if A\l — T is not injective.

Theorem 17.6. Let X # {0} be a Banach space over C, and let T € L(X). Then o(T) is a

non-empty, compact (closed and bounded) subset of
{reCliA<ITI}

Example 17.7. Let L, R : £2 — (2 be the left and right shift operators.
Then ||L|| = 1, and so (L) € D(0,1). If |\| < 1, then

LOVAENE ) = (2030 ) = A0

and so \ is an eigenvalue. Thus D(0,1) C (L) C D(0,1). But o(L) is closed, and so o(L) = D(0, 1).
Are the A with |A| = 1 eigenvalues? No - suppose |A| =1 and = # 0 with Lz = A\x.
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Then
L"(z) = \"x.
Thus, 2,41 = A"z;. Then 2 = (21, A\, 21, \2x1,...) which is not in 2.
Then |R|| = 1, and so o(R) € D(0,1).

Note. LRz = L(0,z1,...) = (z1,%2,...), SO

LR=1 (%)
Remark. Unlike dim(X) < oo, (x) does NOT say that R is invertible (RL = I).

Consider the operator L(A\l — R) = AL — I = —A(A"'1 — L). If 0 < |A| < 1, then we know that
AT — L is invertible (as A= ¢ o(L)). So if A\ — R were invertible, then L is invertible, which is
false. Thus A € o(R). Hence

D(0,1)\{0} C o(R) € D(0,1).
Since o(R) is closed, o(R) = D(0,1).

18. LECTURE 18 - WEDNESDAY 4 MAY

Theorem 18.1. Let X # {0} be a Banach space over C. LetT € L(X). Then o(T) is a nonempty,
compact subset of
{AeCHA < T}

Lemma 18.2. With above assumptions o(T) C {X € C||A| < ||T||}.

Proof. We need to show that if |A| > ||T'|| then AI — T is invertible.

Technique: Geometric series. We guess

oo

1 T

I-T)*'= = :
(A ) M =T £ \kH

We now verify this guess. Since

i IT*] Z [
|)\|k+1 — ‘)\|k+1
k=0

. k .
the series S = Y77 ) sF++ converges in X.
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We now show that S is the inverse of A\I — T. As we are working in infinite dimensions, we ned

to check left and right inverses. Let S, = 2;11 /\f—il Then

n—1

Sp(A —T) = ( ;fl) (M —T)

k=0

T’Vl
()\I—T)Sn:I—)\—n%I
and so S(A —T) = (Al —T)S and so A — T is invertible. O

Exercise 18.3. Show that if ||/ — 7| < 1 then T is invertible with inverse > r- (I — T)* Hint:
Consider

1 1

T I1-(I-T)
In particular, the ball B(I,1) in £(X) consists of invertible elements.

The following is used to show o(T) is closed and nonempty, it is also interesting in its own right.

Proposition 18.4. Let X be Banach over K. Let GL(X) = {T € L(X)|T invertible. Then
(a) GL(X) is a group under composition of operators.
(b) GL(X) is open in L(X).
(¢) The map
¢: GL(X) - GL(X)
T T

s continuous.

Proof. (a) The open mapping theorem tells us that if T € GL(X) then 77! € £(X), and so
T~! € GL(X). The rest is clear.

(b) Let Ty € GL(X). We claim

1
1Ty "
We have

|1 =Ty ' T = 1Ty (To = T)||
< |75 I To = 7|

1
<1 aSTeB(T07_1)
1757l
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(¢) We have
1T =77 = 1T71T — To)Tg " |
< | T7HIT = TolllI 75l

_ < 1
If |7 = Ty|| < g7y, then

1= TT57 | = [[(To — T)T5 |
I1To = TINTS |
1

3"

IN

IA

We then have
IToT = = I(TTy )~

=Y (U —-TT;H¥
k=0

o9}
<M -TT5 "
k=0

2

IN

Hence [T~ = | Ty {(ToT~H)|| < [|Ty I ToT Y < 2Ty I, and from (%), we have
I1Tg ! =T < 2 T3 PIT — To

and so T — T~ is continuous.

Corollary. o(T) is closed.
Proof. Let
f:C— LX)
A=A -T

This is continuous, as

[£(A) = FQo)ll = (A = o)
= |A = Aol

and
o(T) = [~ (L(X)\GL(X))

which is the inverse image of a closed set, and hence is closed.
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So o(T) is a compact subset of {\ € C||\| <||T||}. Write p(T') = C\o(T) (the resolvent set),
and let Ry = R: p(T) — L(X) with Rr(\) = (\[ - T)~ %

Theorem 18.5. Let K=C and X # {0} and T € L(X). Then o(T) # 0.

Proof. We use Lioville’s theorem - a bounded entire function must be constant.
Let ¢ = L(X)" (hence ¢ : L(X) — C.) Let

fo:p(T)—=C
A= p(R(N))
Lemma 18.6. f, is analytic on p(T).

Proof. We show f,, is differentiable. Consider
foeN) = fe(ho) _ o (R(/\) - R(Ao))

)\—)\0 >\—>\0
(M =T = (NI -T)7!
‘9”( "o )
(oI =T) (Mo = DAL = T)?
_@( 0 o= )

=—p (NI -T)" A -T)71)
— —p (Aol —T)7?)

as A — Ao, where we use the fact that ¢ is continuous and 7' — T'~! is continuous. So f, is analytic
on p(T) for all p € L(X)'. O

Now suppose that o(T") = @). Then f, : C — C is analytic.
Lemma 18.7. f, is bounded.

Proof. If |A > ||T||, then

fo) =l (M =T)7")]

¥ (Z )\k+1> ‘
=0

o0

Tk
k+1
k=0 A

<l Hi IT|*
S¥ IA[F+T
k=0

_ el

=T

< llell
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as |A\| = oo. So f, is bounded, entire, and thus f, = ¢ by Lioville’s theorem. By the above,
fo(A) =0 for all A. Hence p(R(\)) =0 for all A, ¢.

Thus from Hahn-Banach, R(X) = 0 for all A\ which is a contradiction, as the zero operator is not
invertible if X # {0}. O

O

19. LECTURE 19 - MONDAY 9 MAY

Theorem 19.1 (Spectral mapping theorem (polynomials)). Let T be an n x n matriz over C.
IF we know all the eigenvalues of T, then we know the eigenvalues of every polynomial p(T) =
ap+ a1 T + -+ a,T™. Specifically,

{eigenvalues of p(T)} = {p(A\) | A is an eigenvalue of T}

Therefore
o(p(T)) = p(a(T)).
This is called the spectral mapping theorem (for matrices/polynomials).
This also holds for X Banach over C, and T € L(X).

Lemma 19.2. Let C[t] be the algebra of polynomials in t with complex coefficients. Multiplication

1s defined as usual.
Lemma 19.3. Let X be Banach over C. Let T € L(X). Then
¢ : Clt] = L(X)
p—p(T)
is an algebra homomorphism (multiplication corresponds to composition in L(X).)
Proof. Simply check
@(p1 + p2) = @(p1) + @ (p2)
¢(p1p2) = @(p1)e(p2)
p(ap) = ap(p)
for all p1,pa,p € C[t],a € C. O

Theorem 19.4. Let X be Banach over C, and let T € L(X). Then

Proof. If p = ¢ is constant, then p(T) = ¢l has spectrum

o(p(T)) = o(cl) = {c}
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On the other hand,
p(o(T)) = {c}
Now, suppose that p is non constant. Let u € C fixed. By the fundamental theorem of algebra, we

can factorise u — p(t) as

alt =)™ (= A)™
where Ai,..., A, are the distinct roots of u — p(¢). Note that u = p();) for each i. Applying
¢ : C[t] = L(X) from above, we have

ul —p(T) =a(T — D™ ... (T =\, )™

Exercise 19.5. If T1,..., T, € £(X) which commute with each other, then Tj ... T, is invertible

if and only if the individual elements are invertible.

We know
ueop(T)) <= p—p(T)is not invertible
<= T — A non invertible for some ¢
<= X € o(T)for some i
> p=pXi) €pla(T))
and so

g
Definition 19.6 (Spectral radius). Let X # {0} be a Banach space over C. The spectral radius
of T e L(X) is
r(T) = sup{[A[|A € o(T)}
=max{|\|: A€ o(T)}

Note.
r(T) < |IT|
since o(T') C{\ € C||A| < ||T||}. Strict inequality can (and often does) occur.

T<g ;).

Then consider T : C* — C? where ||(x,y)|2 = \/|z|> + |y[?. Then

Example 19.7. Let

IT|| = sup{||Tz]}2 | = € C*}
=/ Amaz (T*T)
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pe_ (00
10

is conjugate transpose. Then ||T|| = 1. But o(T") = {0}, and so 7(T) =0 < 1 = || 1.

where

Theorem 19.8 (Gelfand, 1941). Let X # {0} be Banach over C, and let T € L(X). Then
— n|1l/n
r(T) = Tim [T

In particular, the limit exists.

Proof. By the spectral mapping theorem,
o(T") ={a(T)}" ={A" ||} € o(T)}.
So
r(T) = r(T™)"/"
< HTnHl/n'

So
r(T) < lim inf || 77| /"

n—oo
Now, we must show that

lim sup |77 ||*/™ < r(T).
n—oo
Let ¢ € £(X) and let
fo:p(T)—C
A= (A =T)7)

We saw that f,, is analytic on p(T"). We also have

FoN =3 o™ (+
n=0

if |A| > ||T||. By general theory of Laurent series, (x) actually holds for all A € p(T'). In particular,
it holds if [A| > »(T).
Thus,
lim ——¢
n—oo )\n+1

Sp for each ¢ € L(X)', and each [A| > r(T), there is Cy , such that

(T") =0 [|Al >r(T)

1
(o men
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Then by the principle of uniform boundedness, there exists a constant C' such that

SC,\ VTLZO

1 n
H )\n+1T

So [|T™|*™ < |A[(CA|A])Y™, which gives

lim sup | 77]|*/™ < A

n—oo
for all |A| > r(T). So
lim sup || 77||*/™ < r(T)
n—oo

We used the following lemma.

Lemma 19.9. Let X be a normed vector space, A C X a subset. We say that
(1) A is bounded if there exists C > 0 with ||z|| < C, for all x € A.

(2) A is weakly bounded if for each v € X', there exists Cy, > 0 such that
lo(@)| < Cy
forall x € A.

Then we have

A C X is bounded < weakly bounded

Proof. A bounded = ||z|| < C for all x € A = |p(z)| < [l¢|llz]] < |l¢l|C. So A is weakly bounded.
Now, suppose A is weakly bounded. For each z € X, let & € X" with
2(p) = ().
So |&(p)| < C,, for all z € A. By the principle of uniform boundedness,
lz] < C

for all x € A, and since ||Z|| = ||z||. Thus A is bounded.

20. LECTURE 20 - WEDNESDAY 11 MAy

We now turn to compact operators. In general, calculating o(7) is difficult, but for compact

operators on a complex Banach space, we have a fairly explicit theory.

Theorem 20.1. Let X be a complex Banach space, with dim(X) = co. Let T : X — X be a
compact operator. Then

(1) 0 € o(T).

(2) o(T)\{0} = o, (T)\{0}, that is, each X € o(T)\{0} is an eigenvalue of T (0 may or may not

be an eigenvalue.)
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(8) We are in exactly one of the cases:
e o(T) ={0}.
e o(T)\{0} is finite (nonempty).
e o(T)\{0} is a sequence of points converging to 0.
(4) Each X\ € o(T)\{0} is isolated, and the eigenspace KER (A —T') is finite dimensional.

where a,(T) is the point spectrum of T, where
op(T) = {X € K| X — T is not injective}
= {\ € K| there exits nonzero vector x with (A\I —T)x = 0}
= {eigenvalues of T'}
Proof. We shall prove these results next week. O

Definition 20.2. Let X,Y be normed vector spaces. An operator T': X — Y is compact if T is
linear, and if B C X is bounded then T'(B) is relatively compact (a set is relatively compact if its

closure is compact.) Symbolically,

B C X bounded = T'(B) compact
Lemma 20.3. [F T is compact, then T is continuous.

Proof. The closed ball B = {z € X ||z|| < 1} is bounded, and so if T is a compact operator, then
T(B) is compact, and hence bounded. Hence ||Tz| < M for all ||z|| < 1, so T is continuous, with
IT) < M. .

We now recall definitions of compactness

Theorem 20.4 (Characterisations of compactness). Let X be a metric space. The following are
equivalent.
(1) X is compact (every open cover has a finite subcover).

(2) X is sequentially compact (every sequence in X has a convergent subsequence)
Lemma 20.5. Let X be a compact set. LetY C X. IfY C X is closed, then'Y is compact.

Lemma 20.6. Let V be a finite dimensional vector space. If X C 'V is closed and bounded, then

X s compact.

Theorem 20.7 (Characterisations of compact operators). Let X, Y be normed vector spaces over
K. Let T € L(X,Y). Then the following are equivalent.

(a) T is compact.
(b) T(B) is compact, where B ={z € X |||z| < 1}.
(c) If (xp)n>1 is bounded in X, then (Tx,)n>1 has a convergent subsequence (sequentially com-

pact).
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Proof. (a) = (b) by definition.
(b) = (a). Suppose (b) holds. Let By C X be bounded. THen B; C aB for some o > 0. So

T(B) C T(aB) = oT(B)

which is a closed subset of a compact set, and hence compact.

(a) = (c¢). Suppose T is compact. Let (z,)n>1 be bounded sequence in X. Then T(B) =

{Tz, |n > 1} is relatively compact. So T(B) is compact, and hence is sequentially compact, and
so has a convergence subsequence.

(¢) = (a). Let B C X be bounded. Let (y,)n>1 be a sequence in T'(B). Then there is z,, € B
with Tz, = yn. So (x,)n>1 is a bonded sequence. By assumption (Tz,),>1 has a convergent

subsequence. So T'(B) is sequentially compact, and hence compact. U

Corollary. The set {compact operators T : X — Y} is a vector space. That is, if Ty, To are com-
pact, then Ty + T and Ty are compact.

Proof. Exercise. Use (c¢) from the characterisation of compact operators. O

Corollary.
K(X,Y) C L(X,Y) C Hom(X,Y)
where K(X,Y') is the set of compact operators T : X =Y.

Example 20.8 (Finite rank operators). Let X, Y be normed vector spaces, and let T € L(X,Y). If
dim(IMm T) < oo, then T is said to have finite rank. Then if 7" has finite rank, then T is compact.

Proof. Let (x,) be a bounded sequence in X. Then ||[Tz,| < |[|T||||zn] so (Tx,) is a bounded
sequence in IM T. But IM T is finite dimensional, and so {Tx,|n > 1} is compact (closed and

bounded), and so (T'z,),>1 has a convergent subsequence. By (c) in Theorem , T is compact.
U

Lemma 20.9. Let X, Y be normed vector spaces. If T € L(X,Y) has finite rank, then there exists
Yi,--sYn €M T and p1,...,0, € X withTx = 2?21 w;(x)y; forallz € X, withn = dim(Im T)).

Proof. Choose a basis y1,...,y, of IM T. For each j =1,...,n, define a; € (IM T') by
ajlaryr + -+ anyn) = a;

i.e. coordinate projection. By Hahn-Banach, we can extend a; to a continuous linear functional
a; €Y' Let pj =a;0T : X - K. So ¢; € X'. Since

y=> d(y)y; Yy T
j=1
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we have

N
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<
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pi(x)y; VrelX.

<
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—
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21. LECTURE 21 - MONDAY 16 MAY

Recall that the closed unit ball in X is compact if and only if dim(X) < co. Then it follows that
the identity map I : X — X is compact if and only if dim(X) < co. Hence,
K(X) € £(X) € Hom(X, X)
when dim(X) = co.
Consider a sequence of compact operators T,,. If T}, is compact and T,, — T, then T' is compact.

Lemma 21.1 (Riesz’s Lemma). Let X be a normed vector space. Let Y C X be a proper closed
subspace. Let 6 € (0,1) be given. THen there exists x with ||z = 1 such that ||x — y|| > 0 for all
yevy.

Proof. Pick any z € X\Y. Let a = infyey [[2 — y|| > 0 since Y is closed. Then by the definition of
the infimum, there is yo € Y with a < ||z —yo|| < §. Now let z = Z=2. Then |z| = 1.

lz—yoll -
Now,
— Yo
o — ) = —yH
1z = yoll
= ——lz—y_ + Iz — woll¥l
Iz = yoll
0
> —a=40
[0

O

Corollary. Let X be a normed vector space. The closed unit ball B(0,1) is compact if and only if
dim(X) < oo.

Proof. If dim(X) < oo then B(0,1) is compact (since closed and bounded if and only if compact
in finite dimensions). Now suppose dim(X) = oo. Build a sequence (x,) with ||x,|| = 1 with no

convergent subsequence. Choose finite dimensional subspaces

{0}=XoCX1CX5C...
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These are all closed (finite dimensional spaces are complete, and hence closed). Use the lemma
to choose zp € Xy with [|zg| = 1, ||zx — 2| > § for al 2 € Xj_1. So zj — 2| > 1 for all
€ X;(j <k—1). So ||z, —zm| > % for all m,n > 1. So (z,,) has no convergent subsequence,

and so B(0,1) is not compact. O
Corollary. I: X — X is compact if and only if dim(X) < oco.
Proof. Recall T is compact if and only if T(B(0,1)) is relatively compact. O

21.1. Limits of compact operators. One way to show that an operator is compact is to apply

the following.

Proposition 21.2. Let X be a normed vector space, and let Y be Banach. Suppose that T, €
K(X,Y) for eachn>1. If T,, = T (in operator norm, |Tn — T|| — 0) then T is compact.

Proof. Let (z,) be a bounded sequence in X. We now construct a subsequence (z/,) for which
(T'x),) converges.
e Since Tj is compact, (x,) has a subsequence 2 such that (le%”) converges.
e Since Ty is compact and %(11) is bounded, there is a subsequence mg) such that T2m7(12)
converges.

. k
e Continuing, we can form a subsequence x% ) such that Tyx® converges.

Let ), = 2™ Then («1)) is a subsequence of (:1:%1)), and (z),)n>2 is a subsequence of (xS?)L etc.
So for each fixed k > 1, (Tjx},) converges.
We now show Tz}, is Cauchy, and hence converges. We have
1Ty, = Ty, || < 1T, — Tiwy, || + 1Ty, — Toy || + Ty, — T |
where k is to be chosen. Suppose ||z,|| < M for all n > 1. THen
1T, — T || < 2M | T = Ti|| + (| Tha" + m — Tay |

Let € > 0 be given. Since || T — Ty|| — 0 as k — oo, fix a k for which ||T" — Ty|| < 55;. For
this fixed k, we know (Tyz,) converges, and so is Cauchy. So there exists N < 0 such that
| < ¥3M—i—§ = ¢ for all

m,n > N, so is Cauchy, and so converges. O

|Tia'm — Tpal,|| < fraced for all m,n < N. Hence [Tz}, — Tx

nl
n

Example 21.3. Let K(z,y) € L?*(R?). Define T : L?*(R) — L*(R) by
7f) = [ Kw)fw)dy
R
(Hilbert-Schimidt Integral operator)

Proposition 21.4. T is compact.
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1/2
Proof. Note that |T'f|2 < [|K|2] fllz for all f € L*(R), where ||K|lz = ( [z |K(z,y)[* dz dy) /2,
So T is continuous, with ||T'|| < || K|l2. We now exhibit 7" as a limit of finite rank (hence compact)
operators, with T}, : L?(R) — L?(R). Once can see that there is a sequence K,, € L?*(R?) of the
form

Nn
Kn(z,y) =Y ot ()8, ()
k=1

with K,, — K in L*(R?). Then ||T}, — T|| < ||[K,, — K||2 — 0, and so T}, — T. Hence

T, f(x) NZ / o ()8 () f(y) dy
k=1"R

NTL —
=3 (£ A7) o @)
k=1
and so T, f = ZkNgl (f 7B£7L)alin) from which we use that 7T;, has finite rank. O

22. LECTURE 22 - WEDNESDAY 18 MAyY

Theorem 22.1. Let X be a complex Banach space, with dim(X) = co. Let T : X — X be a

compact operator. Then

(1) 0 € o(T).
(2) o(T)\{0} = 0,(T)\{0}, that is, each X € a(T)\{0} is an eigenvalue of T (0 may or may not
be an eigenvalue.)
(3) We are in exactly one of the cases:
e o(T) = {0}.
e o(T)\{0} is finite (nonempty).
o o(T)\{0} is a sequence of points converging to 0.
(4) Fach A € o(T)\{0} is isolated, and the eigenspace KER (A — T') is finite dimensional.

where o,(T) is the point spectrum of T, where
op(T) ={X € K| X —T is not injective
= {X € K| there exits nonzero vector x with (\I —T)x =0

= {eigenvalues of T}
Compact operators are very well behaved with respect to composition.

Proposition 22.2. Let X,Y,Z be normed vector spaces.

(o) If T € K(X,Y) and S € LY, Z), then ST € K(X, Z).
(b) If S € L(X,)Y) and T € K(Y, Z), then TS € K(X, Z).
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Proof. (a) Let (z,) be a bounded sequence in X. Since T is compact, Tz, has a convergent
subsequence, say T:,, = Y€ Y. Then (STx,) has a convergent subsequence, namely STz, =
S(T,,) — Sy by continuity of S. So ST is compact.

(b) Let B C X be bounded. Then S(B) is bounded in Y, as S is continuous. So T'S(B) = T'(S(B))
is relatively compact since T is compact. Hence T'S is compact.

O

Corollary (Part (1) of theorem). If X is infinite dimensional Banach space, then 0 € o(T).

Proof. 1f 0 ¢ o(T) then T is invertible. By bounded inverse theorem 7'~! is continuous, and then

I =TT ! is compact, which is a contradiction. O

Theorem 22.3 (Part (3) of theorem). Let X be a normed vector space. Let T € K(X). Then T
has at most countably many eigenvalues. If T has infinitely many eigenvalues, then they can be

arranged in a sequence converging to zero.

Proof. We show that for each N > 0, we have

#A € 0,(T) [N = N} < o (%)
Suppose that there is N > 0 such that (x) fails. So A1, Ag,... are distinct eigenvalues with |\, | >
N forn = 1,2,.... Let z, # 0 be an eigenvector. Tx, = Az, n = 1,2,.... Let X,, =
span {z1,...,Z,}. Since {z, | > 1} are linearly independent, we have
X, CXoC...
and each X, is closed (finite dimensional).
By Reisz’s Lemma from previous lecture, choose y, € X,, such that |y,|| =1 and ||y, —z|| > %

for all z € X,,_1. So (yn) is bounded in X. We show that Ty, has no convergence subsequence,
contradicting compactness of T
Let m > n. Then

HTym - Tyn” = H)‘mym — (Am¥Ym — Tym + Tyn)l
= [ M| [|Ym — (something in X,,,_1)]|
1 1
> *|>‘m| > §N

as required.

Note that y,, = a1x1 + -+ + a¢mTm. Then
)\mym - Tym = Ana171 + -+ A Ty, — (al)\lxl + -+ amAmxm)
=a1(Am — AT+ F A1 (A — A1) Tm—1 € X1

and Ty, € X,,_1 since n < m.
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22.1. Projections.

Definition 22.4 (Projection operator). Let X be a vector space. A linear operator P : X — X is
called a projection if P2 = P.

Proposition 22.5. If P: X — X is a projection then I — P is a projection, and
IMI—-P=KErR P, KERI-P=1ImP

Proof. If P> = P then (I —P)? = [—-2P+P? = - P and so I — P is a projection. Let z € IM [ —P
Then z = (I — P)y for some y € X. So Pz = P(I — P)y = (P — P?)y = 0. So z € KER P and
IMI—-PCKER P. If t € KER P the Px =0. So (I — P)z =z, and z € Im (I — P). O

Definition 22.6 (Direct sum). Let X be a vector space, and let X7, X5 be subspaces. Then
X = X; @ X, (direct sum) if

X=X1+Xs
and X; N X5 = {0}. Equivalently, X = X; ® X, if and only if each z € X can be written in exactly

one way as r = x1 + x2 with 1 € X1, 29 € Xo.
Theorem 22.7 (Equivalence of direct sums and projections). Let X be a vector space.
(a) If P: X — X is a projection, then
X =(Im P)® (KER P)
(b) If X = X1 ® Xa, there exists a unique projection with
IM P=X,;, KER P = Xs.
Specifically, Px = x1 if vt = x1 + x2.

Proof. (a) Let P : X — X be a projection. Then we show X = (IM P)® (Im I — P), z =
Pz + (I — P)x. This shows that X =IM P+Im I — P. If z € IM PN KER P then z = Py
and Pz = 0. Hence, Pz = P2y = PY =0 and so = 0.

(b) Exercise.

O

Proposition 22.8. Let X be Banach. Let X = X; ® Xo. Let P : X — X be the corresponding
projection operator. Then
PeL(X) < Xi,X closed

Proof. (=). Suppose P is continuous. Then X; = IM P = KiER I — P and Xs = KER P are both
closed. For example, if x, € KEr P and z,, — z, then 0 = Pz, — Pz and so x € KER P.
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(«<). Suppose that X1, Xo are closed. Since X = X; & X5, we can define a new norm || - || by

2] = llza ]l + [[w2|| where @ = 21 + 5.

Exercise 22.9.

(a) Show that || - || is a norm.
(b) Show that (X, ||-]|) is Banach. This relies on the fact that (X, || -||) is Banach and X, X5 are
closed.
Note that [|z|| = ||z1 + 22| < [|z1]| + ||z=2]] = ||z]|’, and so by a corollary to the open mapping

theorem, there is a ¢ > 0 with ||z]|" < ¢||z|| for all € X, and so
1Pzl = llza]l < llza]l + llz2ll = [l < cll|

and hence P is continuous. U

23. LECTURE 23 - MONDAY 23 MAY

Corollary. Let X be Banach, and let M be a finite dimensional subspace. Then there exists a
closed N with
X=M®@N.

Proof. Let v1,...,v, be a basis of M. Define, for each j = 1,...,n, ¢; € M' by p;j(aivy +--- +
anVy) = a;j. Then using Hahn-Banach to extend ¢; € X'. Let P: X € X be defined by

Pz = Z @j(x)v;.
j=1

Then we need only check that P is linear and continuous, IM P = M, and P? = P. Now take
N =KER P and then X = M & N. O

We are now ready to prove the following theorem.

Theorem 23.1. Let X be Banach, and let T € K(X), and let A € K\{0}. For all k € N, we have
(a) Kier (M —T)* is finite dimensional.
—_—

generalised eigenspace

(b) Im (M — T)* is closed.

Proof. Reductions. Since KErR (A — T)* = KeRr (I — A™'T)*, and similarly for the image, by
replacing T € K(X) by AT € K(X), we can assume that A\ = 1.
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Also, we have

-7 =Y (B

n=0

::I——]’ﬁé <z>(—1)"—9r"—1

n=1

continuous

=I-T.

where T is the composition of compact and continuos operators, and so is compact. So we can take
A=1k=1.

(a)

The closed unit ball in KER I — T is
{r e KER I —T||z|| <1} ={Tz|z € Ker I - T, |z| <1}
C T(B(0,1))

which is compact as T is compact. Hence, the closed unit ball in KEr I — T is compact, and
thus KER I — T is finite dimensional.
Let S =1 —T. We then need to show that Im S is closed. Since KER S is finite dimensional

from above, there is a closed subspace N with
X =(KeEr SY® N

Note that Im S = S(X) = S(N), and that S|y : N — X is injective.
Suppose that S(N) is not closed. So there is a sequence (z,,) in N such that Sz, — y €
X\S(N). Then there are two cases

Case 1 (||zp|| = o). Let y, = mxn. Then Sy, = men — 0. But (y,)n>1 is bounded
in X, and so there exists a subsequence y,, such that Ty,, — z (as T is compact). Hence
Yny = SYny, + Tyn, = 0+ 2. Thus z € N (as y,, € N, and N is closed), and ||z|| = 1.

So Syn, — 0, but Sy, — Sz with z € N\{0}, by the continuity of S. This contradicts the
injectivity of S|y.

Case 2 (||zy|| does not tend to infinity). So (z,) has a bounded subsequence (x,, ). Since T is
compact, (z,,) has a subsequence such that (Txnkl) converges, to z; say. By replacing x, by

this subsequence we can assume that Sz,, — y, and that Tz, — 2. A before, we can write
Tp =8ty +Tx, = y+ 2.

So x,, converges to x € N. So Sz, — Sz € S(N) by continuity, but we assume that Sz, —
y € X\S(N), which achieves our contradiction.
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24. LECTURE 24 - WEDNESDAY 25 MAY

Let T : C™ — C™ be a linear operator. Then in the simplest case, T has n distinct eigenvalues,
and the corresponding eigenvectors are linearly independent, forming a basis for C™.

Hence, C* = Cz, @ - - - & Cx,, and the matrix of T relative to this basis is simply diagonal with
Alyey A

This is not always possible, because there is not always a basis of eigenvectors. Instead look at

the generalised eigenspace,
{z € C" | (M —T)*z = 0 for some k > 1.

But {0} C KErR (M —T)! CKER (M —T)? C ... and since dim(C") < oo this must stabilise. Let
r > 1 be the fist time that KER (Al —T)" = KER (M — T)""1. Then the generalised \-eigenspace
is just KER (A —T)". There is a basis of C™ consisting of generalised eigenvectors, and the matrix

of T relative to this basis is in block form.

Definition 24.1 (Complete reduction). Let T': X — X be linear. If X = X; @ X3 be can write

Ty T2\ (11
Tx =
To1r Too) \ @2
where we identify z1 + 9 <= (z1,22). Here,
T11 : X1 — X1
T12 : X2 — X1
T21 : X2 — XQ

Too : Xo — Xo

we say that X = X; @ X, completely reduces T (well adapted to T) if
n 0
To — 1 1
0 T2 T2

Exercise 24.2. If X = X; & X5 completely reduces T = T7 & T5, then

) KER T'=KER T} @ KER T5
T=1Im Tl@IM TQ

We write T' =Ty & Ts.

(a
(b) 1

(¢) T is injective if and only if T, T% are injective

(d)

(e) If T is bijective, then X = X; ® X completely reduces T—! =T, ' @ T, *.

T is surjective if and only if T}, T, are surjective
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Corollary. Let X = X1 ® X5 be Banach, with X1, X5 closed subspaces. If X = X1 ® Xo completely
reduces T =Ty @ Ty € L(X), then
(a) T, € E(Xl),TQ S ;C(XQ)
(b) o(T) = o(T1) Uo(1z)
(¢) 0p(T) = 0p(T1) Uyp(T2)

Proof. Exercise. O
Consider the following chains

{0} C Ker S' C KER S?

XDOIMS'DImMS?2D...

N

where X is a vector space and S € Hom(X, X). It is easy to see that if KER S” = KER S"T! then
KER S" = KER S"T*. Similarly for images (p. 109 in Daners.)

There is no reason that these should stabilise in general.
Theorem 24.3. Let X be Banach, T € K(X), A # 0. Then both chains (with S = X —T) stabilise.

Proof. Without loss of generality, assume A = 1, so we can write S = [ — T. Suppose that the

kernel chain does not stabilise. Since we assume
Ker S' C Ker S? C KER S® C

We know that these are closed (being finite dimensional) subspaces. So Reisz’s Lemma gives
z, € KER S" with ||lz,|| = 1, |z, — 2| > L for all z € KErR S""!. This is a bounded sequence.
We claim that Tz, has no convergent subsequence.
Let m > n. Then
Tz — Tx,|| = 1(I = Txy, — (I — T)xpm + 2 — 0|
=Sz, — STy — Ty, — Ty ||

=||zm — (Szm — Sy + x4) ||

in Ker S™~1

>

N |

The image argument is similar - using the fact that the images are closed - proved in the previous

lecture. -
Theorem 24.4. Let X be a vector space, S € Hom(X, X). Suppose that

a(S) = inf{r > 1|Ker 5" = Ker §""'}

§(S)=inf{r > 1|Im " =1Im 5"},
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the ascent and descent of S respectively, are both finite.
Then

(a) a(S) =6(S) =r, say
(b)) X =KErR S"®IM S”
(c) The direct sum in (b) completely reduces S.

Proof. Daner’s notes, p. 109. O

Corollary. Let X be Banach, T € K(X), N # 0. Letr = oA\l —=T) = §(\I = T). Then
X =KER (AT =T)"®IM (Al —T)" and this completely reduces upI — T, pu € K.

Corollary. If X is Banach, T € K(X),\ # 0 then A\I — T is injective if and only if \I — T is

surjective.
Proof.
Al — T injective
= 0cKer (\[ - T)! = Ker (A - T)?
=aAM-T)=1
=N -T)=1
= X=Ker M -T)¢IMm (M -T)

={0}
=X=IM(\-T)

= X is surjective
The other direction is similar. O
Corollary. Let X be Banach, T € K(X). Thus each A € o(T)\{0} is an eigenvalue.

Proof. Immediate from the previous corollary. O

25. LECTURE 25 - MONDAY 30 MAY
Recall the following.

Corollary. Let X be Banach, T € K(X), N # 0. Letr = (Al —=T) = 6(\I = T). Then
X =KER (AT =T)"@®IM (Al —T)" and this completely reduces I — T, pu € K.

Also note that IM KER (Al — T')" is closed, and KER (Al — T')" is finite dimensional.

Exercise 25.1. Let Al,..., A\, € o(T)\{0}. Let N; = KER (\;I —T)} be the generalised \;-

eigenspace. Show that there exists closed subspaces M with

X=N®ND--- &M
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with T =T, ®T5 @ --- @ Ty, and so spectral theory tells us how to diagonalise T'.

In Hilbert spaces we can say even more. Recall that the adjoint of T' € £(H) is defined by
(Tz,y) = (z, T"y) Va,yeH
Then T* € L(H).
Definition 25.2 (Self-adjoint). T' € L(H) is
(a) Hermitian (self-adjoint) if 7% =T.

(b) Unitary if T*T = TT* = I.
(¢) Normal if T*T = TT™*.

Remark. For matrices, we have

(a) Hermitian if and only if AT = A.
(b) Unitary if and only if the columns of A are orthonormal.

(¢) Hermitian and unitary operators are normal.
Proposition 25.3. Let H be Hilbert over C. IF T € L(H) is normal, then r(T) = ||T|.

Proof. For Hermitian operators it is easy. We have
ITI* =TT = | 72|
By induction ,we then have ||T||?" = || T%"||. So
N n|l/n
r(T) = lim |17
= lim 7% ||"/*"
n—oo

1T

For normal operators, we have
72| = 1(T®) 1|
=T (T"T)T|
= ||T*TT*T|| normal
= [[(T*T)(T*T)]|
= |1
= |7

and then we have || T?|| = || T']|? and the proof follows by induction. O

Corollary. Let H be a Hilbert space over C.
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(a) If T € L(H) is unitary, then
o(T)CT={AeC|N=1)
(b) If T € L(H) is Hermitian, then
o(T)CR.

Proof.

(a) On practice sheet. Use the fact that o(T*) = o(T).

62

(b) Let A=a+ib € o(T). So AI —T is not invertible. Hence, (A +it)I — (T +itI) is not invertible

for all t € R. Then
A+ it)|* < (T 4 dtI)?
<\ T +at||?
= (T +atD)*(T +tl)||
= (T —at) (T +tl)||
— |72 + 21
< |72+ 42
However, the left hand side is equal to
a? +b% + 2bt + 2,

and so we obtain
a®? + 0% +20t < ||T|> VteR
and so b =0.

Lemma 25.4. Let H be Hilbert over C. Let T € L(H), and let
My={xeH|Te=X x} =KER N[ -T
be the A-eigenspace of T. Then

(a) My L M, if X+ p.
(b) If T is normal, each My is T and T* invariant. That is,

T(My) € My, T*(My) C My.

Proof.
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(a) Let u € My,v € M,. Then

(A =) (w,0) = (Au, v) = (u, fiw)
= (Tu,v) — (u, T"v)
(Tu,v) — (Tu,v)

and so (u,v) = 0.
(b) If T is normal, then KER T' = KER T* as
|Tz||> = (Tx, Tx) = (x, T*Tx)

= (¢, TT*z) = (T xx,T"x)

= | T"=||*.
Similarly, if 7" is normal then AI — T is normal. Then

My =KER M — T (T invariant)
=KER M —T* (T* invariant).
O

The spectral theory for compact normal operators in a Hilbert space is particularly nice, as the

following theorem demonstrates.

Theorem 25.5. Let T € L(H) be compact and normal. Then
H= D M
Aeo(T)
the closure of the span of the eigenspaces, and H has an orthonormal basis consisting of eigenvectors.

Moreover, T acts diagonally with respect to this basis.

Proof. Let

M= P M,

Aeo(T)
a closed subspace. Hence H = M @ M, where
M+ ={zcH| (x,m)=0Ym € M}.

We must show that M+ = {0}. Assume the contrary. Then consider T = M* — # be the

restriction of T to M+. Then we have

T: M- — M*

is compact and normal (Exercise). Then
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(a) o(T) = {0}. Then #(T) = 0, and so ||T|| = 0, and so T = 0. Then each z € M*\{0}
satisfies T = 0 = 0Oz, and so 2 € My with M+ C My C M, a contradiction (from direct sum
decomposition). Hence M = {0}.

(b) o(T) # {0}. So there is an eigenvalue X € o(T)\{0}. So there is € M\{0} with Tz = \z.
o Tx = Az, and so x € (M) N M+)\{0}, a contradiction. Hence M+ = {0}.

Choose an orthonormal basis for each M), and combine to get an orthonormal basis of H, using
My L M,. O
26. LECTURE 26 - WEDNESDAY 1 JUNE

26.1. Fredholm alternative for compact operators on a Hilbert space. Recall that for

matrices, we have the following result, known as the Fredholm alternative.

Theorem 26.1 (Fredhold alternative (Finite dimensional spaces)). Let A : C* — C" be linear.

Then exactly one of the following two things occur:

(1) Az =0 has only the trivial solution x = 0, in which case Az = b has a unique solution for each
beC".
(2) Ax = 0 has a non-trivial solution, in which case Ax = b has either no solutions, or infinitely

many solutions.

Definition 26.2 (Hilbert-Schmidt integral operators).
T L*([a,b]) — L*([a, b))
b
(1)) = [ Kf)dy
a
where || K ||z is finite. These are compact operators.

Consider equations of the following form

b
M@ = [ K)fw)dy = g(o),
where A # 0 and g € L? are given. This can be rewritten in the form

(A -T)f = g.

Then we have the following theorem, due to Fredholm.

Theorem 26.3 (Fredholm alternative (Hilbert spaces)). Let H be Hilbert over C, and letT € K(H).

Then exactly one of the following occurs.

(a) (\I —T) =0 has only the trivial solution, in which case (\I —T)x = b has a unique solution
for each b € H.
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(b) (\[ —T)x = 0 has a non trivial solution, in which case (A — T)x = b has a solution if and
only if b L y for every solution y of the equation
A —T*)y=0
This is finite dimensional, as it is the kernel of (A\I —T)*.

Proof.

(a) If (A — T)x = 0 has only the trivial solution, then KER AI — T = {0} and so it is injective.
Hence A is not an eigenvalue, and so A is not a spectral value. So AI — T is invertible, and so
(M — T)x = b has a unique solution = (A — T)~'b, which can be expanded into a series
expression if [A| > r(T).

(b) Suppose (AI —T)z = 0 has a non-trivial solution. Then

(M — T)z = b has a solution
<= belM M —T which is closed
— be((Im X —-T)")*
> be (KErR A —T%)*

<« bly VyecKEgr N —T*. O

Proposition 26.4 (Miscelaneous).
(a) If M is a closed subspace of H, then M = M=+,
(b) IF S :H —H and S € L(H), then (Im S)t = KER S*.
Proof.
(a) Let m € M, then (m,z) =0 for all z € M+, and so m € (M*+)* = M+, and so M C M++.
Let z € M++. Since M is closed, H = M & M+, andso x = m+m*. Sox—m €
M++ 4+ M C MY and so x —m =mt € M+, But M* is closed, and so H = M+ @ M+,
Sox—m—0,andx =me M.
(b)
(Im )t ={zeH| (z,sy) =0 VyeH}
={zeH|(Sz,y) =0 VyeH}
={xeH|Sz=0}
= KEr S5*
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