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1. Lecture 1 - Monday 28 February

Definition 1.1 (Norm). Let X be a vector space. A norm on X is a function ∥ · ∥ : X 7→ R
satisfying

• ∥x∥ ≥ 0 with equality if and only if x = 0.
• ∥αx∥ = |α|∥x∥.
• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

We call the pair (X, ∥ · ∥) a normed vector space.

Theorem 1.2 (Reverse triangle inequality). Let X be a normed vector space. For any x, y ∈ X,
we have

|∥x∥ − ∥y∥| ≤ ∥x− y∥

Definition 1.3 (Complete space). Let X be a normed vector space. Then X is complete if every
Cauchy sequence in X converges to some x ∈ X.

Definition 1.4 (Banach space). A Banach space is a complete normed vector space.

2. Lecture 2 - Wednesday 2 March

Proposition 2.1 (Convergence). Let (V, ∥ · ∥) be a normed vector space. A sequence (xn) in V

converges to x ∈ V if given ϵ > 0, there exists N such that ∥x− xn∥ < ϵ whenever n < N .

Lemma 2.2. If xn → x, then ∥xn∥ → ∥x∥ ∈ R.

Proof. |∥xn∥ − ∥x∥| ≤ ∥x− xn∥ → 0. �

Proposition 2.3. Every convergent sequence is Cauchy.

Definition 2.4 (Banach space). A complete, normed, vector space is called a Banach space

Proposition 2.5. (K, | · |) is complete.

Proposition 2.6. (ℓp, ∥ · ∥p) is a Banach space for all 1 ≤ p ≤ ∞

Proof. A general proof outline follows.
• Use completeness of R to find a candidate for the limit.
• Show this limit function is in V .
• Show that xn → x in V .

Let x(n) be a Cauchy sequence in ℓp. Since |x(n)j − x
(n)
j | ≤ ∥x(n) − x(m)∥, we know that x(n)j is a

Cauchy sequence in K. Hence, limn→∞ x
(n)
j := xj exists, and is our limit candidate.

We now show that
∑∞

j=1 |xj |p <∞. We have �

Proposition 2.7. (ℓ([a, b]), ∥ · ∥∞) is a Banach space
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Proposition 2.8. If 1 ≤ p <∞, then (ℓ([a, b]), ∥ · ∥p) is not a Banach space.

Proof. Consider a sequence of functions that is equal to one on [0, 12 ], zero on [ 12 +
1
n , 1], and linear

between. This is a Cauchy sequence that does not converge to a continuous function. �

3. Lecture 3 - Monday 7 March

We’ve seen that (ℓ([a, b]), ∥ · ∥p) is not complete for 1 ≤ p <∞.

Theorem 3.1 (Completion). Let (V, ∥ · ∥) be a normed vector space over K. There exists a Banach
space (V1, ∥ · ∥1) such that (V, ∥ · ∥) is isometrically isomorphic to a dense subspace of (V1, ∥ · ∥1).

Furthermore, the space (V1, ∥ · ∥1) is unique up to isometric isomorphisms.

Proof. Rather straightforward - construct Cauchy sequences, append limits, quotient out (as dif-
ferent sequences may converge to the same limit). �

Definition 3.2. (V1, ∥ · ∥1) is called the completion of (V, ∥ · ∥).

Definition 3.3 (Dense). If X is a topological space and Y ⊆ X, then Y is dense in X if the
closure of Y in X equals X, that is, Y = X.

Alternatively, for each x ∈ X, there exists (yn) in Y such that yn → x.

Definition 3.4 (Isomorphism of vector spaces). Two normed vector spaces (X, ∥·∥X) and (Y, ∥·∥Y )

are isometrically isomorphic if there is a vector space isomorphism Ψ : X → Y such that

∥Ψ(x)∥Y = ∥x∥X ∀x ∈ X

Example 3.5. Let ℓ0 = {(xi) |#{i, xi ̸= 0} < ∞}. The completion of ℓ0, ∥ · ∥p is (ℓp, ∥ · ∥p),
because,

• ℓ0 is a subspace of ℓp,
• It is dense, since we can easily construct a sequence in ℓ0 converging to arbitrary x ∈ ℓp.

Example 3.6 ( Lp spaces). Let µ be the Lebesgue measure on R. Let

Lp([a, b]) = {measurable f : [a, b] → K |
∫ b

a

|f |p dµ <∞}

Let ∥f∥p =
(∫ b

a
|f |p dµ

)1/p
. Since ∥f∥p = 0 ⇐⇒ f = 0 a.e, we quotient out by the rule

f ≡ g ⇐⇒ f − g = 0 a.e., and then our space of equivalence classes forms a normed vector space,
denoted Lp([a, b]).

Theorem 3.7 (Riesz-Fischer). (Lp([a, b]), ∥·∥p) is the completion of (C[a, b], ∥·∥p), and is a Banach
space.

Proof. Properties of the Lebesgue integral. �
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Remark.
• Let X be any compact topological space, let C(X) = {f : X → K | f is continuous}, and

let ∥f∥∞ = supx∈X ∥f(x)|. Then C(X, ∥ · ∥∞) is Banach.
• Let X be any topological space. Then the set of all continuous and bounded functions with

the supremum norm forms a Banach space.
• Let (S,A, µ) be a measure space. Then we can define the Lp and Lp analogously, and they

are also Banach.

Definition 3.8 (Linear operators on normed vector spaces). Let X,Y be vector spaces over K. A
linear operator is a function T : X → Y such that

T (x+ y) = T (x) + T (y)

T (αx) = αT (x)

for all x, y, α.
We write Hom(X,Y ) = {T : X → Y |T is linear}

Definition 3.9. T : X → Y is continuous at x ∈ X if for all ϵ > 0, there exists δ > 0 such that

∥x− y∥X < δ ⇒ ∥Tx− Ty∥y < ϵ

Definition 3.10.
L(X,Y ) = {T : X → Y |T is linear and continuous}

Remark. If dim(X) <∞ then Hom(X,Y ) = L(X,Y ). This is not true if X has infinite dimension.

Definition 3.11 (Bounded linear operator). Let T : X → Y be linear, then T is bounded if T
maps bounded sets in X to bounded sets in Y . That is: for each M > 0 there exists M ′ > 0 such
that

∥x∥X ≤M ⇒ ∥Tx∥Y ≤M ′

4. Lecture 4 - Wednesday 9 March

Consider the space L(X,Y ), the set of all linear and continuous maps between two normed vector
spaces X and Y .

Theorem 4.1 (Fundamental theorem of linear operators). Let (X, ∥ · ∥X) and Y, ∥ · ∥Y be normed
vector spaces. Let T ∈ Hom(X,Y ), the set of all linear maps from X to Y . Then the following are
all equivalent.
1) T is uniformly continuous
2) T is continuous
3) T is continuous at 0
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4) T is bounded
5) There exists a constant c > 0 such that

∥Tx∥Y ≤ c∥x∥X ∀x ∈ X

Proof. 1) ⇒ 2) ⇒ 3) is clear.
3) ⇒ 4). Since T is continuous at 0, given ϵ = 1 > 0, there exists δ such that

∥Tx− T0∥ ≤ 1 whenever ∥X − 0∥ ≤ δ,

i.e. that ∥x ≤ δ ⇒ ∥Tx∥ ≤ 1. Let y ∈ X. The ∥ δy
∥y∥∥ ≤ δ, and so ∥T

(
δy
∥y∥

)
∥ <≤ 1. Hence,

δ

∥y∥
∥Ty∥ ≤ 1

and so
∥Ty∥ ≤ ∥y∥

δ

for all y ∈ X. Thus, for all ∥y∥ ≤M , we have ∥Ty∥ ≤M ′, where M ′ = M
δ , and so T is bounded.

4) ⇒ 5). If T is bonded, given M = 1 > 0, there exists c ≥ 0 such that ∥x∥ ≤ 1 ⇒ ∥Tx∥ ≤ c.
Then

∥T
(

x

∥x∥

)
∥ ≤ c

Hence, ∥Tx∥ ≤ c∥x∥.
5) ⇒ 1). If 5) holds, then

∥Tx− Ty∥ = ∥T (x− y)∥ ≤ c∥x− y∥.

So if ϵ is given, taking δ = ϵ
c , we have

∥Tx− Ty∥ ≤ c∥x− y∥ < c
ϵ

c
= ϵ. �

Corollary. If T ∈ Hom(X,Y ), then T continuous ⇐⇒ T bounded ⇐⇒ ∥Tx∥ ≤ c∥x∥ for all
x ∈ X.

Definition 4.2 (Operator norm). The operator norm of T ∈ L(x, y), ∥T∥ is defined by any one
of the following equivalent expressions.
(a) ∥T∥ = inf{c > 0 | ∥Tx∥ < c∥x∥}.
(b) ∥T∥ = supx ̸=0

∥Tx∥
∥x∥ .

(c) ∥T∥ = sup∥x∥≤1 ∥Tx∥.
(d) ∥T∥ = sup∥x∥=1 ∥Tx∥.

Proposition 4.3. The operator norm is a norm on L(x, y).

Proof. The following are simple to verify.
(a) ∥T∥ ≥ 0, with equality if and only if T = 0.
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(b) ∥αT∥ = |α|∥T∥.
(c) ∥S + T∥ ≤ ∥S∥+ ∥T∥.

�

Example 4.4 (Calculating ∥T∥). To calculate ∥T∥, try the following.
1) Make sensible calculations to find c such that

∥Tx∥ ≤ c∥x∥

for all x ∈ X.
2) Find x ∈ X such that ∥Tx∥ = c∥x∥.

5. Lecture 5 - Tuesday 15 March

Remark. Ignore !2, Q3(b), Q8 on the practice sheet, as we will be ignoring Hilbert space theory for
the time being.

Definition 5.1 (Algebraic dual). Let (X, ∥ · ∥) be a normed vector space over K. The algebraic
dual of X is

X⋆ = Hom(X,K) = {φ : X → K |φ is linear}.

Elements of X⋆ are called linear functionals.

Definition 5.2 (Continuous dual (just dual)). The continuous dual (just dual) of X is

X ′ = L(X,K) = {φ : X → K |φ is linear and continuous}.

Remark. X⋆ ) X ′ if dim(X) = ∞.

Example 5.3. Let (℘([a, b]), ∥ · ∥∞) be the normed vector space of polynomials p : [a, b] → K.
(a) The functional D : ℘([0, 1]) → K given by D(p) = p′(1) is linear, but not continuous.
(b) The functional I : ℘([0, 1]) → K given by I(p) =

∫ 1

0
p(t) dt is linear and continuous.

Proof. (a) Linearity is clear. The pn(t) = tn for all t ∈ [0, 1]. Then |D(pn)| = n∥pn∥∞. So D is
not continuous, as continuity implies that there exists c such that

∥Tx∥ ≤ c∥x∥.

(b) Exercise: Show ∥I∥ = 1.
�

Describing the continuous dual space X ′ is one of the first things to do when trying to understand
a normed vector space. It is generally pretty difficult to describe X ′.

Proposition 5.4 (Dual of the ℓp space for (1 < p < ∞)). Let 1 < p < ∞. Let q be the “dual” of
p, defined by 1

q + 1
p = 1. Then (ℓp)′ is isometrically isomorphic to ℓq.
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Remark (Observation before proof). Let 1 ≤ p < ∞. Let ei = (0, 0, . . . , 1, 0, . . . ) where 1 is in the
i-th place.

1) If x = (xi) ∈ ℓp, then

x =
∞∑
i=1

xiei

in the sense that the partial sums converge to x.
2) If φ : ℓp → K is linear and continuous, then

φ(x) =

∞∑
i=1

xiφ(ei)

Proof of observations. Let Sn =
∑n

i=1 xiei. Then

∥x− Sn∥pp = ∥(0, 0, . . . , xn+1, xn+2, . . . )∥pp

=
∞∑

i=n+1

|xi|p

→ 0 as it is the tail of a convergent sum.

Write φ(x) as

φ(x) = φ( lim
n→∞

Sn) (continuity)

= lim
n→∞

(φ(Sn))

= lim
n→∞

φ

(
n∑

i=1

xiei

)

= lim
n→∞

n∑
i=1

xiφ(ei) (linearity)

=

∞∑
i=1

xiφ(ei) �

Proof. Define a map θ by

θ : ℓq → (ℓp)′

y 7→ φy

where φy(x) =
∑
xiyi for all x ∈ ℓp.

(1) φy is linear, as φy(x+ x′) = φy(x) + φy(x
′) (valid as sums converge absolutely.)

(2) φy is continuous, as

|φy(x)| = |
∑

xiyi| ≤
∑

|xiyi| ≤ ∥x∥p∥y∥q
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by Hölder’s inequality. From the fundamental theorem of linear operators, as |φy(x)| ≤
∥x∥p∥y∥q, we have that φy is continuous, and that

∥φy∥ ≤ ∥y∥q (⋆)

(3) θ is linear.
(4) θ is injective, as

θ(y) = θ(y′) ⇒ φy = φy′ ⇒ φy(x) = φy′(x) ∀x ∈ ℓp

⇒ φy(ei) = φy′(ei) ∀i ∈ N ⇒ yi = y′i ∀i ∈ N ⇒ y = y′

(5) θ is surjective. Let φ ∈ (ℓp). Let y = (φ(e1), . . . , φ(en), . . . ) = (y1, . . . , yn, . . . ). We now show
y ∈ ℓq.

Let x(n) ∈ ℓq be defined by

x
(n)
i =


|yi|q
yi

if i ≤ n and yi ̸= 0

0 otherwise

Then
φ(x(n)) =

∞∑
i=1

x
(n)
i φ(ei) =

n∑
i=1

|yi|q (†)

by Observation 2) above.
On the other hand, we know

∥φ(x(n)) ≤ ∥φ∥∥x(n)∥p

= ∥φ∥

( ∞∑
i=1

|x(n)i |p
)1/p

= ∥φ∥

(
n∑

i=1

|yi|(q−1)p

)1/p

= ∥φ∥

(
n∑

i=1

|yi|q
)1/p

as 1/p+ 1/q = 1. (⋆⋆)

Now, using (†) and (⋆⋆), we have

n∑
i=1

|yi|q ≤ ∥φ∥

(
n∑

i=1

|yi|q
)1/p

and so we must have
∥y∥q ≤ ∥φ∥ (⋆ ⋆ ⋆)

and so y ∈ ℓq.
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We also have, by (⋆⋆),
∥y∥q ≤ ∥φy∥

(6) Finally, we show that θ is an isometry. By (⋆) and (⋆ ⋆ ⋆), we have

∥θ(y)∥ = ∥φy∥ = ∥y∥q

as required. �

6. Lecture 6 - Wednesday 16 March

How big is X ′? When is X ′ ̸= {0}? Examples suggest that X ′ is big with a rich structure.

6.1. The Hahn-Banach theorem. The Hahn-Banach theorem is a cornerstone of functional
analysis. It is all about extending linear functionals defined on a subspace to linear functionals on
the whole space, while preserving certain properties of the original functional.

Definition 6.1 (Seminorm). A let X be a vector space over K. A seminorm on X is a function
p : X → R such that

(1) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X

(2) p(λx) = |λ|p(x) ∀x ∈ X,λ ∈ K

Theorem 6.2 (General Hahn-Banach). Let X be a vector space over K. Let p : X → R be a
seminorm on X. Let Y ⊆ X be a subspace of X. If f : Y → K is a linear functional such that

|f(y)| ≤ p(y) ∀y ∈ Y

then there is an extension f̃ : X → K such that

• f̃ is linear
• f̃(y) = f(y) ∀y ∈ Y

• |f(x)| ≤ p(x) ∀x ∈ X

Remark. This is great.

• Y can be finite dimensional (and we know about linear functionals on finite dimensional
spaces)

• If p(x) = ∥x∥, then
|f̃(x)| ≤ ∥x∥ ∀x ∈ X

and so f̃ ∈ X ′

Corollary. Let (X, ∥ · ∥) be a normed vector space over K. For each y ∈ X, with y ̸= 0, there is
φ ∈ X ′ such that

φ(y) = ∥y∥ and ∥φ∥ = 1
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Proof. Fix y ̸= 0 in X. Let Y = {Ky} = {λy|λ ∈ K}, a one-dimensional subspace.
Define f : Y → K, f(λy) = λ∥y∥. This is linear. Set p(x) = ∥x∥. Then

|f(λy) = p(λy)

and so by Hahn-Banach, there exists f̃ : X → K such that

• f̃ is linear
• f̃(λy) = f(λy) ∀λ ∈ K
• |f̃(x)| ≤ ∥x∥ ∀x ∈ X

Then we have f̃ ∈ X ′ and ∥f∥ = 1 as required. �

6.2. Zorn’s Lemma.

Theorem 6.3 (Axiom of Choice is equivalent to Zorn’s Lemma). See handout for proof that

A.C.⇒ Z.L.

Definition 6.4 (Partially ordered set). A partially ordered set (poset) is a set A with a relation
≤ such that

(1) a ≤ a for all a ∈ A,
(2) If a ≤ b and b ≤ athen a = b,
(3) If a ≤ b and b ≤ c, then a ≤ c

Definition 6.5 (Totally ordered set). A totally ordered set is a poset (A,≤) such that if a, b ∈ A

then either a ≤ b or b ≤ a.

Definition 6.6 (Chain). A chain in a poset (A,≤) is a totally ordered subset of A.

Definition 6.7 (Upper bound). Let (A,≤) be a poset. An upper bound for B ⊆ A is an element
u ∈ A such that b ≤ u for all b ∈ B.

Definition 6.8 (Maximal element). A maximal element of a poset (A,≤) is an element m ∈ A

such that m ≤ x implies x = m, that is,

m ≤ x⇒ x = m

Example 6.9. Let S be any set. Let P(S) be the power set of S (the set of all subsets of S).
Define a ≤ b ⇐⇒ a ⊆ b. Maximal element is S

Theorem 6.10 (Zorn’s Lemma). Let (A,≤) be a poset. Suppose that every chain in A has an
upper bound. Then A has (at least one) maximal element.

Example 6.11 (Application - all vector spaces have a basis).
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Definition 6.12 (Linearly independent). Let X be a vector space over F. We call B ⊆ X linearly
independent if

λ1x1 + · · ·+ λnxn = 0 ⇒ λ1 = · · · = λn = 0

for all finite {x1, . . . , xn} ⊆ B.

Definition 6.13 (Span). We say B ⊆ X spans X if each x ∈ X can be written as

x = λ1x1 + · · ·+ λnxn

for some λ1, . . . , λn ∈ F and {x1, . . . , xn} ⊆ B.

Definition 6.14 (Hamel basis). A Hamel basis is a linearly independent spanning set. Equivalently,
B ⊆ X is a Hamel basis if and only if each x ∈ X can be written in exactly one way as a finite
linear combination of elements of B.

Theorem 6.15. Every vector space has a Hamel basis

Proof. Let L = {linearly independent subsets}, with subset ordering. Let C be a chain in L. Let
u =

∪
a∈C a. Then

(1) u ∈ L,
(2) u is an upper bound for C.

So Zorn’s Lemma says that L has a maximal element b.
Then b is a Hamel basis.

• b is linearly independent.
• If Span(b) ̸= X, there exists X ∈ X\Span(b), and b′ = b

∪
{x} ∈ L is linearly independent,

contradicting maximality of b.

�

Remark. If X, ∥ · ∥) is Banach, every Hamel basis is uncountable.

7. Lecture 7 - Monday 21 March

Proof of Hahn-Banach Theorem Discussion of Dual operators

Theorem 7.1 (Hahn-Banach theorem over R). Let X be a real linear space and let p(x) be a
seminorm on X. Let M be a real linear subspace of X and f0 a real-valued linear functional defined
on M . Let f0 satisfy f0(x) ≤ p(x) on M . Then there exists a real valued linear functional F defined
on X such that

(i) F is an extension of f0, that is, F (x) = f0(x) for all x ∈M , and
(ii) F (x) ≤ p(x) on X.
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Proof. We first show that f0 can be extended if M has codimension one. Let x0 ∈ X\M and
assume that span(M ∪ {x0}) = X. As x0 /∈M be can write x ∈ X uniquely in the form

x = m+ αx0

for α ∈ R. Then for every c ∈ R, the map fc ∈ Hom(X,R) given by fc(m + αx) = f0(m) + cα is
well defined, and fc(m) = f0(m) for all m ∈M . We now show that we can choose c ∈ R such that
fc(x) ≤ p(x) for all x ∈ X. Equivalently, we must show

f0(m) + cα ≤ p(m+ αx0)

for all m ∈M and α ∈ R. By positive homogeneity of p and linearity of f we have

f0(m/α) + c ≤ p(x0 +m/α) α > 0

f0(−m/α)− c ≤ p(−x0 −m/α) α < 0

Hence we need to choose c such that

c ≤ p(x0 +m)− f0(m)

c ≥ −p(−x0 +m) + f0(m).

This is possible if
−p(−x0 +m1) + f0(m1) ≤ p(x0 +m2)− f0(m2)

for all m1,m2 ∈M . By subadditivity of p we can verify this condition since

f0(m1 +m2) ≤ p(m1m2) = p(m1 − x0 +m2 − x0) ≤ p(m1 − x0) + p(m2 + x0)

for all m1,m2 ∈M . Hence c can be chosen as required.
Hence D(F ) = X, and the theorem is proven. �

Theorem 7.2 (Hahn-Banach over C). Suppose that c is a seminorm on a complex vector space X
and let M sub a subspace of X. If f0 ∈ Hom(M,C) is such that |f0(x)| ≤ p(x) for all x ∈M , then
there exists an extension f ∈ Hom(X,C) such that f |M = f0 and |f(x)| ≤ p(x) for all x ∈ X.

Proof. Split f0 into real and imaginary parts

f0(x) = g0(x) + ih0(x).

By linearity of f0 we have

0 = if0(x)− f0(ix) = ig0(x)− h0(x)− g0(ix)− ih0(ix)

= −(g0(ix) + h0(x)) + i(g0(x)− h0(ix))

and so h0(x) = −g0(ix). Therefore,

f0(x) = g0(x)− ig0(ix)
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for all x ∈ M . We now consider X as a vector space over R, XR. Now considering MR as a
subspace of XR. GSince g0 ∈ Hom(MR,R) and g0(x) ≤ |f0(x)| ≤ p(x) and so by the real Hahn-
Banach, there exists g ∈ Hom(XR,R) such that g|MR = g0 and g(x) ≤ p(x) for all x ∈ XR. Now set
F (x) = g(x)− ig(ix) for all x ∈ XR. Then by showing f(ix) = if(x), we have that f is linear.

We now show |f(x)| ≤ p(x). For a fixed x ∈ X choose λ ∈ C such that λf(x) = |f(x)|. Then
since |f(x)| ∈ R and by definition of f , we have

|f(x)| = λf(x)| = f(λx) = g(λx) ≤ p(λx) = |λp(x) = p(x)

as required. �

8. Lecture 8 - Wednesday 23 March

Definition 8.1 (Inner product). Let X be a vector space over K. An inner product is a function

⟨·, ·⟩ : X ×X → K

such that
(1) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩
(2) ⟨αx, z⟩ = α⟨x, z⟩
(3) ⟨x, y⟩ = ⟨y, x⟩
(4) ⟨x, x⟩ ≥ 0 with equality if and only if x = 0

We then have
⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩

and
⟨x, αz⟩ = α⟨x, z⟩

Definition 8.2 (Inner product space). Let (X, ⟨·, ·⟩) be an inner product space. Defining
∥x∥ =

√
⟨x, x⟩ turns X into a normed vector space. To prove the triangle inequality, we use the

Cauchy-Swartz theorem.

Theorem 8.3 (Cauchy-Schwarz). In an inner product space (X, ⟨·, ·⟩), we have

|⟨x, y⟩| ≤ ∥x∥∥y∥ ∀x, y ∈ X

Proof.

0 ≤ ⟨x− λy, x− λy⟩

= ⟨x, x⟩ − ⟨x, λy⟩ − ⟨λy, x⟩+ ⟨λy, λy⟩

= ∥x∥2 − λ̄⟨x, y⟩ − λ⟨y, x⟩+ |λ|2∥y∥2

= ∥x∥2 − 2Re(λ⟨y, x⟩) + |λ|2∥y∥2
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Set λ = ⟨x,y⟩
∥y∥2 . Then

0 ≤ ∥x∥2 − 2Re( |⟨x, y⟩|
2

∥y∥2
) +

|⟨x, y⟩|2

∥y∥2

= ∥x∥2 − |⟨x, y⟩|2

∥y∥2

as required. �

Corollary.
∥x+ y∥ ≤ ∥x∥+ ∥y∥

Definition 8.4 (Hilbert space). If (X, ⟨·, ·⟩) is complete with respect to ∥ · ∥ then it is called a
Hilbert space.

Example 8.5. (a) ℓ2, where ⟨x, y⟩ =
∑∞

i=1 xiyi.
Cauchy-Schwarz then says

|
∞∑
i=1

xiyi| ≤

√√√√ ∞∑
i=1

|xi|2

√√√√ ∞∑
i=1

|yi|2

(b) L2([a, b]), where ⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Cauchy-Swartz then says

|
∫ b

a

f(x)g(x) dx ≤ .....

Definition 8.6 (Orthogonality). Let (X, ⟨·, ·⟩) be inner product spaces. Then x, y ∈ X are orthog-
onal if ⟨x, y⟩ = 0 where x, y ̸= 0.

Theorem 8.7. Let xi, . . . , xn be pairwise orthogonal elements in (X, ⟨·, ·⟩). Then

∥
n∑

i=1

xi∥2 =

n∑
i=1

∥xi∥2

Theorem 8.8 (Parallelogram identity). In (X, ⟨·, ·⟩) we have

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2) (⋆)

for all x, y ∈ X.

Remark. If (X, ∥ · ∥) is a normed vector space which satisfies parallelogram identity then X is an
inner product space with inner products defined by the polarisation equation

⟨x, y⟩ =

 1
4

(
∥x+ y∥2 − ∥x− y∥2

)
K = R

1
4

(
∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

)
K = C
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Definition 8.9 (Projection). Let X be a vector space over K. A subset M of X is convex if for
any x, y ∈M , then

tx+ (1− t)y ∈M ∀t ∈ [0, 1]

Theorem 8.10 (Projection). Let (H, ⟨·, ·, ⟩) be a Hilbert space. Let M ⊆ H be closed and convex.
Let x ∈ H. THen there exists a unique point mx ∈M which is closest to x, i.e.

∥x−mx∥ = inf
m∈M

∥x−m∥ = d

Proof. For each k ≥ 1 choose mk ∈M such that

d2 ≤ ∥x−mk∥2 ≤ d2 +
1

k

Each mk exists as d is defined as the infimum over all m.
Then

∥mk −ml∥2 = ∥(mk − x)− (mk − x)∥2

= 2∥mk − x∥2 + 2∥ml − x∥2 − ∥mk +ml − 2x∥2

≤ 2d2 +
2

l
+ 2d2 +

2

k
− 4∥mk +ml

2
− x∥2

and as mk/2 +ml/2 ∈M , we have ∥mk+ml

2 − x∥2 ≥ d2. Then

∥mk −ml∥2 ≤ 2(
1

k
+

1

l
)

Thus (mk) is Cauchy. So mk → mx ∈M as H is complete and M is closed. We then have

∥x−mx∥ = d

and so now we show that mx is unique.
Suppose that there exists m′

x ∈M with ∥x−m′
x∥ = d. Then by the above inequality, we have

∥mx −m′
x∥2 = 2∥mx − x∥2 + 2∥m′

x − x∥2 − 4∥mx −m′
x

2
− x∥2 ≤ 0

from above. �

Definition 8.11 (Projection operator). Let (H, ⟨·, ·, ⟩) be a Hilbert space. Let M ⊆ H be closed
and convex. Define

PM : H → H

by PM (x) = mx from above. This is the projection of H onto M .

Definition 8.12 (Orthogonal decomposition). If S ⊆ H, let

S⊥ = {x ∈ H |⟨x, y⟩ = 0 ∀y ∈ S.
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We call S⊥ the orthogonal component.

9. Lecture 9 - Monday 28 March

Theorem 9.1 (From previous lecture). If M ⊆ H, then the projection of H onto M is

Pm : H → H

x 7→ mx

where mx ∈M is the unique element with ∥x−mx∥ = infm∈M ∥x−m∥.

Lemma 9.2. Let M ⊆ H be closed subspace. Then x− PMx ∈M⊥ for all x ∈ H.

Proof. Let m ∈ M . We need to show ⟨x − PMx,m⟩ = 0. This is clear if m = 0. Without loss of
generality, assuming m ̸= 0, we can assume ∥m∥ = 1. Then write

x− PMx = x− (PMx+ ⟨x− PMx,m⟩m) + ⟨x− PMx,m⟩m.

Let the bracketed term be m′. Then x−m′ ⊥ ⟨x− PMx,m⟩m because

⟨x−m′, ⟨x− PMx,m⟩m⟩ = ⟨x− PMx,m⟩⟨x−m′,m⟩

= C⟨x− PMx− ⟨x− PMx,m⟩m,m⟩

= C(⟨x− PMx,m⟩ − ⟨x− PMx,m⟩∥m∥)

= 0.

So ∥x−PMx∥2 = ∥x−m′∥2+ |⟨x−PMx,m⟩|2. So ∥x−PMx∥2 ≥ ∥x−PMx∥2+ |⟨x−PMx,m⟩|2

by definition of PMx. Thus,
⟨x− PMx,m⟩ = 0

and thus x− PMx ∈M⊥. �

Theorem 9.3. The following theorem is the key fundamental result. Let (H, ⟨·, ·, ⟩) be a Hilbert
space. Let M be a closed subspace of H. Then

H =M ⊕M⊥.

That is, each x ∈ H can be written in exactly one way as x = m+m⊥ with m ∈M , m⊥ ∈M⊥.

Proof. Existence - Let x = Pmx+ (x− PMx).
Uniqueness - Let x = x1 + x⊥1 , x = x2 + x⊥2 with x1, x2 ∈M,x⊥1 , x

⊥
2 ∈M⊥ . Then

x1 − x2 = x⊥2 − x⊥1 ∈M⊥

Then
⟨x1 − x2, x1 − xn⟩ = 0 ⇒ x1 = x2.

Thus x⊥1 = x⊥2 . �
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Corollary. Let M ⊆ H be a closed subspace. Then we have

(a) PM ∈ L(H,H).
(b) ∥PM∥ ≤ 1.
(c) ImPm =M,Ker PM =M⊥.
(d) P 2

M = PM .
(e) PM⊥ = I − PM .

Proof. (c), (d), (e) exercises.
(a). Let x, y ∈ H. Write x = x1+x

⊥
1 and y = y1+ y

⊥
1 with x1, y1 ∈M and x⊥1 , y⊥1 ∈M⊥. Then

x = y = (x1 + y1) + (x⊥1 + y⊥1 )

and so
PM (x+ y) = x1 + y1

and similarly PM (αx) = αPMx. We also have

∥x∥2 = ∥PMx+ (x− PMx)∥2

= ∥PMx∥2 + ∥x− PMx∥2

≥ ∥PMx∥2

and so ∥PM∥ ≤ 1. �

9.1. The dual of a Hilbert space. If y ∈ H is fixed, then the map

φy : H → K

x 7→ ⟨x, y⟩

is in H′. Linearity is clear, and continuity is proven by Cauchy-Swartz,

|φy(x)| = |⟨x, y⟩| ≤ ∥y∥∥x∥.

So ∥φy∥ ≤ ∥y∥. Since |φy(y)| = ∥y∥2, we then have

∥φy∥ = ∥y∥.

Theorem 9.4 (Riesz Representation Theorem). Let H be a Hilbert space. The map

θ : H → H′

y 7→ φy

is a conjugate linear bijection, and ∥φy∥ = ∥y∥.

Proof. Conjugate linearity is clear.
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Injectivity

φy = φy′ ⇒ φy(x) = φy′(x) ∀x

so
⟨x, y = ⟨x, y′⟩ = 0 ⇒ ⟨y − y′, y − y′⟩ = 0

and so y = y′.
Surjectivity Let φ ∈ H ′. We now find y ∈ H with φ = φy. If φ = 0, take y = 0. Suppose

φ ̸= 0. Then Ker φ ̸= H. But Ker φ is a closed subspace of H. So

H = (Ker φ)⊕ (Ker φ)⊥.

Hence (Ker φ)⊥ ̸= {0}. Pick z ∈ (Ker φ)⊥, z ̸= 0. For each x ∈ H, the element

x− φ(x)

φ(z)
z ∈ Ker φ

Note that φ(z) ̸= 0 since z /∈ Ker φ. Then

0 = ⟨x− φ(x)

φ(z)
z, z⟩

= ⟨x, z − φ(x

φ(z)
∥z∥2

and so
φ(x) = ⟨x, φ(z)

∥z∥2
z⟩ ∀x ∈ H,

and so letting y = φ(z)
∥z∥2 z, we have φ = φy. �

Example 9.5. From Hahn-Banach given y ∈ H there exists φ ∈ H′ such that

∥φ∥ = 1

and φ(y) = ∥y∥. We can be very constructive in the Hilbert case, and let

φ(x) = ⟨x, y

∥y∥
⟩

Example 9.6. All continuous linear functionals on L2([a, b]) are of the form

φ(f) =

∫ b

a

f(x)g(x) dx

for some g ∈ L2([a, b]).

Example 9.7 (Adjoint operators). Let H1,H2 be Hilbert spaces. Let T ∈ L(H1,H2). The adjoint
of T is T ⋆ ∈ L(H2,H1) given by

⟨Tx, y⟩2 = ⟨x, T ⋆y⟩1
for all x ∈ H1, y ∈ H2
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Exercise 9.8. Check all of the above.

Exercise 9.9. Prove T ⋆ = T t where T t is the transpose.

10. Lecture 10 - Wednesday 30 March

Definition 10.1 (Orthonormal system). As subset S ⊆ H is an orthonormal system (orthonor-
mal) if

⟨e, e′⟩ = δe,e′ ∀e, e′ ∈ S

Definition 10.2 (Complete orthonormal system or Hilbert basis). An orthonormal system S is
complete or a Hilbert basis if

span S = H

Remark. By Gram-Schmidt and Zorn’s Lemma, every Hilbert space has a complete orthonormal
system.

Example 10.3. (1) ℓ2. Then
S = {ei | i ≥ 1}

is orthonormal and is complete.
(2) L2

C([0, 2π]). Then
S = { 1

2π
eint |n ∈ Z}

is orthonormal and is complete. Completeness follows from Stone-Weierstrass theorem.
(3) L2

R([0, 2π]). Then

S = { 1√
2π
,

1√
π

cosnt, 1√
π

sinnt |n ≥ 1}

is orthonormal and is complete, again by Stone-Weierstrass.

We want to look at series
∑

e∈S ..., which is tricky if S is not countable.

Lemma 10.4. If {ek | k ≥ 0} is orthonormal, then
∞∑
k=0

alek

converges in H if and only if
∞∑
k=0

|ak|2

converges in K.
If either series converges, then ∥∥∥∥∥

∞∑
k=0

akek

∥∥∥∥∥
2

=
∞∑
k=0

|ak|2
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Note. If xn → x, yn → y, then
⟨xn, yn⟩ → ⟨x, y⟩

Proof. If
∑∞

k=0 akek converges to x, then

⟨x, x⟩ = lim
n→∞

⟨
n∑

k=0

akek,
n∑

k=0

akek⟩

= lim
n→∞

n∑
k=0

|ak|2

Conversely, if
∑∞

k=0 |ak|2 converges, then writing xn =
∑n

k=0 akek, we have

∥xm − xn∥2 = ∥
m∑

k=n+1

akek∥2

=

m∑
k=n+1

∥akek∥2 by Pythagoras

=
m∑

k=n+1

|ak|2 → 0

and so (xn) is Cauchy, and hence converges by completeness of H. �

Lemma 10.5. Let {e1, . . . , en} be orthonormal. Then
n∑

k=1

| ⟨x, ek⟩ |2 ≤ ∥x∥2

for each x ∈ H.

Proof. Let y =
∑n

k=1 ⟨x, ek⟩ ek. Let z = x− y. We claim that z ⊥ y. We have

⟨x, y⟩ = ⟨x− y, y⟩

= ⟨x, y⟩ − ∥y∥2

=
n∑

k=1

⟨x, ek⟩ ⟨x, ek⟩ −
n∑

k=1

| ⟨x, ek⟩ |2

= 0.

So

∥x∥2 = ∥y + z∥2

= ∥y∥2 + ∥z∥2 Pythagoras

≥ ∥y∥2 =
n∑

k=1

| ⟨x, ek⟩ |2
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�

We want to write expressions like
∑

e∈S ⟨x, e⟩ e.

Corollary. Let x ∈ H and S orthonormal. Then

{e ∈ S | ⟨x, e⟩ ̸= 0}

is countable.

Proof.
{e ∈ S | ⟨x, e⟩ ̸= 0} =

∪
k≥1

{e ∈ S | | ⟨x, e⟩ | > 1

k

From the lemma,
#{e ∈ S | | ⟨x, e⟩ | > 1

k
} ≤ k2∥x2∥

For if this number were greater than k2∥x∥2, then the LHS in Lemma is greater than 1
k2 k

2∥x∥2. �

Therefore:

Corollary (Bessel’s Inequality). If S is orthonormal, then∑
e∈S

| ⟨x, e⟩ |2 ≤ ∥x∥2

for all x ∈ H

Proof.
∑

e∈S |⟨x, e⟩|2 is a sum of countably many positive terms, and so order is not important. �

We want to write
∑

e∈S ⟨x, e⟩ e. This sum is over a countable set, but is the order important?

Theorem 10.6. Let S be orthonormal. Let M = span S. Then

PMx =
∑
e∈S

⟨x, e⟩ e

where the sum can be taken in any order.

Proof. Fix x ∈ H. Choose an enumeration

{ek | k ≥ 0} = {e ∈ S | ⟨x, e⟩ ̸= 0}.

By Bessel’s inequality, we have
∞∑
k=0

| ⟨x, ek⟩ |2 ≤ ∥x∥2

and so the LHS converges. By Lemma 10.4, we know

y =
∞∑
k=0

⟨x, ek⟩ ek ∈M
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converges in H.
Write x = y+(x−y) =M+M⊥. We claim (x−y) ∈M⊥. Then PMx = y from characterisation

of projection operator. Let e ∈ S. Then

⟨x− y, e⟩ = lim
n→∞

⟨
x−

n∑
k=0

⟨x, ek⟩ ek, e

⟩

= lim
n→∞

(⟨x, e⟩ −
n∑
k=

⟨x, ek⟩ ⟨ek, e⟩)

= ⟨x, e⟩ −
∞∑
k=0

⟨x, ek⟩ ⟨ek, e⟩ .

If e ∈ {e′ ∈ S | ⟨x, e′⟩ ≠ 0}, then e = ej for some j, and so

⟨x− y, e⟩ = ⟨x, ej⟩ − ⟨x, ej⟩ = 0

If ⟨x, e⟩ = 0, then e ̸= ej for all j, and so ⟨ej , e⟩ = 0, and so

⟨x− y, e⟩ = 0− 0 = 0.

Thus x− y ∈ (span S)⊥.

Exercise 10.7. Show that
x− y ∈ (span S)

⊥
=M⊥.

�

11. Lecture 11 - Monday 4 April

Recall that if {x1. . . . } is a countable orthonormal system in a Hilbert space H. Then
∞∑
k=1

akek <∞ ⇐⇒
∞∑
k=1

|ak|2 <∞

and
∥

∞∑
k=1

akek∥2 =
∞∑
k=1

|ak|2 (⋆)

We also had the following.

Theorem 11.1. Let S be orthonormal in H. Let M = span S. Then

PMx =
∑
e∈S

⟨x, e⟩ e ∀x ∈ H

where the sum has only countable many terms and convergence is unconditional.

Theorem 11.2. Let S be orthonormal in H. Then following are equivalent.
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(a) S is a complete orthonormal system (span S = H).
(b) x =

∑
e∈S ⟨x, e⟩ e for all x (Fourier series).

(c) ∥x∥2 =
∑

e∈S | ⟨x, e⟩ |2 for all x (Parseval’s formula).

Proof. (a) ⇒ (b). If M = span S = H, then

PMx = x =
∑
e∈S

⟨x, e⟩ e

by Theorem 11.1.
(b) ⇒ (c). By the infinite Pythagoras theorem (⋆).
(c) ⇒ (a). Let M = span S. Suppose that z ∈M⊥. Then z = 0 + z ∈M +M⊥. Hence

0 = ∥PMz∥2 = ∥
∑
e∈S

⟨z, e⟩ e∥2 =
∑
e∈S

| ⟨z, e⟩ |2 = ∥z∥2

which implies z = 0, so M = H, and so S is complete. �

Remark. Consider L2([0, 2π]), and let S = {en |n ∈ Z}. Then we can write

f =
∑
n∈Z

cnen

where cn = ⟨f, en⟩ = 1√
2π

∫ 2π

0
f(t)e−int dt.

We do not claim that convergence is pointwise, what we have proven is convergence is in L2,

∥f −
∑

|n|≤N

cnen∥2 → 0

as N → ∞. This is not the same as pointwise or uniform convergence (∥ · ∥∞).

11.1. Stone-Weierstrass theorem. This is a useful tool to show an orthonormal system is com-
plete. In fact, this theorem is about uniformly approximating elements of C(X), where X is a
compact Hausdorff space. it is a generalisation of the Weierstrass approximation theorem.

Theorem 11.3 (Weierstrass approximation theorem). Let f ∈ C([a, b]) and let ϵ > 0 be given.
Then there exists a polynomial p(x) such that

|f(x)− p(x)| <∞ ∀x ∈ [a, b],

that is, ∥f − p∥∞ < ϵ.

Corollary. This implies the following important results:
• Continuous functions can be uniformly approximated by polynomials.
• P([a, b]), the space of polynomials on [a, b], is dense in C([a, b]).
• P([a, b]) = C([a, b]).

We now prove Stone’s 1930’s generalisation.
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First some setup: Let X be a compact Hausdorff space throughout. We then know that C(X)

is a vector space. It also has sensible vector multiplication,

(fg)(x) = f(x)g(x).

Thus C(X) is a unital, commutative, associative ring. As we have

f(λg) = λ(fg)

then C(X) is a unital, commutative, associative algebra over K.

Definition 11.4 (Subalgebra). A subalgebra of C(X) is a subset A which is closed under scalar
multiplication, vector addition, and vector multiplication. A is unital if it contains the constant
function f(x) = 1.

Example 11.5. P([a, b]) is a subalgebra of C([a, b]).

When is A dense in C(X)?

Theorem 11.6 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a
subalgebra of C(X). If
(1) A is unital,
(2) f ∈ A ⇒ f⋆ ∈ A, where f⋆(x) = f(x),
(3) A separates points of X.
Then A = C(X).

Definition 11.7. A separates points of X if, given x ̸= y, there is a function f ∈ A with f(x) ̸=
f(y).

Corollary. (a) P([a, b]) is dense in C([a, b]), as f(x) = x separates points.
(b) Trigonometric polynomials are dense in

{f ∈ C([0, 2π]) | f(0) = f(2π)}.

(c) Trigonometric polynomials are dense in L2([0, 2π]), and

S = {en |n ∈ Z}

is complete.

Setup

Lemma 11.8. The function f(t) = |t| can be uniformly approximated by polynomials on [−1, 1]

Proof. The binomial theorem says

(1 + x)1/2 =
∞∑

n=0

( 1
2

n

)
xn ∀x ∈ [−1, 1]
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We then have

|t| =
√
t2 =

√
1 + (t2 − 1) =

∞∑
n=0

( 1
2

n

)
(t2 − 1)n t ∈ [−

√
2,
√
2]

Now let pN (t) = sumN
n=0

( 1
2
n

)
(t2 − 1)n, and

||t| − pN (t)| = |
∞∑

n=N+1

( 1
2

n

)
(t2 − 1)n| ≤

∞∑
n=N+1

|
(1

2

n

)
|

and so ∥|t| − pn∥∞ → 0 as N → ∞ on [−1, 1]. �

12. Lecture 12 - Wednesday 6 April

Theorem 12.1 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and let A be a
subalgebra of C(X). If

(1) A is unital,
(2) f ∈ A ⇒ f⋆ ∈ A, where f⋆(x) = f(x),
(3) A separates points of X.

Then A = C(X).

Proof. We first prove for CR(X).

Lemma 12.2. Let A be a unital subalgebra of CR(X) . Then

(a) |f | ∈ A,
(b) min(f1, . . . , fn),max(f1, . . . , fn) ∈ A

for all f, f1, . . . , fn ∈ A ⊆ CR(X).

Proof. (a) Replace f by f
∥f∥∞

so we can assume that ∥f∥∞ = 1. From the previous lemma, we
know for each n ≥ 1 there is a polynomial pn : [−1, 1] → R such that ||t| − pn(t)| < 1

n for all
t ∈ [−1, 1].

Since |f(x)| ≤ ∥f∥∞ = 1 for all x ∈ X, we have

∥|f | − pn(f)∥ ≤ 1

n

But pn(f) is a finite linear combination of 1, f, f2, f3, . . . and so in in A, as A is unital. Thus
|f | ∈ A.

(b) Use the formulas

max(f, g) = f + g − |f − g|
2

, min(f, g) = f + g − |f − g|
2

∈ A

and induction.
�
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Proof of Stone-Weierstrass for CR(X). Let f ∈ CR(X) and let ϵ > 0 be given. We need to find
g ∈ A such that

|f(z)− g(z)| < ϵ ∀z ∈ X

Step 0. We can assume that A is closed.

Exercise 12.3. Why?

Step 1. Let x, y ∈ X be fixed.

Proposition 12.4. There exists fxy ∈ A with

fxy(x) = f(x), fxy(x) = f(y)

Proof. If x = y then trivial (take fxy(z) = f(x)1(z)).
If x ̸= y, since A separates points, there is h ∈ A with h(x) ̸= h(y). Then take

fxy = ah+ b1 ∈ A

we can invert the coefficient matrix to find our coefficients a and b. �

Step 2. Let x ∈ X be fixed.

Proposition 12.5. There exists fx ∈ A such that
• fx(x) = f(x).
• fx(z) < f(z) + ϵ

Proof. For each y ∈ X,let
Oy = {z ∈ X | fxy(z) < f(z) + ϵ}

where fxy is the function from Step 1. These are all open sets (why?) and thus

X =
∪
y∈X

Oy

since y ∈ Oy.
By compactness of X, we have

X =
m∪
i=1

Oyi

Letting fx = min(fxy1 , . . . , fxyn). Then
• Since fxyi(x) = f(x) for all i,

fx(x) = f(x)

• If z ∈ X, then z ∈ Oyi
for some i, and so

fx(z) ≤ fxyi(z) < f(z) + ϵ

as required.
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�

Step 3.

Proposition 12.6. There exists a function g ∈ A such that

|f(z)− g(z)| < ϵ

for all z ∈ X.

Proof. For each x ∈ X, let
Ux = {z ∈ X | fx(z) > f(x)− ϵ}

where fx is from Step 2. These sets Ui are open and since x ∈ Ux, for an open cover, we can write

X =
∪
x∈X

Ux =

n∪
j=1

Uxj .

Define g = max(fx1 , . . . , fxn). If z ∈ X,

• g(z) = fxi(z) for some i, which is less than f(z) + ϵ from Step 2.
• If z ∈ Uxj

for some j = 1, . . . , n, then

g(z) ≥ fxj (z) > f(x)− ϵ.

�

�

Exercise 12.7. Where did we use the Hausdorff property?

We now prove for CC(X).
Let

AR = {f ∈ A | f is real valued}.

THen AR is an R-subalgebra of CR(X). It is unital, as 1 ∈ A and it is real valued.
We now show AR separates points. If x ̸= y, there is f ∈ A such that f(x) ̸= f(y). Write

f = u+ iv with u, v real valued. Either u(x) ̸= u(y) or v(x) ̸= v(y), and so AR separates points.
Hence AR is dense in CR.
Now, let f ∈ CC(X). Then write f = u+ iv. Then u, v ∈ CR(X). Then given ϵ > 0, there exists

u1, v1 ∈ AR such that
∥u− u1∥∞ ≤ ϵ

2
, ∥v − v1∥∞ ≤ ϵ

2
Writing f1 = u1 + iv1 ∈ A, we have

∥f − f1∥∞ ≤ ∥(u− u1) + i(v − v1)∥∞ ≤ ∥u− u1∥∞ + ∥v − v1∥∞ < ϵ

and thus A is dense in CC(X). �
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13. Lecture 13 - Monday 11 April

13.1. Applications of Stone-Weierstrass theorem.

Corollary. Polynomials are dense in C([a, b]).

Proof. A = P([a, b]) is an algebra, is unital, is closed under complex conjugation, and separates
points. Thus, A is dense in C([a, b]). �

Definition 13.1 (Trigonometric polynomials). A trigonometric polynomail is an expression∑
n∈Z

cne
int

with finitely many cn ̸= 0. So these are polynomials in s = eit and s−1 = s = e−it.

Corollary. The space A of all trigonometric polynomials is dense in C(Π), where Π = {z ∈ C | |z| =
1}

Proof. A is a sub-algebra of C(Π), it is unital, closed under complex conjugation,∑
n∈Z

cneint =
∑
n∈Z

c−ne
int

and separates points. T is a compact Hausdorff space, and thus Stone-Weierstrass states that A is
dense in C(Π). �

Corollary. The orthonomal system

S = { 1√
2π
eint |n ∈ Z}

is complete in L2([0, 2π]).

Proof. span S = A is a space of trigonometric polynomials, which is dense in C(Π). Define

Φ : Cp([0, 2π])] → C(Π)

f 7→ f̃

where Cp([0, 2π]) = {f ∈ C([0, 2π]) | f(0 = f(2π))}. Then Φ is an isometric isomorphism, and
therefore functions of the form f(t) =

∑
cne

int is dense in Cp([0, 2π]).
By the construction of the Lebesgue integral, simple functions

n∑
i=1

ai1Ai

are dense in L2([0, 2π]).

Exercise 13.2. Given f ∈ L2([0, 2π]) and ϵ > 0, there exists g ∈ Cp([0, 2π]) such that ∥f−g∥2 < ϵ.
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Thus A is dense in L2([0, 2π]). �

Corollary. The following are separable (have a countable dense subset):
(a) C([a, b]),
(b) Lp([a, b]) , 1 ≤ p <∞

Proof. (a) We have P([a, b]) is dense in C([a, b]) and set PQ([a, b]) with rational coefficients is dense
in P([a, b]). Clearly, PQ([a, b]) is countable, and thus is dense in C([a, b]).

(b) Use the fact that C([a, b]) is dense in Lp([a, b]).
�

Corollary. Let X be a compact metric space. Then C(X) is separable.

Proof. As X is a compact metric space, then X is separable.

Exercise 13.3. Why?

Let {xn |n ≥ 1} be a countable dense subset of X. For each n ≥ 1 and m ≥ 1 define

fn,m : X → K

by
fn,m(x) = inf

z /∈B(xn,
1
m )
d(x, z)

We then claim fn,m is continuous. Now, let A be the space of all K-linear combinations of

fk1
n1,m1

, . . . , fkl
nl,ml

, k1, . . . , kl ∈ N . (⋆)

This is a sub-algebra of C(X), as A is unital, closed under conjugation, and separates points -
if z1, z2 ∈ X with z1 ̸= z2, Choose n,m such that z1 ∈ B(xn,

1
m ), zn /∈ B(xn,

1
m ). Thus the

sub-algebra A is dense by Stone-Weierstrass.
The subset of Q-linear combinations of (⋆) is countable and dense. �

Lemma 13.4. If X is compact metric space then X is separable.

Proof. For each m ≥ 1,
X =

∪
x∈X

B(x;
1

m
)

has a finite subcover

X =

Nm∪
n=1

B(xm,n
1

m
)

and thus the subset of all {xm,n} is a countably dense subset. �

Corollary.
pi2

6
=

∞∑
n=1

1

n2
.
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Proof. S = { 1√
2π
eint |n ∈ Z} is complete, and so Parseval’s formula holds,

∥f∥22 =
∑
n∈Z

| ⟨f, en⟩ |2.

Apply to f(x) = x. �

A common strategy is to prove for polynomials, and then Stone-Weierstrass proves it for contin-
uous functions.

Corollary. If f ∈ C([a, b]× [c, d]) then∫ b

a

∫ d

c

f(x, y) dydx =

∫ d

c

∫ b

a

f(x, y) dxdy

Proof. By direct calculation, the result is true for two-variable polynomials. Let f ∈ C([a, b]× [c, d])

and ϵ > 0 be given. By Stone-Weierstrass, the space of polynomials in 2 variables is dense in
C([a, b]× [c, d]) and so there exists a polynomial p(x, y) with

|f(x, y)− p(x, y)| < ϵ

(b− a)(d− c)
.

The result then follows by direct calculation. �

14. Lecture 14 - Wednesday 13 April

The following is at the core of two of the cornerstone theorems of functional analysis - the uniform
boundedness principle and the open mapping theorem.

Theorem 14.1 (Baire’s theorem). Let X be a complete metric space. If U1, U2, . . . are open dense
subsets of X, then

U =
∞∩

n=1

Un

is dense in X.

Proof. Let x ∈ X and ϵ > 0 be given. We need to show that

B(x, ϵ) ∩ U ̸= ∅.

Lemma 14.2. There exists sequences (xn) in X and (ϵn) in R+ with the property that

(a) x1 = x, ϵ1 = ϵ.
(b) ϵn ↓ 0

(c) B(xn+1, ϵn+1) ⊆ B(xn, ϵn) ∩ Un for all n ≥ 1.

Proof. Let x1, . . . , xn and ϵ1, . . . , ϵn be chosen. By density of Un,

B(xn, ϵn) ∩ Un ̸= ∅.
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Choose xn+1 ∈ B(xn, ϵn) ∩ Un. Choose ϵ′n+1 > 0 such that B(xn+1, ϵ
′
n+1) ⊆ B(xn, ϵn) ∩ Un

(openness). We have ϵ′n+1 ≤ ϵn. Choose 0 ≤ ϵn+1 ≤ min( ϵ
′
n+1

2 , 1
n+1 ), then we have

B(xn+1, ϵn+1) ⊆ B(xn+1, ϵ
′
n+1)

⊆ B(xn, ϵn) ∩ Un

and ϵn+1 < ϵn with ϵn+1 <
1

n+1 . �

Given the lemma, the theorem follows. If m ≥ n, then by (c),

B(xm, ϵm) ⊆ B(xn, ϵn) ∩ Un (⋆)

In particular, xm ∈ B(xn, ϵn). Thus, d(xn, xm) < ϵn for all m ≥ n. Thus (xn) is Cauchy, and so
xn → ζ in X by completeness. By (⋆), we then have d(xn, ζ) ≤ ϵn for all n ≥ 1. So ζ ∈ B(xn, ϵn).
So by (c), ζ ∈ B(xn+1, ϵn+1) ⊆ B(xn, ϵn) ∩ Un.

Thus ζ ∈ B(x, ϵ) and thus ζ ∈ U =
∩∞

n=1 Un. �

The following corollary is often used

Corollary. Let X be a complete metric space. If C1, C2, . . . are closed with X =
∪∞

n=1 then
Int(Cn) ̸= ∅ for some n.

Proof. If Int(Cn) = ∅ for all n then Un = X\Cn are open and dense. So by Baire’s theorem,
∩∞
n=1Un is sense, and in particular,

∩
n = 1∞Un ̸= ∅. We have

X =

∞∪
n=1

Cn =

∞∪
n=1

(X\Un)

= X\(
∞∩

n=1

Un)

( X,

a contradiction. �

There are three cornerstone theorems.

• Hahn-Banach,
• Uniform Boundedness,
• Open Mapping.

Theorem 14.3 (Uniform boundedness). Let X,Y be Banach spaces. Let Tα, α ∈ A, a family of
continuous linear operators Tα : X → Y . Then if

sup
α∈A

∥Tαx∥ <∞
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for each fixed x ∈ X, then
sup
α∈A

∥Tα∥ <∞

Remark. Rather amazing - you get a global bound from pointwise bounds.

Proof. For each n ≥ 1, let
Xn = {x ∈ X | ∥Tαx∥ ≤ n∀α ∈ A}

These are closed (Tα is continuous) and

X =
∞∪

n=1

Xn

by the hypothesis.
By the corollary to Baire’s theorem, we know there exists n0 ≥ 1 with Int(Xn0) ̸= ∅. Choose

x0 ∈ Int(Xn0), and let r > 0 such that

B(x0, r) ⊆ Int(Xn0).

If ∥z∥ ≤ 1 then x0 + rz ∈ B(x0, r). So x0 + rz ∈ Xn0 , and

∥Tα(x0 + rz)∥ ≤ n0 ∀α ∈ A,

but |∥a∥ − ∥b∥| ≤ ∥a+ b∥, so

∥Tα(rz)∥ − ∥Tα(x0)∥ ≤ ∥Tα(x0 + rz)∥ ≤ n0.

So r∥Tαz∥ ≤ n0 + n0, and
∥Tαz∥ ≤ 2n0

r
∀∥z∥ ≤ 1,∀α ∈ A

For a general x ∈ X,
∥Tαx∥ = ∥Tα(

x

∥x∥
)∥x∥ ≤ 2n0

r
∥x∥

and thus ∥Tα∥ ≤ 2n0

r , which implies
sup
α∈A

∥Tα∥ <∞ �

15. Lecture 15 - Monday 18 April

Recall, the Fourier series of f ∈ L2([−π, π]) is∑
k∈Z

⟨f, ek⟩ ek

where ek(t) = eikt
√
2π

. This converges to f in the L2 norm.

Exercise 15.1. If f is 2π-periodic and continuous, does the Fourier series converge pointwise?
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There are explicit (complicated) examples, but the easiest existence is using the uniform bound-
edness principle.

Proposition 15.2. There is a 2π periodic continuous function whose Fourier series does not
converge at 0.

Proof. Let Cp([−π, π]) = {f ∈ C([−π, π]) | f(−π) = f(π)}. This is a Banach space with ∥ · ∥∞. If
f ∈ Cp, let

fn =
∑
|k|≤n

⟨f, ek⟩ ek.

Remark. We can now define, for each n ≥ 1, a linear operator Tn : Cp → K by

Tn(f) = fn(0).

If fn(0) converges (as n→ ∞) for each f ∈ Cp, then

sup
n≥1

|Tnf | = sup
n≥1

|fn(0)| <∞

for all f ∈ Cp, which by uniform boundedness implies

sup
n≥1

∥Tn∥ ≤ ∞. (⋆)

We now show that (⋆) is false.

We have

fn(x) =
∑
|k≤n

1

2π

∫ π

−π

f(t)e−ikt dteikx

=
1

2π

∫ π

−π

f(t)

∑
|k|≤n

e−ik(x−t)

 dt

=
1

2π

∫ π

−π

f(t)Dn(x− t) dt

where Dn(t) =
∑

|k|≤n e
ikt is the Dirichlet Kernel. The Dirichlet kernel is real, and even, with

Dn(t) =
sin(n+ 1

2 )t

sin t
2

.

Note. Tn is continuous, with norm ∥Tn∥ = 1
2π

∫ π

−π
|Dn(t)| dt.

Proof.

|Tn(f)| ≤
1

2π

∫ π

−π

|f(t)||Dn(t)| dt

≤
(

1

2π

∫ π

−π

|Dn(t)| dt
)
∥f∥∞
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and so ∥Tn∥ ≤ 1
2π

∫ π

−π
|Dn(t)| dt.

Going the other way, let

st =

1 Dn(t) ≥ 0

−1 Dn(t) < 0
.

We have seen hat set functions can be approximated in L1-norm by continuous (periodic) functions.
So if ϵ > 0 is given, there is a g ∈ Cp such that∣∣∣∣ 12π

∫ π

−π

(g(t)− s(t))Dn(t) dt

∣∣∣∣ < ϵ.

g can be chosen with ∥g∥∞ = 1.
So ∣∣∣∣Tn(g)− 1

2π

∫ π

−π

|Dn(t)| dt
∣∣∣∣ < ϵ.

Thus
1

2π

∫ π

−π

|Dn(t)| dt− |Tn(g)| < ϵ.

So
|Tn(g)| ≥

∥g∥∞
2π

∫ π

−π

|Dn(t)| dt− ϵ.

Since ϵ > 0 was arbitrary,
∥Tn∥ ≥ 1

2π

∫ π

−π

|Dn(t)| dt. �

All that remains is to show that

∥Tn∥ =
1

2π

∫ π

−π

|Dn(t)| dt→ ∞
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We have

∥Tn∥ =
1

π

∫ π

0

|Dn(t)| dt

=
1

π

∫ π

0

| sin(n+ 1
2 )t|

| sin t
2 |

dt

≥ 2

π

∫ π

0

| sin(n+ 1
2 )t|

t
dt

=
2

π

∫ (n+ 1
2 )π

0

sin v
v

dv

≥ 2

π

∫ nπ

0

sin v
v

dv

=
2

π

n∑
k=1

∫ kπ

(k−1)π

| sin v|
v

dv

≥
n∑

k=1

1

kπ

∫ kπ

(k−1)π

| sin v| dv

=
4

π2

n∑
k=1

1

k
→ ∞

as n→ ∞.
Thus there exists f ∈ Cp such that the Fourier series of f diverges at x = 0. �

15.1. The open mapping theorem. This theorem is tailor-made to deal with inverse operators.

Definition 15.3 (Open mapping). Let X,Y be metric spaces. A function f : X → Y is open if
open sets in X are mapped to open sets in Y .

Theorem 15.4 (Open mapping theorem). Let X,Y be Banach spaces. If T ∈ L(X,Y ) is surjective
then T is open.

Corollary (Bounded inverse theorem). Let X,Y be Banach spaces. If T ∈ L(X,Y ) is bijective,
then

T−1 ∈ L(Y,X).

Proof. Let O ⊆ X be open. Then (T−1)−1(O) = T (O) is open (by the open mapping theorem).
Thus T−1 is continuous. �

Corollary. Let (X, ∥ · ∥1) and (X, ∥ · ∥2) be Banach spaces. If

∥x∥1 ≤ C∥x∥2 ∀x ∈ X

then ∥ · ∥1 and ∥ · ∥2 are equivalent.
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Proof.

i : (X, ∥ · ∥2) → (X, ∥ · ∥1)

x 7→ x

is linear, surjective and injective, and also continuous, as

∥i(x)∥ = ∥x∥1 ≤ C∥x∥2.

So the bounded inverse theorem gives

i−1 : (X, ∥ · ∥1) → (X, ∥ · ∥2)

is continuous. Thus there exists A > 0 such that ∥i−1(x)∥2 ≤ A∥x∥1, which implies ∥x∥2 ≤ A∥x∥1.
So

1

A
∥x∥2 ≤ ∥x∥1 ∀x ∈ X �

More generally, if T ∈ L(X,Y ) is bijective, then by the bounded inverse theorem,

c∥x∥ ≤ ∥Tx∥ ≤ C∥x∥

where c = 1
∥T−1∥ , C = ∥T∥.

16. Lecture 16 - Wednesday 20 April

Lemma 16.1. Let X be a Banach space and Y a normed space. Then for T ∈ L(X,Y ), the
following are equivalent.

(a) T is open
(b) There exists r > 0 such that B(0, r) ⊆ T (B(0, 1))

(c) There exists r > 0 such that B(0, r) ⊆ T (B(0, 1)).

Proof. (a) ⇒ (b), (c). As B(0, 1) is open, the set T (B(0, 1)) is open in Y . Since 0 ∈ T (B(0, 1))

there exists > 0 such that the set

B(0, r) ⊆ T (B(0, 1)) ⊆ T (B(0, 1)) ⊆ T (B(0, 1)).

(c) ⇒ (b). Assume that there exists r > 0 such that

B(0, r) ⊆ T (B(0, 1)).

We now show that B(0, r2 ) ⊆ T (B(0, 1)) which proves (b). Let y ∈ B(0, r2 ). Then 2y ∈ B(0, r) and
since B(0, r) ⊆ T (B(0, 1)) there exists x1 ∈ B(0, 1) such that

∥2y − Tx1∥ ≤ r

2
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Hence 4y− 2Tx1 ∈ B(0, r) and by the same argument as before there exists x2 ∈ B(0, 1) such that

∥4y − 2Tx1 − Tx2∥ ≤ r

2

Continuing this way we construct a sequence (xn) ∈ B(0, 1) such that

∥2ny − 2n−1Tx1 − · · · − 2Txn−1 − Txn∥ ≤ r

2

for all n. Dividing by 2n we obtain

∥y −
n∑

k=1

2−kTxk∥ ≤ r

2n+1

Hence y =
∑∞

k=1 2
−kTxk. Since ∥xk∥ ≤ 1 for all k ∈ N we have that

∞∑
k=1

2−k∥xk∥ ≤
∞∑
k=1

2−k = 1

and so the series
x =

∞∑
k=1

2−kxk

converges absolutely in X as X is Banach and hence complete. We have also that ∥x∥ ≤ 1 and so
x ∈ B(0, 1). Because T is continuous we have

Tx = lim
n→∞

n∑
k=1

2−kTxk = y

by construction of x. Hence y ∈ T (B(0, 1)) and (b) follows.
(b) ⇒ (a). By (b) and the linearity of T we have

T (B(0, ϵ)) = ϵT (B(0, 1))

for all ϵ > 0. Since the map x 7→ ϵx is a homeomorphism on Y the set T (B(0, ϵ)) is a neighbourhood
of zero for all ϵ > 0. Now let U ⊆ X be open and y ∈ T (U). As U is open there exists ϵ > 0 such
that

B(x, ϵ) = x+B(0, ϵ) ⊆ U

where y = Tx. Since z 7→ x+ z is a homeomorphism and T is linear we have

T (B(x, ϵ)) = Tx+ T (B(0, ϵ)) = y + T (B(0, ϵ)) ⊆ T (U).

Hence T (B(x, ϵ)) is a neighbourhood of y in T (U). As y was arbitrary in T (U) it follows that T (U)

is open. �

Lemma 16.2. Let X be a normed vector space and S ⊆ X convex with S = −S. If S has a
non-empty interior, then S is a neighbourhood of zero.
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Proof. First note that S is convex. If x, y ∈ S and xn, yn ∈ S with xn, yn → x, y then txn + (1 −
tyn) ∈ S for all n and t ∈ [0, 1]. Letting n → ∞ we get tx + (1 − t)y ∈ S for all t ∈ [0, 1] and so
S is convex. We also easily have S = −S. If S has a non-empty interior, there exists z ∈ S and
ϵ > 0 such that B(z, ϵ) ⊆ S. Therefore z± h ∈ S whenever ∥h∥ < ϵ and since S = −S we also have
−(z ± h) ∈ S. By the convexity of S we have

y =
1

2
((x+ h) + (−x+ h)) ∈ S

whenever ∥h∥ < ϵ. Hence B(0, ϵ) ⊆ S, and so S is a neighbourhood of zero. �

Theorem 16.3 (Open mapping theorem). Suppose that X and Y are Banach spaces. If T ∈
L(X,Y ) is surjective, then T is open.

Proof. As T is surjective we have
Y =

∪
n∈N

T (B(0, n))

with [T (B(0, n))] closed for all n ∈ N. Since Y is complete, by a corollary to Baire’s theorem,
there exists n ∈ N such that T (B(0, n)) has non-empty interior. Since the map x 7→ nx is a
homeomorphism and T is linear, the set T (B(0, 1)) has non-empty interior as well. Now B(0, 1) is
convex and B(0, 1) = −B(0, 1). By linearity of T we have that

T (B(0, 1)) = −T (B(0, 1))

is convex as well. Since we know that T (B(0, 1)) has non-empty interior, the previous lemma implies
that T (B(0, 1)) is a neighbourhood of zero, and thus there exists r > 0 such that

B(0, r) ⊆ T (B(0, 1))

and since X is Banach the previous lemma shows that T is open. �

17. Lecture 17 - Monday 1 May

Exercise 17.1. If X,Y are vector spaces, and if T : X → Y is linear, then Γ(T ) is a subspace of
X × Y . Moreover, if X,Y are normed vectors paces, with

∥(x, Tx)∥Γ = ∥x∥+ ∥Tx∥.

Theorem 17.2 (Closed Graph theorem). Let X,Y be Banach spaces, and T ∈ Hom(X,Y ). Then
T ∈ L(X,Y ) if and only if Γ(T ) is closed in X × Y .

Proof. Suppose T ∈ L(X,Y ). If xn → x in X, then

(xn, Txn) → (x, Tx)

by continuity of T , and so Γ(T ) is closed.
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Conversely, suppose that Γ(T ) is closed in X×Y . Define a norm ∥·∥Γ on X by ∥x∥Γ = ∥x∥+∥Tx∥.
Since Γ(T ) is closed, and since (X, ∥ ·∥) is Banach, then (X, ∥ ·∥Γ) is also a Banach space (exercise).
Note that ∥x∥ ≤ ∥x∥Γ. So by a corollary to the Open Mapping theorem, ∥ · ∥ and ∥ · ∥Γ are
equivalent. So there is c > 0 with

∥x∥Γ ≤ c∥x∥ ∀x ∈ X.

So ∥x∥+ ∥Tx∥ ≤ c∥x∥, and so ∥Tx∥ ≤ (c− 1)∥x∥, and so T is continuous. �

17.1. Spectral Theory. The eigenvalues of an n× n matrix T over C are the λ ∈ C with

det(λI − T ) = 0

that is, λI − T is not invertible.

Remark. Showing existence of eigenvalues is equivalent to the fundamental theorem of algebra.

Remark. We need our base field to be C to get reasonable spectral theory.

Definition 17.3. Write L(X) = L(X,X).

Definition 17.4. Let X be a Banach space over K, and let T ∈ L(X). Then the spectrum of T is

σ(T ) = {λ ∈ K |λI − T is not invertible}.

Remark. λI − T is non invertible if either λI − T is not injective, or λI − T is not surjective.

Remark. If dim(X) < ∞, then X\Ker (T ) ≃ im(T ), and so T is injective if and only if T is
surjective. This fails in the infinite dimensional case - consider the left and right shift operators on
ℓ2.

Definition 17.5 (Eigenvalue). λ ∈ K is an eigenvalue of T ∈ L(X) if there is x ̸= 0 with Tx = λx,
i.e. λ is an eigenvalue if and only if λI − T is not injective.

Theorem 17.6. Let X ̸= {0} be a Banach space over C, and let T ∈ L(X). Then σ(T ) is a
non-empty, compact (closed and bounded) subset of

{λ ∈ C | |λ| ≤ ∥T∥}

Example 17.7. Let L,R : ℓ2 → ℓ2 be the left and right shift operators.
Then ∥L∥ = 1, and so σ(L) ⊆ D(0, 1). If |λ| < 1, then

L(λ, λ2, λ3, . . . ) = (λ2, λ3, λ4, . . . ) = λ(λ, λ2, λ3, . . . )

and so λ is an eigenvalue. ThusD(0, 1) ⊆ σ(L) ⊆ D(0, 1). But σ(L) is closed, and so σ(L) = D(0, 1).
Are the λ with |λ| = 1 eigenvalues? No - suppose |λ| = 1 and x ̸= 0 with Lx = λx.
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Then
Ln(x) = λnx.

Thus, xn+1 = λnx1. Then x = (x1, λ, x1, λ
2x1, . . . ) which is not in ℓ2.

Then ∥R∥ = 1, and so σ(R) ⊆ D(0, 1).

Note. LRx = L(0, x1, . . . ) = (x1, x2, . . . ), so

LR = I (⋆)

Remark. Unlike dim(X) <∞, (⋆) does NOT say that R is invertible (RL = I).

Consider the operator L(λI −R) = λL− I = −λ(λ−1I − L). If 0 < |λ| < 1, then we know that
λ−1I − L is invertible (as λ−1 /∈ σ(L)). So if λI − R were invertible, then L is invertible, which is
false. Thus λ ∈ σ(R). Hence

D(0, 1)\{0} ⊆ σ(R) ⊆ D(0, 1).

Since σ(R) is closed, σ(R) = D(0, 1).

18. Lecture 18 - Wednesday 4 May

Theorem 18.1. Let X ̸= {0} be a Banach space over C. Let T ∈ L(X). Then σ(T ) is a nonempty,
compact subset of

{λ ∈ C | |λ| ≤ ∥T∥}.

Lemma 18.2. With above assumptions σ(T ) ⊆ {λ ∈ C | |λ| ≤ ∥T∥}.

Proof. We need to show that if |λ| > ∥T∥ then λI − T is invertible.
Technique: Geometric series. We guess

(λI − T )−1 =
1

λI − T
=

∞∑
k=0

T k

λk+1
.

We now verify this guess. Since
∞∑
k=0

∥T k∥
|λ|k+1

≤
∞∑
k=0

∥T∥k

|λ|k+1
<∞,

the series S =
∑∞

k=0
Tk

λk+1 converges in X.
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We now show that S is the inverse of λI − T . As we are working in infinite dimensions, we ned
to check left and right inverses. Let Sn =

∑n−1
k=1

Tk

λk+1 . Then

Sn(λI − T ) =

(
n−1∑
k=0

T k

λk+1

)
(λI − T )

= I − Tn

λn
→ I

(λI − T )Sn = I − Tn

λn
→ I

and so S(λI − T ) = (λI − T )S and so λI − T is invertible. �

Exercise 18.3. Show that if ∥I − T∥ < 1 then T is invertible with inverse
∑∞

k=0(I − T )k Hint:
Consider

1

T
=

1

I − (I − T )
.

In particular, the ball B(I, 1) in L(X) consists of invertible elements.

The following is used to show σ(T ) is closed and nonempty, it is also interesting in its own right.

Proposition 18.4. Let X be Banach over K. Let GL(X) = {T ∈ L(X) |T invertible. Then

(a) GL(X) is a group under composition of operators.
(b) GL(X) is open in L(X).
(c) The map

φ : GL(X) → GL(X)

T 7→ T−1

is continuous.

Proof. (a) The open mapping theorem tells us that if T ∈ GL(X) then T−1 ∈ L(X), and so
T−1 ∈ GL(X). The rest is clear.

(b) Let T0 ∈ GL(X). We claim

B

(
T0,

1

∥T−1
0

∥
)

⊆ GL(X).

We have

∥I − T−1
0 T∥ = ∥T−1

0 (T0 − T )∥

≤ ∥T−1
0 ∥∥T0 − T∥

< 1 as T ∈ B

(
T0,

1

∥T−1
0 ∥

)
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(c) We have

∥T−1
0 − T−1∥ = ∥T−1(T − T0)T

−1
0 |

≤ ∥T−1∥T − T0∥∥T−1
0 ∥ (⋆)

If ∥T − T0∥ ≤ 1
2∥T−1

0 ∥ , then

∥I − TT−1
0 ∥ = ∥(T0 − T )T−1

0 ∥

≤ ∥T0 − T∥∥T−1
0 ∥

≤ 1

2
.

We then have

∥T0T−1∥ = ∥(TT−1
0 )−1∥

= ∥
∞∑
k=0

(I − TT−1
0 )k∥

≤
∞∑
k=0

∥I − TT−1
0 ∥k

≤ 2

Hence ∥T−1∥ = ∥T−1
0 (T0T

−1)∥ ≤ ∥T−1
0 ∥∥T0T−1∥ ≤ 2∥T−1

0 ∥, and from (⋆), we have

∥T−1
0 − T−1∥ ≤ 2∥T−1

0 ∥2∥T − T0∥

and so T 7→ T−1 is continuous.
�

Corollary. σ(T ) is closed.

Proof. Let

f : C → L(X)

λ 7→ λI − T

This is continuous, as

∥f(λ)− f(λ0)∥ = ∥(λ− λ0)I∥

= |λ− λ0|

and

σ(T ) = f−1 (L(X)\GL(X))

which is the inverse image of a closed set, and hence is closed. �
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So σ(T ) is a compact subset of {λ ∈ C | |λ| ≤ ∥T∥}. Write ρ(T ) = C\σ(T ) (the resolvent set),
and let RT = R : ρ(T ) → L(X) with RT (λ) = (λI − T )−1.

Theorem 18.5. Let K = C and X ̸= {0} and T ∈ L(X). Then σ(T ) ̸= ∅.

Proof. We use Lioville’s theorem - a bounded entire function must be constant.
Let φ = L(X)′ (hence φ : L(X) → C.) Let

fφ : ρ(T ) → C

λ 7→ φ(R(λ))

Lemma 18.6. fφ is analytic on ρ(T ).

Proof. We show fφ is differentiable. Consider

fφ(λ)− fφ(λ0)

λ− λ0
= φ

(
R(λ)−R(λ0)

λ− λ0

)
= φ

(
(λI − T )−1 − (λ0I − T )−1

λ− λ0

)
= φ

(
(λ0I − T )−1((λ0 − λ)I)(λI − T )−1

λ− λ0

)
= −φ

(
(λ0I − T )−1(λI − T )−1

)
→ −φ

(
(λ0I − T )−2

)
as λ→ λ0, where we use the fact that φ is continuous and T → T−1 is continuous. So fφ is analytic
on ρ(T ) for all φ ∈ L(X)′. �

Now suppose that σ(T ) = ∅. Then fφ : C → C is analytic.

Lemma 18.7. fφ is bounded.

Proof. If |λ > ∥T∥, then

fφ(λ) =
∣∣φ ((λI − T )−1

)∣∣
=

∣∣∣∣∣φ
( ∞∑

k=0

T k

λk+1

)∣∣∣∣∣
≤ ∥φ∥

∥∥∥∥∥
∞∑
k=0

T k

λk+1

∥∥∥∥∥
≤ ∥φ∥

∞∑
k=0

∥T∥k

|λ|k+1

=
∥φ∥

|λ| − ∥T∥
→ 0
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as |λ| → ∞. So fφ is bounded, entire, and thus fφ = c by Lioville’s theorem. By the above,
fφ(λ) = 0 for all λ. Hence φ(R(λ)) = 0 for all λ, φ.

Thus from Hahn-Banach, R(λ) = 0 for all λ which is a contradiction, as the zero operator is not
invertible if X ̸= {0}. �

�

19. Lecture 19 - Monday 9 May

Theorem 19.1 (Spectral mapping theorem (polynomials)). Let T be an n × n matrix over C.
IF we know all the eigenvalues of T , then we know the eigenvalues of every polynomial p(T ) =

a0 + a1T + · · ·+ anT
n. Specifically,

{eigenvalues of p(T )} = {p(λ) |λ is an eigenvalue of T}

Therefore
σ(p(T )) = p(σ(T )).

This is called the spectral mapping theorem (for matrices/polynomials).
This also holds for X Banach over C, and T ∈ L(X).

Lemma 19.2. Let C[t] be the algebra of polynomials in t with complex coefficients. Multiplication
is defined as usual.

Lemma 19.3. Let X be Banach over C. Let T ∈ L(X). Then

φ : C[t] → L(X)

p 7→ p(T )

is an algebra homomorphism (multiplication corresponds to composition in L(X).)

Proof. Simply check

φ(p1 + p2) = φ(p1) + φ(p2)

φ(p1p2) = φ(p1)φ(p2)

φ(αp) = αφ(p)

for all p1, p2, p ∈ C[t], α ∈ C. �

Theorem 19.4. Let X be Banach over C, and let T ∈ L(X). Then

σ(p(T )) = p(σ(T )).

Proof. If p = c is constant, then p(T ) = cI has spectrum

σ(p(T )) = σ(cI) = {c}
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On the other hand,
p(σ(T )) = {c}

Now, suppose that p is non constant. Let µ ∈ C fixed. By the fundamental theorem of algebra, we
can factorise µ− p(t) as

α(t− λ1)
m1 . . . (t− λn)

mn

where λ1, . . . , λn are the distinct roots of µ − p(t). Note that µ = p(λi) for each i. Applying
ψ : C[t] → L(X) from above, we have

µI − p(T ) = α(T − λ1I)
m1 . . . (T − λnI)

mn

Exercise 19.5. If T1, . . . , Tn ∈ L(X) which commute with each other, then T1 . . . Tn is invertible
if and only if the individual elements are invertible.

We know

µ ∈ σ(p(T )) ⇐⇒ µ− p(T ) is not invertible

⇐⇒ T − λI non invertible for some i

⇐⇒ λ ∈ σ(T ) for some i

⇐⇒ µ = p(λi) ∈ p(σ(T ))

and so
σ(p(T )) = p(σ(T ))

�

Definition 19.6 (Spectral radius). Let X ̸= {0} be a Banach space over C. The spectral radius
of T ∈ L(X) is

r(T ) = sup{|λ| |λ ∈ σ(T )}

= max{|λ| : λ ∈ σ(T )}

Note.
r(T ) ≤ ∥T∥

since σ(T ) ⊆ {λ ∈ C | |λ| ≤ ∥T∥}. Strict inequality can (and often does) occur.

Example 19.7. Let

T =

(
0 1

0 0

)
.

Then consider T : C2 → C2 where ∥(x, y)∥2 =
√
|x|2 + |y|2. Then

∥T∥ = sup{∥Tx∥2 |x ∈ C2}

=
√
λmax(T ∗T )
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where

T ∗ =

(
0 0

1 0

)
is conjugate transpose. Then ∥T∥ = 1. But σ(T ) = {0}, and so r(T ) = 0 < 1 = ∥T∥.

Theorem 19.8 (Gelfand, 1941). Let X ̸= {0} be Banach over C, and let T ∈ L(X). Then

r(T ) = lim
n→∞

∥Tn∥1/n.

In particular, the limit exists.

Proof. By the spectral mapping theorem,

σ(Tn) = {σ(T )}n = {λn | |λ ∈ σ(T )}.

So

r(T ) = r(Tn)1/n

≤ ∥Tn∥1/n.

So
r(T ) ≤ lim inf

n→∞
∥Tn∥1/n

Now, we must show that
lim sup
n→∞

∥Tn∥1/n ≤ r(T ).

Let φ ∈ L(X) and let

fφ : ρ(T ) → C

λ 7→ φ((λI − T )−1)

We saw that fφ is analytic on ρ(T ). We also have

fφ(λ) =
∞∑

n=0

1

λn+1
φ(Tn) (⋆)

if |λ| > ∥T∥. By general theory of Laurent series, (⋆) actually holds for all λ ∈ ρ(T ). In particular,
it holds if |λ| > r(T ).

Thus,

lim
n→∞

1

λn+1
φ(Tn) = 0 |λ| > r(T )

Sp for each φ ∈ L(X)′, and each |λ| > r(T ), there is Cλ,φ such that∣∣∣∣φ( 1

λn+1
Tn

)∣∣∣∣ ≤ Cλ,φ ∀n ≥ 0
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Then by the principle of uniform boundedness, there exists a constant Cλ such that∥∥∥∥ 1

λn+1
Tn

∥∥∥∥ ≤ Cλ ∀n ≥ 0

So ∥Tn∥1/n ≤ |λ|(Cλ|λ|)1/n, which gives

lim sup
n→∞

∥Tn∥1/n ≤ λ

for all |λ| > r(T ). So
lim sup
n→∞

∥Tn∥1/n ≤ r(T )

We used the following lemma.

Lemma 19.9. Let X be a normed vector space, A ⊆ X a subset. We say that
(1) A is bounded if there exists C > 0 with ∥x∥ ≤ C, for all x ∈ A.
(2) A is weakly bounded if for each φ ∈ X ′, there exists Cφ > 0 such that

|φ(x)| ≤ Cφ

for all x ∈ A.
Then we have

A ⊆ X is bounded ⇐⇒ weakly bounded

Proof. A bounded ⇒ ∥x∥ ≤ C for all x ∈ A ⇒ |φ(x)| ≤ ∥φ∥∥x∥ ≤ ∥φ∥C. So A is weakly bounded.
Now, suppose A is weakly bounded. For each x ∈ X, let x̂ ∈ X ′′ with

x̂(φ) = φ(x).

So |x̂(φ)| ≤ Cφ for all x ∈ A. By the principle of uniform boundedness,

∥x̂∥ ≤ C

for all x ∈ A, and since ∥x̂∥ = ∥x∥. Thus A is bounded. �

�

20. Lecture 20 - Wednesday 11 May

We now turn to compact operators. In general, calculating σ(T ) is difficult, but for compact
operators on a complex Banach space, we have a fairly explicit theory.

Theorem 20.1. Let X be a complex Banach space, with dim(X) = ∞. Let T : X → X be a
compact operator. Then
(1) 0 ∈ σ(T ).
(2) σ(T )\{0} = σp(T )\{0}, that is, each λ ∈ σ(T )\{0} is an eigenvalue of T (0 may or may not

be an eigenvalue.)
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(3) We are in exactly one of the cases:
• σ(T ) = {0}.
• σ(T )\{0} is finite (nonempty).
• σ(T )\{0} is a sequence of points converging to 0.

(4) Each λ ∈ σ(T )\{0} is isolated, and the eigenspace Ker (λI − T ) is finite dimensional.
where σp(T ) is the point spectrum of T , where

σp(T ) = {λ ∈ K |λI − T is not injective}

= {λ ∈ K | there exits nonzero vector x with (λI − T )x = 0}

= {eigenvalues of T}

Proof. We shall prove these results next week. �

Definition 20.2. Let X,Y be normed vector spaces. An operator T : X → Y is compact if T is
linear, and if B ⊆ X is bounded then T (B) is relatively compact (a set is relatively compact if its
closure is compact.) Symbolically,

B ⊆ X bounded ⇒ T (B) compact

Lemma 20.3. IF T is compact, then T is continuous.

Proof. The closed ball B = {x ∈ X | ∥x∥ ≤ 1} is bounded, and so if T is a compact operator, then
T (B) is compact, and hence bounded. Hence ∥Tx∥ ≤ M for all ∥x∥ ≤ 1, so T is continuous, with
∥T∥ ≤M . �

We now recall definitions of compactness

Theorem 20.4 (Characterisations of compactness). Let X be a metric space. The following are
equivalent.
(1) X is compact (every open cover has a finite subcover).
(2) X is sequentially compact (every sequence in X has a convergent subsequence)

Lemma 20.5. Let X be a compact set. Let Y ⊆ X. If Y ⊆ X is closed, then Y is compact.

Lemma 20.6. Let V be a finite dimensional vector space. If X ⊆ V is closed and bounded, then
X is compact.

Theorem 20.7 (Characterisations of compact operators). Let X,Y be normed vector spaces over
K. Let T ∈ L(X,Y ). Then the following are equivalent.
(a) T is compact.
(b) T (B) is compact, where B = {x ∈ X | ∥x∥ ≤ 1}.
(c) If (xn)n≥1 is bounded in X, then (Txn)n≥1 has a convergent subsequence (sequentially com-

pact).
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Proof. (a) ⇒ (b) by definition.
(b) ⇒ (a). Suppose (b) holds. Let B1 ⊆ X be bounded. THen B1 ⊆ αB for some α > 0. So

T (B) ⊆ T (αB) = αT (B)

which is a closed subset of a compact set, and hence compact.
(a) ⇒ (c). Suppose T is compact. Let (xn)n≥1 be bounded sequence in X. Then T (B) =

{Txn |n ≥ 1} is relatively compact. So T (B) is compact, and hence is sequentially compact, and
so has a convergence subsequence.

(c) ⇒ (a). Let B ⊆ X be bounded. Let (yn)n≥1 be a sequence in T (B). Then there is xn ∈ B

with Txn = yn. So (xn)n≥1 is a bonded sequence. By assumption (Txn)n≥1 has a convergent
subsequence. So T (B) is sequentially compact, and hence compact. �

Corollary. The set {compact operators T : X → Y } is a vector space. That is, if T1, T2 are com-
pact, then T1 + T2 and αT1 are compact.

Proof. Exercise. Use (c) from the characterisation of compact operators. �

Corollary.
K(X,Y ) ⊆ L(X,Y ) ⊆ Hom(X,Y )

where K(X,Y ) is the set of compact operators T : X → Y .

Example 20.8 (Finite rank operators). Let X,Y be normed vector spaces, and let T ∈ L(X,Y ). If
dim(Im T ) <∞, then T is said to have finite rank. Then if T has finite rank, then T is compact.

Proof. Let (xn) be a bounded sequence in X. Then ∥Txn∥ ≤ ∥T∥∥xn∥ so (Txn) is a bounded
sequence in Im T . But Im T is finite dimensional, and so {Txn |n ≥ 1} is compact (closed and
bounded), and so (Txn)n≥1 has a convergent subsequence. By (c) in Theorem 20.7, T is compact.

�

Lemma 20.9. Let X,Y be normed vector spaces. If T ∈ L(X,Y ) has finite rank, then there exists
y1, . . . , yn ∈ Im T and φ1, . . . , φn ∈ X ′ with Tx =

∑n
j=1 φj(x)yj for all x ∈ X, with n = dim(Im T ).

Proof. Choose a basis y1, . . . , yn of Im T . For each j = 1, . . . , n, define αj ∈ (Im T )′ by

αj(a1y1 + · · ·+ anyn) = aj

i.e. coordinate projection. By Hahn-Banach, we can extend aj to a continuous linear functional
ãj ∈ Y ′. Let φj = ãj ◦ T : X → K. So φj ∈ X ′. Since

y =

n∑
j=1

ãj(y)yj ∀y ∈ Im T
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we have

Tx =
n∑

j=1

ãj(Tx)yj

=
n∑

j=1

(αj ◦ T )(x)yj

=
n∑

j=1

φj(x)yj ∀x ∈ X.

�

21. Lecture 21 - Monday 16 May

Recall that the closed unit ball in X is compact if and only if dim(X) <∞. Then it follows that
the identity map I : X → X is compact if and only if dim(X) <∞. Hence,

K(X) ( L(X) ( Hom(X,X)

when dim(X) = ∞.
Consider a sequence of compact operators Tn. If Tn is compact and Tn → T , then T is compact.

Lemma 21.1 (Riesz’s Lemma). Let X be a normed vector space. Let Y ( X be a proper closed
subspace. Let θ ∈ (0, 1) be given. THen there exists x with ∥x∥ = 1 such that ∥x − y∥ ≥ θ for all
y ∈ Y .

Proof. Pick any z ∈ X\Y . Let α = infy∈Y ∥z − y∥ > 0 since Y is closed. Then by the definition of
the infimum, there is y0 ∈ Y with α ≤ ∥z − y0∥ ≤ α

θ . Now let x = x−y0

∥z−y0∥ . Then ∥x∥ = 1.
Now,

∥x− y∥ =

∥∥∥∥ z − y0
∥z − y0∥

− y

∥∥∥∥
=

1

∥z − y0∥
∥z − y− + ∥z − y0∥y∥

≥ θ

α
α = θ

�

Corollary. Let X be a normed vector space. The closed unit ball B(0, 1) is compact if and only if
dim(X) <∞.

Proof. If dim(X) < ∞ then B(0, 1) is compact (since closed and bounded if and only if compact
in finite dimensions). Now suppose dim(X) = ∞. Build a sequence (xn) with ∥xn∥ = 1 with no
convergent subsequence. Choose finite dimensional subspaces

{0} = X0 ( X1 ( X2 ( . . .
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These are all closed (finite dimensional spaces are complete, and hence closed). Use the lemma
to choose xk ∈ Xk with ∥xk∥ = 1, ∥xk − x∥ ≥ 1

2 for al x ∈ Xk−1. So xk − x∥ ≥ 1
2 for all

x ∈ Xj(j ≤ k − 1). So ∥xn − xm∥ ≥ 1
2 for all m,n ≥ 1. So (xn) has no convergent subsequence,

and so B(0, 1) is not compact. �

Corollary. I : X → X is compact if and only if dim(X) <∞.

Proof. Recall T is compact if and only if T (B(0, 1)) is relatively compact. �

21.1. Limits of compact operators. One way to show that an operator is compact is to apply
the following.

Proposition 21.2. Let X be a normed vector space, and let Y be Banach. Suppose that Tn ∈
K(X,Y ) for each n ≥ 1. If Tn → T (in operator norm, ∥TN − T∥ → 0) then T is compact.

Proof. Let (xn) be a bounded sequence in X. We now construct a subsequence (x′n) for which
(Tx′n) converges.

• Since T1 is compact, (xn) has a subsequence x(1)n such that (T1x
(1)
n ) converges.

• Since T2 is compact and x
(1)
n is bounded, there is a subsequence x

(2)
n such that T2x(2)n

converges.
• Continuing, we can form a subsequence x(k)n such that Tkxkn converges.

Let x′n = x
(n)
n . Then (x′n) is a subsequence of (x(1)n ), and (x′n)n≥2 is a subsequence of (x(2)n ), etc.

So for each fixed k ≥ 1, (Tkx′n) converges.
We now show Tx′n is Cauchy, and hence converges. We have

∥Tx′m − Tx′n∥ ≤ ∥Tx′m − Tkx
′
m∥+ ∥TKx′m − Tkx

′
n∥+ Tkx

′
n − Tx′n∥

where k is to be chosen. Suppose ∥xn∥ ≤M for all n ≥ 1. THen

∥Tx′m − Tx′n∥ ≤ 2M∥T − Tk∥+ ∥Tkx′ +m− Tkx
′
n∥

Let ϵ > 0 be given. Since ∥T − Tk∥ → 0 as k → ∞, fix a k for which ∥T − Tk∥ ≤ ϵ
3M . For

this fixed k, we know (Tkx
′
n) converges, and so is Cauchy. So there exists N < 0 such that

∥Tkx′m − Tkx
′
n∥ < fracϵ3 for all m,n < N . Hence ∥Tx′m − Tx′n∥ ≤ 2M

ϵ 3M + ϵ
3 = ϵ for all

m,n > N , so is Cauchy, and so converges. �

Example 21.3. Let K(x, y) ∈ L2(R2). Define T : L2(R) → L2(R) by

Tf(x) =

∫
R
K(x, y)f(y) dy

(Hilbert-Schimidt Integral operator)

Proposition 21.4. T is compact.
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Proof. Note that ∥Tf∥2 ≤ ∥K∥2∥f∥2 for all f ∈ L2(R), where ∥K∥2 =
(∫∫

R2 |K(x, y)|2 dx dy
)1/2.

So T is continuous, with ∥T∥ ≤ ∥K∥2. We now exhibit T as a limit of finite rank (hence compact)
operators, with Tn : L2(R) → L2(R). Once can see that there is a sequence Kn ∈ L2(R2) of the
form

Kn(x, y) =

Nn∑
k=1

α
(n)
k (x)β

(n)
k (y)

with Kn → K in L2(R2). Then ∥Tn − T∥ ≤ ∥Kn −K∥2 → 0, and so Tn → T . Hence

Tnf(x)

Nn∑
k=1

∫
R
α
(n)
k (x)β

(n)
k (y)f(y) dy

=

Nn∑
k=1

⟨
f, β

(n)
k

⟩
α
(n)
k (x)

and so Tnf =
∑Nn

k=1 ⟨f⟩ , β
(n)
k α

(n)
k from which we use that Tn has finite rank. �

22. Lecture 22 - Wednesday 18 May

Theorem 22.1. Let X be a complex Banach space, with dim(X) = ∞. Let T : X → X be a
compact operator. Then

(1) 0 ∈ σ(T ).
(2) σ(T )\{0} = σp(T )\{0}, that is, each λ ∈ σ(T )\{0} is an eigenvalue of T (0 may or may not

be an eigenvalue.)
(3) We are in exactly one of the cases:

• σ(T ) = {0}.
• σ(T )\{0} is finite (nonempty).
• σ(T )\{0} is a sequence of points converging to 0.

(4) Each λ ∈ σ(T )\{0} is isolated, and the eigenspace Ker (λI − T ) is finite dimensional.

where σp(T ) is the point spectrum of T , where

σp(T ) = {λ ∈ K |λI − T is not injective

= {λ ∈ K | there exits nonzero vector x with (λI − T )x = 0

= {eigenvalues of T}

Compact operators are very well behaved with respect to composition.

Proposition 22.2. Let X,Y, Z be normed vector spaces.

(a) If T ∈ K(X,Y ) and S ∈ L(Y, Z), then ST ∈ K(X,Z).
(b) If S ∈ L(X,Y ) and T ∈ K(Y, Z), then TS ∈ K(X,Z).
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Proof. (a) Let (xn) be a bounded sequence in X. Since T is compact, Txn has a convergent
subsequence, say Txnk

→ y ∈ Y . Then (STxn) has a convergent subsequence, namely STxnk
=

S(Tnk
) → Sy by continuity of S. So ST is compact.

(b) Let B ⊆ X be bounded. Then S(B) is bounded in Y , as S is continuous. So TS(B) = T (S(B))

is relatively compact since T is compact. Hence TS is compact.
�

Corollary (Part (1) of theorem). If X is infinite dimensional Banach space, then 0 ∈ σ(T ).

Proof. If 0 /∈ σ(T ) then T is invertible. By bounded inverse theorem T−1 is continuous, and then
I = TT−1 is compact, which is a contradiction. �

Theorem 22.3 (Part (3) of theorem). Let X be a normed vector space. Let T ∈ K(X). Then T

has at most countably many eigenvalues. If T has infinitely many eigenvalues, then they can be
arranged in a sequence converging to zero.

Proof. We show that for each N > 0, we have

#{λ ∈ σp(T ) | |λ| ≥ N} <∞ (⋆)

Suppose that there is N > 0 such that (⋆) fails. So λ1, λ2, . . . are distinct eigenvalues with |λn| ≥
N for n = 1, 2, . . . . Let xn ̸= 0 be an eigenvector. Txn = λnxn, n = 1, 2, . . . . Let Xn =

span {x1, . . . , xn}. Since {xn | ≥ 1} are linearly independent, we have

X1 ( X2 ( . . .

and each Xn is closed (finite dimensional).
By Reisz’s Lemma from previous lecture, choose yn ∈ Xn such that ∥yn∥ = 1 and ∥yn − x∥ ≥ 1

2

for all x ∈ Xn−1. So (yn) is bounded in X. We show that Tyn has no convergence subsequence,
contradicting compactness of T .

Let m > n. Then

∥Tym − Tyn∥ = ∥λmym − (λmym − Tym + Tyn)|

= |λm| ∥ym − (something in Xm−1)∥

≥ 1

2
|λm| ≥ 1

2
N

as required.
Note that ym = a1x1 + · · ·+ amxm. Then

λmym − Tym = λma1x1 + · · ·+ λmamxm − (a1λ1x1 + · · ·+ amλmxm)

= a1(λm − λ1)x1 + · · ·+ am−1(λm − λm−1)xm−1 ∈ Xm−1

and Tyn ∈ Xm−1 since n < m.
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�

22.1. Projections.

Definition 22.4 (Projection operator). Let X be a vector space. A linear operator P : X → X is
called a projection if P 2 = P .

Proposition 22.5. If P : X → X is a projection then I − P is a projection, and

Im I − P = Ker P, Ker I − P = Im P

Proof. If P 2 = P then (I−P )2 = I−2P+P 2 = I−P and so I−P is a projection. Let x ∈ Im I−P
Then x = (I − P )y for some y ∈ X. So Px = P (I − P )y = (P − P 2)y = 0. So x ∈ Ker P and
Im I − P ⊆ Ker P . If x ∈ Ker P the Px = 0. So (I − P )x = x, and x ∈ Im (I − P ). �

Definition 22.6 (Direct sum). Let X be a vector space, and let X1, X2 be subspaces. Then
X = X1 ⊕X2 (direct sum) if

X = X1 +X2

and X1 ∩X2 = {0}. Equivalently, X = X1⊕X2 if and only if each x ∈ X can be written in exactly
one way as x = x1 + x2 with x1 ∈ X1, x2 ∈ X2.

Theorem 22.7 (Equivalence of direct sums and projections). Let X be a vector space.
(a) If P : X → X is a projection, then

X = (Im P )⊕ (Ker P )

(b) If X = X1 ⊕X2, there exists a unique projection with

Im P = X1, Ker P = X2.

Specifically, Px = x1 if x = x1 + x2.

Proof. (a) Let P : X → X be a projection. Then we show X = (Im P ) ⊕ (Im I − P ), x =

Px + (I − P )x. This shows that X = Im P + Im I − P . If x ∈ Im P ∩ Ker P then x = Py

and Px = 0. Hence, Px = P 2y = P y = 0 and so x = 0.
(b) Exercise.

�

Proposition 22.8. Let X be Banach. Let X = X1 ⊕ X2. Let P : X → X be the corresponding
projection operator. Then

P ∈ L(X) ⇐⇒ X1, X2 closed

Proof. (⇒). Suppose P is continuous. Then X1 = Im P = Ker I − P and X2 = Ker P are both
closed. For example, if xn ∈ Ker P and xn → x, then 0 = Pxn → Px and so x ∈ Ker P .
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(⇐). Suppose that X1, X2 are closed. Since X = X1 ⊕X2, we can define a new norm ∥ · ∥′ by
∥x∥′ = ∥x1∥+ ∥x2∥ where x = x1 + x2.

Exercise 22.9.

(a) Show that ∥ · ∥′ is a norm.
(b) Show that (X, ∥ · ∥′) is Banach. This relies on the fact that (X, ∥ · ∥) is Banach and X1, X2 are

closed.

Note that ∥x∥ = ∥x1 + x2∥ ≤ ∥x1∥ + ∥x2∥ = ∥x∥′, and so by a corollary to the open mapping
theorem, there is a c > 0 with ∥x∥′ ≤ c∥x∥ for all x ∈ X, and so

∥Px∥ = ∥x1∥ ≤ ∥x1∥+ ∥x2∥ = ∥x∥′ ≤ c∥x∥

and hence P is continuous. �

23. Lecture 23 - Monday 23 May

Corollary. Let X be Banach, and let M be a finite dimensional subspace. Then there exists a
closed N with

X =M ⊕N.

Proof. Let v1, . . . , vn be a basis of M . Define, for each j = 1, . . . , n, φj ∈ M ′ by φj(a1v1 + · · · +
anvn) = aj . Then using Hahn-Banach to extend φ̃j ∈ X ′. Let P : X ∈ X be defined by

Px =
n∑

j=1

φ̃j(x)vj .

Then we need only check that P is linear and continuous, Im P = M , and P 2 = P . Now take
N = Ker P and then X =M ⊕N . �

.
We are now ready to prove the following theorem.

Theorem 23.1. Let X be Banach, and let T ∈ K(X), and let λ ∈ K\{0}. For all k ∈ N, we have

(a) Ker (λI − T )k︸ ︷︷ ︸
generalised eigenspace

is finite dimensional.

(b) Im (λI − T )k is closed.

Proof. Reductions. Since Ker (λI − T )k = Ker (I − λ−1T )k, and similarly for the image, by
replacing T ∈ K(X) by λT ∈ K(X), we can assume that λ = 1.
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Also, we have

(I − T )k =
k∑

n=0

(
k

n

)
(−1)nTn

= I − T
k∑

n=1

(
k

n

)
(−1)n−1Tn−1

︸ ︷︷ ︸
continuous

= I − T̃ .

where T̃ is the composition of compact and continuos operators, and so is compact. So we can take
λ = 1, k = 1.

(a) The closed unit ball in Ker I − T is

{x ∈ Ker I − T | ∥x∥ ≤ 1} = {Tx |x ∈ Ker I − T, |x∥ ≤ 1}

⊆ T (B(0, 1))

which is compact as T is compact. Hence, the closed unit ball in Ker I − T is compact, and
thus Ker I − T is finite dimensional.

(b) Let S = I − T . We then need to show that Im S is closed. Since Ker S is finite dimensional
from above, there is a closed subspace N with

X = (Ker S)⊕N

Note that Im S = S(X) = S(N), and that S|N : N → X is injective.
Suppose that S(N) is not closed. So there is a sequence (xn) in N such that Sxn → y ∈

X\S(N). Then there are two cases

Case 1 (∥xn∥ → ∞). Let yn = 1
∥xn∥xn. Then Syn = 1

∥xn∥Sxn → 0. But (yn)n≥1 is bounded
in X, and so there exists a subsequence ynk

such that Tynk
→ z (as T is compact). Hence

ynk
= Synk

+ Tynk
→ 0 + z. Thus z ∈ N (as ynk

∈ N , and N is closed), and ∥z∥ = 1.
So Synk

→ 0, but Synk
→ Sz with z ∈ N\{0}, by the continuity of S. This contradicts the

injectivity of S|N .

Case 2 (∥xn∥ does not tend to infinity). So (xn) has a bounded subsequence (xnk
). Since T is

compact, (xnk
) has a subsequence such that (Txnkl

) converges, to z1 say. By replacing xn by
this subsequence we can assume that Sxn → y, and that Txn → z. A before, we can write

xn = Sxn + Txn → y + z.

So xn converges to x ∈ N . So Sxn → Sx ∈ S(N) by continuity, but we assume that Sxn →
y ∈ X\S(N), which achieves our contradiction.



PMH3 - FUNCTIONAL ANALYSIS 58

�

24. Lecture 24 - Wednesday 25 May

Let T : Cn → Cn be a linear operator. Then in the simplest case, T has n distinct eigenvalues,
and the corresponding eigenvectors are linearly independent, forming a basis for Cn.

Hence, Cn = Cx1 ⊕ · · · ⊕ Cxn and the matrix of T relative to this basis is simply diagonal with
λ1, . . . , λn.

This is not always possible, because there is not always a basis of eigenvectors. Instead look at
the generalised eigenspace,

{x ∈ Cn | (λI − T )kx = 0 for some k ≥ 1.

But {0} ⊆ Ker (λI − T )1 ⊆ Ker (λI − T )2 ⊆ . . . and since dim(Cn) <∞ this must stabilise. Let
r ≥ 1 be the fist time that Ker (λI − T )r = Ker (λI − T )r+1. Then the generalised λ-eigenspace
is just Ker (λI−T )r. There is a basis of Cn consisting of generalised eigenvectors, and the matrix
of T relative to this basis is in block form.

Definition 24.1 (Complete reduction). Let T : X → X be linear. If X = X1 ⊕X2 be can write

Tx =

(
T11 T12

T21 T22

)(
x1

x2

)
where we identify x1 + x2 ⇐⇒ (x1, x2). Here,

T11 : X1 → X1

T12 : X2 → X1

T21 : X2 → X2

T22 : X2 → X2

we say that X = X1 ⊕X2 completely reduces T (well adapted to T ) if

Tx =

(
T1 0

0 T2

)(
x1

x2

)
We write T = T1 ⊕ T2.

Exercise 24.2. If X = X1 ⊕X2 completely reduces T = T1 ⊕ T2, then

(a) Ker T = Ker T1 ⊕ Ker T2

(b) Im T = Im T1 ⊕ Im T2

(c) T is injective if and only if T1, T2 are injective
(d) T is surjective if and only if T1, T2 are surjective
(e) If T is bijective, then X = X1 ⊕X2 completely reduces T−1 = T−1

1 ⊕ T−1
2 .
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Corollary. Let X = X1⊕X2 be Banach, with X1, X2 closed subspaces. If X = X1⊕X2 completely
reduces T = T1 ⊕ T2 ∈ L(X), then
(a) T1 ∈ L(X1), T2 ∈ L(X2)

(b) σ(T ) = σ(T1) ∪ σ(T2)
(c) σp(T ) = σp(T1) ∪ σp(T2)

Proof. Exercise. �

Consider the following chains

{0} ⊆ Ker S1 ⊆ Ker S2 ⊆ . . .

X ⊇ Im S1 ⊇ Im S2 ⊇ . . .

where X is a vector space and S ∈ Hom(X,X). It is easy to see that if Ker Sr = Ker Sr+1 then
Ker Sr = Ker Sr+k. Similarly for images (p. 109 in Daners.)

There is no reason that these should stabilise in general.

Theorem 24.3. Let X be Banach, T ∈ K(X), λ ̸= 0. Then both chains (with S = λI−T ) stabilise.

Proof. Without loss of generality, assume λ = 1, so we can write S = I − T . Suppose that the
kernel chain does not stabilise. Since we assume

Ker S1 ( Ker S2 ( Ker S3 (

We know that these are closed (being finite dimensional) subspaces. So Reisz’s Lemma gives
xn ∈ Ker Sn with ∥xn∥ = 1, ∥xn − x∥ ≥ 1

2 for all x ∈ Ker Sn+1. This is a bounded sequence.
We claim that Txn has no convergent subsequence.

Let m > n. Then

∥Txm − Txn∥ = ∥(I − T )xn − (I − T )xm + xm − xn∥

= ∥Sxn − Sxm − xm − xn∥

= ∥xm − (Sxm − Sxn + xn)︸ ︷︷ ︸
in Ker Sm−1

∥

≥ 1

2

The image argument is similar - using the fact that the images are closed - proved in the previous
lecture. �

Theorem 24.4. Let X be a vector space, S ∈ Hom(X,X). Suppose that

α(S) = inf{r ≥ 1 |Ker Sr = Ker Sr+1}

δ(S) = inf{r ≥ 1 | Im Sr = Im Sr+1},
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the ascent and descent of S respectively, are both finite.
Then

(a) α(S) = δ(S) = r, say
(b) X = Ker Sr ⊕ Im Sr

(c) The direct sum in (b) completely reduces S.

Proof. Daner’s notes, p. 109. �

Corollary. Let X be Banach, T ∈ K(X), λ ̸= 0. Let r = α(λI − T ) = δ(λI − T ). Then
X = Ker (λI − T )r ⊕ Im (λI − T )r and this completely reduces µI − T, µ ∈ K.

Corollary. If X is Banach, T ∈ K(X), λ ̸= 0 then λI − T is injective if and only if λI − T is
surjective.

Proof.

λI − T injective

⇒ 0 ∈ Ker (λI − T )1 = Ker (λI − T )2

⇒ α(λI − T ) = 1

⇒ δ(λI − T ) = 1

⇒ X = Ker (λI − T )︸ ︷︷ ︸
={0}

⊕Im (λI − T )

⇒ X = Im (λI − T )

⇒ X is surjective

The other direction is similar. �

Corollary. Let X be Banach, T ∈ K(X). Thus each λ ∈ σ(T )\{0} is an eigenvalue.

Proof. Immediate from the previous corollary. �

25. Lecture 25 - Monday 30 May

Recall the following.

Corollary. Let X be Banach, T ∈ K(X), λ ̸= 0. Let r = α(λI − T ) = δ(λI − T ). Then
X = Ker (λI − T )r ⊕ Im (λI − T )r and this completely reduces µI − T, µ ∈ K.

Also note that Im Ker (λI − T )r is closed, and Ker (λI − T )r is finite dimensional.

Exercise 25.1. Let λ1, . . . , λn ∈ σ(T )\{0}. Let Nj = Ker (λjI − T )rj be the generalised λj-
eigenspace. Show that there exists closed subspaces M with

X = N1 ⊕N2 ⊕ · · · ⊕M
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with T = T1 ⊕ T2 ⊕ · · · ⊕ TM , and so spectral theory tells us how to diagonalise T .

In Hilbert spaces we can say even more. Recall that the adjoint of T ∈ L(H) is defined by

⟨Tx, y⟩ = ⟨x, T ∗y⟩ ∀x, y ∈ H

Then T ∗ ∈ L(H).

Definition 25.2 (Self-adjoint). T ∈ L(H) is

(a) Hermitian (self-adjoint) if T ∗ = T .
(b) Unitary if T ∗T = TT ∗ = I.
(c) Normal if T ∗T = TT ∗.

Remark. For matrices, we have

(a) Hermitian if and only if AT = A.
(b) Unitary if and only if the columns of A are orthonormal.
(c) Hermitian and unitary operators are normal.

Proposition 25.3. Let H be Hilbert over C. IF T ∈ L(H) is normal, then r(T ) = ∥T∥.

Proof. For Hermitian operators it is easy. We have

∥T∥2 = ∥T ∗T∥ = ∥T 2∥.

By induction ,we then have ∥T∥2n = ∥T 2n∥. So

r(T ) = lim
n→∞

∥Tn∥1/n

= lim
n→∞

∥T 2n∥1/2
n

= ∥T∥.

For normal operators, we have

∥T 2∥2 = ∥(T 2)∗T 2∥

= ∥T ∗(T ∗T )T∥

= ∥T ∗TT ∗T∥ normal

= ∥(T ∗T )∗(T ∗T )∥

= ∥T ∗T∥2

= ∥T 4∥

and then we have ∥T 2∥ = ∥T∥2 and the proof follows by induction. �

Corollary. Let H be a Hilbert space over C.
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(a) If T ∈ L(H) is unitary, then

σ(T ) ⊆ T = {λ ∈ C | |λ| = 1}

(b) If T ∈ L(H) is Hermitian, then
σ(T ) ⊆ R.

Proof.

(a) On practice sheet. Use the fact that σ(T ∗) = σ(T ).
(b) Let λ = a+ ib ∈ σ(T ). So λI −T is not invertible. Hence, (λ+ it)I − (T + itI) is not invertible

for all t ∈ R. Then

∥λ+ it∥2 ≤ r(T + itI)2

≤ ∥T + itI∥2

= ∥(T + itI)∗(T + itI)∥

= ∥(T − itI)(T + itI)∥

= ∥T 2 + t2I∥

≤ ∥T 2 + t2

However, the left hand side is equal to

a2 + b2 + 2bt+ t2,

and so we obtain
a2 + b2 + 2bt ≤ ∥T∥2 ∀t ∈ R

and so b = 0.

�

Lemma 25.4. Let H be Hilbert over C. Let T ∈ L(H), and let

Mλ = {x ∈ H |Tx = λx} = Ker λI − T

be the λ-eigenspace of T . Then

(a) Mλ ⊥Mµ if λ ̸= µ.
(b) If T is normal, each Mλ is T and T ∗ invariant. That is,

T (Mλ) ⊆Mλ, T ∗(Mλ) ⊆Mλ.

Proof.
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(a) Let u ∈Mλ, v ∈Mµ. Then

(λ− µ) ⟨u, v⟩ = ⟨λu, v⟩ − ⟨u, µv⟩

= ⟨Tu, v⟩ − ⟨u, T ∗v⟩

= ⟨Tu, v⟩ − ⟨Tu, v⟩

= 0

and so ⟨u, v⟩ = 0.
(b) If T is normal, then Ker T = Ker T ∗ as

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩

= ⟨x, TT ∗x⟩ = ⟨T ∗ x, T ∗x⟩

= ∥T ∗x∥2.

Similarly, if T is normal then λI − T is normal. Then

Mλ = Ker λI − T (T invariant)

= Ker λI − T ∗ (T ∗ invariant).

�

The spectral theory for compact normal operators in a Hilbert space is particularly nice, as the
following theorem demonstrates.

Theorem 25.5. Let T ∈ L(H) be compact and normal. Then

H =
⊕

λ∈σ(T )

Mλ,

the closure of the span of the eigenspaces, and H has an orthonormal basis consisting of eigenvectors.
Moreover, T acts diagonally with respect to this basis.

Proof. Let
M =

⊕
λ∈σ(T )

Mλ,

a closed subspace. Hence H =M ⊕M⊥, where

M⊥ = {x ∈ H | ⟨x,m⟩ = 0 ∀m ∈M}.

We must show that M⊥ = {0}. Assume the contrary. Then consider T̃ = M⊥ → H be the
restriction of T to M⊥. Then we have

T̃ :M⊥ →M⊥

is compact and normal (Exercise). Then
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(a) σ(T̃ ) = {0}. Then r(T̃ ) = 0, and so ∥T̃∥ = 0, and so T̃ = 0. Then each x ∈ M⊥\{0}
satisfies T̃ x = 0 = 0x, and so x ∈ M0 with M⊥ ⊆ M0 ⊆ M , a contradiction (from direct sum
decomposition). Hence M = {0}.

(b) σ(T̃ ) ̸= {0}. So there is an eigenvalue λ ∈ σ(T )\{0}. So there is x ∈ M⊥\{0} with T̃ x = λx.
o Tx = λx, and so x ∈ (Mλ ∩M⊥)\{0}, a contradiction. Hence M⊥ = {0}.

Choose an orthonormal basis for each Mλ, and combine to get an orthonormal basis of H, using
Mλ ⊥Mµ. �

26. Lecture 26 - Wednesday 1 June

26.1. Fredholm alternative for compact operators on a Hilbert space. Recall that for
matrices, we have the following result, known as the Fredholm alternative.

Theorem 26.1 (Fredhold alternative (Finite dimensional spaces)). Let A : Cn → Cn be linear.
Then exactly one of the following two things occur:

(1) Ax = 0 has only the trivial solution x = 0, in which case Ax = b has a unique solution for each
b ∈ Cn.

(2) Ax = 0 has a non-trivial solution, in which case Ax = b has either no solutions, or infinitely
many solutions.

Definition 26.2 (Hilbert-Schmidt integral operators).

T : L2([a, b]) → L2([a, b])

(Tf)(x) 7→
∫ b

a

K(x, y)f(y) dy

where ∥K∥2 is finite. These are compact operators.

Consider equations of the following form

λf(x)−
∫ b

a

K(x, y)f(y) dy = g(x),

where λ ̸= 0 and g ∈ L2 are given. This can be rewritten in the form

(λI − T )f = g.

Then we have the following theorem, due to Fredholm.

Theorem 26.3 (Fredholm alternative (Hilbert spaces)). Let H be Hilbert over C, and let T ∈ K(H).
Then exactly one of the following occurs.

(a) (λI − T ) = 0 has only the trivial solution, in which case (λI − T )x = b has a unique solution
for each b ∈ H.
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(b) (λI − T )x = 0 has a non trivial solution, in which case (λI − T )x = b has a solution if and
only if b ⊥ y for every solution y of the equation

(λI − T ∗)y = 0

This is finite dimensional, as it is the kernel of (λI − T )∗.

Proof.
(a) If (λI − T )x = 0 has only the trivial solution, then Ker λI − T = {0} and so it is injective.

Hence λ is not an eigenvalue, and so λ is not a spectral value. So λI − T is invertible, and so
(λI − T )x = b has a unique solution x = (λI − T )−1b, which can be expanded into a series
expression if |λ| > r(T ).

(b) Suppose (λI − T )x = 0 has a non-trivial solution. Then

(λI − T )x = b has a solution

⇐⇒ b ∈ Im λI − T which is closed

⇐⇒ b ∈ ((Im λI − T )⊥)⊥

⇐⇒ b ∈ (Ker λ− T ∗)⊥

⇐⇒ b ⊥ y ∀y ∈ Ker λI − T ∗. �

Proposition 26.4 (Miscelaneous).
(a) If M is a closed subspace of H, then M =M⊥⊥.
(b) IF S : H → H and S ∈ L(H), then (Im S)⊥ = Ker S∗.

Proof.
(a) Let m ∈M , then ⟨m,x⟩ = 0 for all x ∈M⊥, and so m ∈ (M⊥)⊥ =M⊥⊥, and so M ⊆M⊥⊥.

Let x ∈ M⊥⊥. Since M is closed, H = M ⊕ M⊥, and so x = m + m⊥. So x − m ∈
M⊥⊥ +M ⊆M⊥⊥, and so x−m = m⊥ ∈M⊥⊥. But M⊥ is closed, and so H =M⊥ ⊕M⊥⊥.
So x−m− 0, and x = m ∈M .

(b)

(Im S)⊥ = {x ∈ H | ⟨x, sy⟩ = 0 ∀y ∈ H}

= {x ∈ H | ⟨S∗x, y⟩ = 0 ∀y ∈ H}

= {x ∈ H |S∗x = 0}

= Ker S∗

�
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