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1. Preliminaries

In general, we cannot solve arbitrary PDEs. We generally seek to prove existence of solutions
and various properties of these solutions.

Assessment Schedule:
(i) Assignments - 2 or 3 (40%)
(ii) Exam - (60%)

References
(i) M. Protter and Weinberger – Maximum Principle ...
(ii) M. Renardy – Elliptic PDEs
(iii) A. Friedman – Elliptic PDEs
(iv) F. John – PDEs

2. Introduction to Functional Analysis

Definition 2.1 (Quotient space). If M is a closed subspace of a normed vector space E, then
we define another normed space E/M , the quotient space. Elements of E/M are of the form
{u+m |m ∈M} where u ∈ E.

We now define the vector space operations. Define (u1 +M) + (u2 +M) = (u1 + u2) +M . If
λ ∈ K, define λ(u+M) = λu+M . These operations make E/M a vector space.

Exercise 2.2. Show these operations are well defined.

Definition 2.3 (Normed quotient space). Define

∥u+M∥ = inf
m∈M

∥u+m∥.

If u /∈ M , ∥u +M∥ > 0. This is because if there exists (mn) ∈ M with ∥u + mn∥ → 0, then
mn → −u, and so −u ∈M , which implies u ∈M .

We can also show that ∥λu+M∥ = |λ|∥u+m∥, and

∥(u1 + u2) +M∥ ≤ ∥u1 +M∥+ ∥u2 +M∥.

With this norm, E/M is a normed space.

Exercise 2.4. Check the triangle and scaling inequalities.

Lemma 2.5. Define an operator P by

P : E → E/M

x 7→ x+M

Then P is linear and bounded.
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Proof.

∥Px∥ = ∥x+M∥ = inf
m∈M

∥x+M∥ ≤ ∥x∥

Hence ∥Px∥ ≤ ∥x∥ and so P is bounded with ∥P∥ ≤ 1. �

Theorem 2.6. If E is a Banach space, then so is E/M , where M is a closed subspace of E.

Theorem 2.7. If M is a closed subspace of a normed space E and z ∈ E\M , there exists f ∈ E′

such that f(m) = 0 for all m ∈M , and f(z) ̸= 0.

Proof. z +M is not zero in E/M , and so by the Hahn-Banach theorem, there exists h ∈ (E/M)′

such that h(z +M) ̸= 0. Then define f : E → K by f(x) = h(Px) where P : E → E/M is the
projection operator defined previously.

As f is the composition of two continuous maps, we have that f ∈ E′. Now, not that f(m) = 0

if m ∈M , as m+M is the zero coset. If z ∈ E\M , then f(z) = h(z +M) ̸= 0 by definition. �

Theorem 2.8. If T ∈ L(X,Y ) and Im T is closed, then

Im T = {y ∈ Y | f(y) = 0 for all f ∈ Ker T ′}

Remark.
(i) In fact, if Im T is not closed, the above theorem holds with Im T .
(ii) This gives a solution to the inverse problem, i.e. given y ∈ Y , does there exists x ∈ X such

that Tx = y.

Definition 2.9 (Dual mapping). Let T ∈ L(X,Y ). Define the dual mapping T ′ ∈ L(Y ′, X ′) with
(T ′f)(x) = f(Tx) for all f ∈ Y ′.

Proof of Theorem 2.8. Let A = R(T ), if z ∈ A there existsf ∈ Y ′ such that f(y) = 0 for all y ∈ A

and f(z) ̸= 0. Let B = {y ∈ Y | f(y) = 0 ∀f ∈ N(T ′)}.
Hence

f(y) = 0∀y ∈ A

f(Tx) = 0∀x ∈ X

(T ′f)(x) = 0∀x ∈ X

so that T ′f = 0, and so f ∈ N(T ′). But f(z) ̸= 0, so z /∈ B, and so B ⊆ A.
If v ∈ R(T ), then v = Tx. If f ∈ N(T ′), then f(v) = f(Tx) = (T ′f)(x) = 0, and so v ∈ B.

Hence A ⊆ B. �

Remark. If H is a Hilbert space, and T ∈ L(H), then

⟨Tx, y⟩ = ⟨x, T ⋆y⟩ ∀x, y ∈ H
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where T ⋆ is the adjoint. NOte that T ⋆ = J−1T ′J where J : H → H ′ and T ′ is the conjugate
operator. In this case, if R(T ) is closed, then

R(T ) = {x ∈ H | ⟨x, y⟩ = 0 ∀y ∈ N(T ⋆)}.

Remark. When is R(T ) closed?
(i) If λ ̸= 0 and K ∈ K(X), λI −K has closed range.
(ii) If K ∈ K(X), R(K) is closed if and only if R(K) is finite dimensional.
(iii) If N(T ) = {0}, X,Y are Banach spaces, and T ∈ L(X,Y ), then R(T ) is closed if and only if

there exists c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ X. Note that if R(T ) is closed, it is a
Banach space.

Corollary (Corollary to Theorem 2.8). If X and Y are Banach spaces and T ∈ L(X,Y ), then T

is invertible if and only if Ker T = {0}, Ker T ′ = {0} and Im T is closed.
Note that the open mapping theorems shows that T is invertible if and only if Im T = Y and

Ker T = {0}.

Proof. If Im T is closed, then by Theorem 2.8,

Im T = Y ⇐⇒ Ker T ′ = {0},

as Im T = {y ∈ Y | f(y) = 0 for all f ∈ Ker T ′}. �

In a Hilbert space H, if T ∈ L(H), then T ∗ = J−1T ′J where J : H → H′ is an isomorphism of
Hilbert spaces.

Definition 2.10 (Weak convergence). Let (xn) be a sequence in X. We say that xn ⇀ x weakly
if f(xn) → f(x) for all f ∈ X ′.

Lemma 2.11. If xn → x in the usual sense, then xn ⇀ x weakly.

Lemma 2.12. If xn ⇀ x weakly, then {xn} is bounded. Furthermore, ∥x∥ ≤ lim infn→∞ ∥xn∥.

Proof. By Hahn-Banach, there exists f ∈ X ′ such that ∥f∥ = 1 and f(x) = ∥x∥. So ∥x∥ = f(x) =

limn→∞ f(xn) = lim infn→∞ f(xn). But

∥f(xn)∥ ≤ ∥f∥∥xn∥ ≤ ∥xn∥

as ∥f∥ = 1. So

∥x∥ ≤ lim inf
n→∞

∥xn∥

�

Exercise 2.13. If (xn) is bounded, then xn ⇀ x weakly if and only if f(xn) → f(x) as n→ ∞ for
all functions in a dense subset of X ′.
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In fact, if (xn) is bounded, we only need prove that if f(xn) → f(x) for a subset M of X ′, then
f(xn) → f(x) for all finite linear combinations of elements of M .

Example 2.14. Let 1 < p <∞, and consider the Banach space ℓp. Then let en = (

p−1︷ ︸︸ ︷
0, 0, 0, . . ., 1, . . . ).

Then ∥en∥p = 1 and en ⇀ 0 weakly in ℓp as n → ∞. Let (ℓp)
′
= ℓp

′ where 1
p + 1

p′ = 1. If fact,
every f ∈ (ℓp)

′ can be uniquely written as

f(x) =
∞∑
i=1

xiyi

where (yi) ∈ ℓp
′ . In ℓp′ , the set of finite linear combinations of the en are dense in ℓp′ , since we can

approximate (xn) by (x1, x2, . . . , xm, 0, 0 . . . ), which is a finite linear combination of the (en).
Hence a bounded sequence in ℓp, say x1 = (x11, x

1
2, . . . ), x

2 = (x21, x
2
1, . . . ) converges weakly if

and only if ei(xn) = xni converges as n→ ∞ for each i.
In particular, ei ⇀ 0 weakly in ℓp.

Theorem 2.15. If xn ⇀ x weakly in X and T ∈ L(X), then Txn ⇀ Tx weakly in X.
Note that this is not true for continuous non-linear maps.

Proof. Let f ∈ X ′. Then

f(Lxn) = (L′f)(xn)⇀ (L′f)(x) = f(Lx)

weakly as xn → x weakly and (L′f) is a bounded linear operator. �

Definition 2.16 (Bidual). Let X be a normed vector space. Then X ′ is a Banach space. The dual
of the dual space, (X ′)′ = X ′′ is known as the bidual of X.

There is a natural map

c : X → X ′′

x 7→ x̂

of X into X ′′, defined as folllows. Let x̂(f) = f(x) for all f ∈ X ′. Then we can see that x̂ is a
linear mapping, and we must show that it is a bounded map from X ′ to R.

We have

∥x̂∥ = sup
∥f∥≤1

|x̂(f)| = sup
∥f∥≤1

|f(x)| ≤ sup
∥f∥≤1

∥f∥∥x∥ ≤ ∥x∥.

Thus ∥x̂∥ ≤ ∥x∥. (By Hahn-Banach, we can show ∥x̂∥ = ∥x∥. )

Exercise 2.17. Show that Ker c = {0}.

Thus c is a bounded linear map with a zero null-space.
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Definition 2.18 (Reflexive). A Banach space is refexive if this map of X onto X ′′ is bijective.

Example 2.19.

(i) Finite dimensional spaces are reflexive (as the bidual has the same dimension as the base
space).

(ii) ℓp, Lp are reflexive if 1 < p <∞, and are not reflexive otherwise.
(iii) Hilbert spaces H are reflexive.
(iv) C(Ω), the set of continuous operators on a compact set in Rn.

Theorem 2.20 (Compactness property). A Banach space X is reflexive if and only if every bounded
sequence in X has a subsequence that converges weakly in X.

Remark (Closeness property). If C is a closed and convex subset of a Banach space X, and xn is a
sequence in C with xn ⇀ y ∈ X weakly, then y ∈ C.

Proof. Uses the geometric version of the Hahn-Banach theorem.

Theorem 2.21 (Geometric Hahn-Banach). If C is a closed and convex subset in X and z /∈ C,
there exists f ∈ X ′ and m ∈ R, such that f(x) ≤ m for all x ∈ C and f(z) > m.

If y /∈ C, there exists f ∈ X ′ and m ∈ R such that f(x) ≤ m for all x ∈ C and f(y) > m. But
as f(xn) ≤ m and f(xn) → f(y) (by weak convergence), we must have f(y) ≤ m. Thus we achieve
our required result, y ∈ C. �

3. Linear Operators on Hilbert Spaces

Theorem 3.1 (Lax-Milgram theorem). If T ∈ L(H) and there exists µ > 0 such that Re ⟨Tx, x⟩ ≥
µ∥x∥2 for all x ∈ H, then T is invertible.

Proof. If suffices to prove that Ker T = {0}, Im T is closed, and Ker T ⋆ = {0}, by a corollary to
Theorem 2.8.

By Cauchy-Swartz, we have

µ∥x∥2 ≤ Re ⟨Tx, x⟩ ≤ | ⟨Tx, x⟩ | ≤ ∥Tx∥∥x∥.

If x ̸= 0, then µ∥x∥ ≤ ∥Tx∥, so Ker T = {0}.
Secondly, ∥Tx∥ ≥ µ∥x∥ for µ > 0 implies Im T is closed.

Exercise 3.2. Prove this proposition.

Then finally, we have

Re ⟨Tx, x⟩ = Re ⟨x, T ⋆x⟩ ≤ | ⟨x, T ⋆x⟩ | ≤ ∥x∥∥T ⋆x∥
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by Cauchy-Swartz. So
µ∥x∥2 ≤ ∥x∥∥T ⋆x∥

and so µ∥x∥ ≤ ∥T ⋆x∥ and so Ker T ⋆ = {0}. �

Definition 3.3 (Coercive). T is coercive if there exists µ > 0 such that Re ⟨Tx, x⟩ ≥ µ∥x∥2.

Definition 3.4 (Spectral radius). Let X be a complex Banach space. If T ∈ L(X), then we can
define the spectral radius r(T ) by the formula

r(T ) = lim sup
n→∞

∥Tn∥1/n.

Theorem 3.5. We have
r(T ) = sup{|λ| |λ ∈ σ(T )}.

Note that r(T ) ≤ ∥T∥.

Theorem 3.6. If T ∈ L(H) and T is a self-adjoint operator then r(T ) = ∥T∥.

Proof. We have
∥T∥2 = ∥T ⋆T∥ = ∥T 2∥,

since for any linear operator T , we have

∥T∥2 = ∥T ⋆T∥.

Then by induction, we have

r(T ) = lim sup
n→∞

∥T 2n∥1/2
n

= ∥T∥

�

Theorem 3.7 (Raleigh-Rety algorithm). If T ∈ L(H) is self-adjoint, then

supσ(T ) = sup{⟨Tx, x⟩ | ∥x∥ = 1}

infσ(T ) = inf{⟨Tx, x⟩ | ∥x∥ = 1}

Proof. If suffices to prove the first statement (and then apply to −T ). We first show supσ(T ) ≤
sup{⟨Tx, x⟩ | ∥x∥ = 1} ≡ µ.

If λ > µ, then
λ∥x∥2 − ⟨Tx, x⟩ ≥ λ− µ > 0

if ∥x∥ = 1. Hence

λ− µ ≤ ⟨(λI − T )x, x⟩ ∥x∥ = 1

≤ ∥(λI − T )x∥∥x∥

⇒ ∥(λI − T )∥x∥ ≥ (λ− µ)∥x∥
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and hence Ker λI − T = {0}, and as Im λI − T is closed by Exercise 3.8, we have that λI − T is
invertible. Thus supσ(T ) ≥ sup{⟨Tx, x⟩ | ∥x∥ = 1}.

Consequently, it suffices to assume σ(T ) is non-negative (replace T with T + rI). Then if
µ ∈ σ(T1) with T1 self-adjoint, then there exists a sequence xn with ∥xn∥ = 1 such that

∥T1xn − µxn∥ → 0

as n→ ∞. Existence of such a sequence is proven as if ∥T1x− µx∥ ≥ α∥x∥, then µ /∈ σ(T1).
Thus

⟨T1xn, xn⟩ → µ

⟨T1xn, xn⟩ = ⟨(T1 − µI)xn, xn⟩︸ ︷︷ ︸
→0

+µ ⟨xn, xn⟩︸ ︷︷ ︸
µ

.

Thus
sup{⟨Tx, x⟩ | ∥x∥ = 1} ≥ supσ(T ).

�

Exercise 3.8. If ∥Tx∥ ≥ m∥x∥ for all x, then Im T is closed.

4. Generalised Derivatives

Definition 4.1 (L1
loc(Ω)). Let Ω ⊂ Rn be open. Then u ∈ L1

loc(Ω) if u is measurable and u|K ∈
L1(K) for every compact K ⊆ Ω.

Definition 4.2 (Generalised derivative). We say u ∈ L1
loc(Ω) has a (weak) generalised j-th partial

derivative if there exists g ∈ L1
loc(Ω) such that∫

Ω

u
∂ϕ

∂xj
= −

∫
Ω

gϕ (4.1)

for all ϕ ∈ C∞
c (Ω).

Note that g is defined only up to sets of measure zero.

Note. The motivation comes from the integration by parts formula, where if u is C1(Ω), then∫
Ω

u
∂ϕ

∂xj
= −

∫
Ω

∂u

∂xj
ϕ

for all ϕ ∈ C1
c (Ω) by integration by parts. Thus we can write g = ∂u

∂xj
.

Lemma 4.3. The function g, if it exists, is unique (up to sets of measure zero).

Proof. If g1, g2 both satisfy (4.1), then

−
∫
Ω

u
∂ϕ

∂xj
=

∫
Ω

g1ϕ =

∫
Ω

g2ϕ
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for all ϕ ∈ C∞
c (Ω). Thus ∫

Ω

(g1 − g2)ϕ = 0 (⋆)

for all ϕ ∈ C∞
c (Ω).

Suppose B is a ball with B ⊆ Ω. Then

(g1 − g2)|B ∈ L1(B).

Since (⋆) holds for all ϕ ∈ C∞
c (B), consider the measurable function

sgn(g1 − g2) =

1 (g1 − g2)(x) ≥ 0

−1 (g1 − g2)(x) < 0.

We assume that there exists (ϕn) ∈ C∞
c (B) such that ϕn are uniformly bounded and ϕn(x) →

sgn(g1 − g2) almost everywhere. This can be justified by Young’s inequality, where if

fn(x) =

∫
B

ψn(x− y)f(y) dy

then ∥fn∥∞ ≤ ∥ψn∥ |f∥∞, so our approximating function fn are uniformly bounded.
Then

0 =

∫
Ω

(g1 − g2)ϕn →
∫
B

(g1 − g2)sgn(g1 − g2) =

∫
B

|g1 − g2|

as n→ ∞ by the dominate convergence theorem.
Thus g1 − g2 = 0 almost everywhere on B. By the Lindeloff property (Lemma 4.4), Ω is a

countable union of balls, and so we can extend this result to the result,

g1 − g2 = 0

almost everywhere on ϕ. �

Lemma 4.4 (Lindeloff property). A separable metric space, such as Rn, any open set is a countable
union of open balls.

Remark.
(i) If g is the generalised j-th partial derivative of u on Ω and Ω1 ⊂ Ω is open, then g|Ω1 is the

j-th generalised partial derivative of u|Ω1 .
(ii) Assume A ⊆ Ω, u has a generalised j-th partial derivative on Ω, A is open, and u is C1 on A.

Then the generalised j-the partial derivative of u is equal to the classical partial derivative
almost everywhere on A.

Example 4.5. Consider the function

u(x, y) =

1 y ≥ 0

0 y < 0
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If the generalised derivative ∂u
∂x exists, it must be zero when y > 0 and when y < 0.

It turns out that ∂u
∂x exists but ∂u

∂y does not.

Example 4.6. f : R → R define by f(x) = |x| has a generalised derivative g defined by

g(x) =

1 x > 0

−1 x > 0

Note that f is C1 if x ̸= 0 so if the generalised derivative exists it must be equal to g.

Example 4.7. If B1 is the open unit ball in R2 and

f(x) =
{

ln(x2 + y2) (x, y) ̸= (0, 0)

- thus f(x) = 2 ln r in polar coordinates.
Then

∂u

∂x
=

2x

x2 + y2

∂u

∂y
=

2y

x2 + y2

are the generalised partial derivatives on R2.

Definition 4.8 (Generalised derivative). We say that u ∈ L1
loc(Ω) has a generalised derivative on

Ω if all the generalised partial derivatives ∂u
∂xj

exist for 1 ≤ j ≤ n (where Ω is an open set in Rn).

Remark.

(i) If u1 and u2 have generalised derivatives on Ω and C1, C2 are constant, then C1u1 +C2u2 has
a generalised derivative on Ω, given by the appropriate linear combination.

(ii) If u has a generalised derivative on Ω and Ψ ∈ C∞(Ω), then uΨ has a generalised derivative
on Ω and

∂

∂xj
(uΨ) =

∂u

∂xj
Ψ+ u

∂Ψ

∂xj

Lemma 4.9. If uk has a generalised derivative on Ω and uk → u in L1
loc(Ω) as k → ∞ and if

∂uk

∂xl
→ gl in L1

loc(Ω) then u has a generalised derivative on Ω and

∂u

∂xl
= gl.

Proof. ∫
Ω

uk
∂ϕ

∂xj
= −

∫
Ω

∂u

∂xj
ϕ (⋆)

if ϕ ∈ C∞
c (Ω). Fix ϕ and choose K compact so the support of ϕ is contained in K. Then

uk
∂ϕ
∂xj

→ u ∂ϕ
∂xj

in L1 on K.
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Then letting k → ∞ in (⋆) we obtain∫
Ω

u
∂ϕ

∂xj
= −

∫
Ω

gjϕ.

�

Remark. If gj ∈ Lp(Ω) and gj → g in Lp(Ω), (1 ≤ p ≤ ∞), then gj → g in L1
loc(Ω).

Proof. If K is compact, then ∫
K

(gj − g) ≤ ∥gj − g∥
1
p

p,K∥1∥1/p
′

p′,K

by Hölder’s inequality. �

5. Sobolev Spaces

Definition 5.1 (Sobolev spaces). If 1 ≤ p ≤ ∞ and Ω is open in Rn, then the space

W 1,p(Ω) = {u ∈ Lp(Ω) | ∂u
∂xi

∈ Lp(Ω)︸ ︷︷ ︸
generalised
derivatives

for 1 ≤ i ≤ n}

equipped with the norm

∥u∥1,p = ∥u∥p +
n∑

i=1

∥ ∂u
∂xi

∥p

is a Banach space. We call W 1,p a Sobolev space.
It is a linear space by linearity of the generalised derivatives. Similarly, the triangle inequality

holds as all components of the norm ∥ · ∥1,p satisfy the triangle inequality. It can be shown that
W 1,p ⊆ Lp(Ω)N+1 and W 1,p is a closed subspace, which shows that W 1,p is Banach, being the
closed subspace of a Banach space.

Proposition 5.2. W 1,p is a Banach space. In fact, W 1,p is a closed subspace of Lp(Ω)n+1.

Proof. Consider the the map

(uj ,
∂uj
∂x1

, . . . ,
∂uj
∂xn

) → (w0, w1, . . . , wn)

If uj → w0 ∈ Lp(Ω), then ∂uj

∂x1
→ w1 in Lp(Ω) which implies that ∂uj

∂x1
→ w1 in L1

loc(Ω).
By Lemma 4.9, ∂w0

∂x1
exists on Ω and equals w1. Similarly, ∂w0

∂xl
exists and equals wl. Then since

w0 ∈W 1,p(Ω) and ∂w0

∂xl
= wl the closure property holds. Hence we have a Banach space. �

Note. Recall that all norms on a finite dimensional vector space are equivalent. For example,∥u∥pp +
n∑

j=1

∥ ∂u
∂xj

∥pp)1/p

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and

∥u∥p +

 n∑
j=1

∥ ∂u
∂xj

∥pp

1/p

are equivalent.

Definition 5.3 (Higher Sobolev spaces). We have

W 2,p(Ω) = {u ∈ Lp(Ω) | ∂u
∂xi

,
∂u

∂xixj
∈ Lp(Ω) for 1 ≤ i ≤ n, 1 ≤ j ≤ n}

Definition 5.4. Ẇ 1,p(Ω) is the closure of C∞
c (Ω) in W 1,p(Ω) in the norm ∥ · ∥1,p. In general,

Ẇ 1,p(Ω) ⊆W 1,p(Ω).

Proposition 5.5. Ẇ 1,p(Rn) =W 1,p(Rn).

Proposition 5.6. Ẇ 1,2(Ω),W 1,2(Ω) are Hilbert spaces under the inner product ⟨·, ·⟩ defined by

⟨u, v⟩ = (u, v) +
n∑

i=1

(
∂u

∂xi
,
∂v

∂xi

)
where (u, v) =

∫
Ω
u(x)v(x) dx.

6. Convolutions and Approximations

Recall that there exists ϕ ∈ C∞
c (Rn) such that ϕ(x) > 0 if ∥x∥ < 1 and ϕ(x) = 0 if ∥x∥ ≥ 1. We

can assume that
∫
Rn ϕ = 1.

If f ∈ Lp
loc(Rn) and 1 ≤ p <∞, we define Tϵf by

(Tϵf)(x) = ϵ−N

∫
ϕ

(
x− y

ϵ

)
f(y) dy = ϕϵ ⋆ f

where ϕϵ = ϵ−Nϕ
(
x
ϵ

)
.

Proposition 6.1. If f ∈ Lp(Rn) where 1 ≤ p <∞, then

Tϵf → f

in Lp(Rn) as ϵ→ 0.

Lemma 6.2. If f has support in a compact set K, then Tef has support in {x ∈ Rn | d(x,K) ≤ ϵ}.

Lemma 6.3. By Proposition 6.1, if f ∈ Lp(Rn), there exists ϵl → 0 such that Tϵlf → f almost
everywhere as l → ∞.

Lemma 6.4.
∥Tϵf∥∞ ≤ ∥f∥∞

if f ∈ L∞(Rn).
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Proof. If −1 ≤ f ≤ 1 on Rn, then as

Tϵ(−1) ≤ Tϵf ≤ Tϵ1

that is,
−1 ≤ Tϵf(x) ≤ 1 ∀x

then since Tϵf is linear we have
∥Tϵf∥∞ ≤ ∥f∥∞

if f ∈ L∞(Rn). �

Proposition 6.5. C∞
c (Rn) is dense in W 1,2(Rn) that is, if f ∈ W 1,2(Rn), there exists (fn) ∈

C∞
c (Rn) such that ∥f − fn∥1,2 → 0 as n→ ∞.
Note that this is non-trivial as if Ω is bounded the corresponding result is false.

Proof. Let f ∈W 1,2(Rn) and δ > 0. By a previous exercise, there exists f̃ ∈W 1,2(Rn) of compact
support such that

∥f − f̃∥ ≤ δ

2
.

Hence it suffices to find fn ∈ C∞
c (Rn) such that ∥fn − f̃∥1,2 → 0 as n → ∞ (as this would imply

∥fn − f∥ ≤ δ for large enough n).
We prove that Tϵf̃ ∈W 1,2(Rn) and Tϵf̃ → f̃ in W 1,2(Rn) as ϵ→ 0. Recall that Tϵf̃ ∈ C∞(Rn).

Suppose that Tϵf̃ ⊆ B(ϵ){supp(f̃)} = {x ∈ Rn | d(x, supp(f̃)) ≤ ϵ}. Recall that Tϵf̃ → f̃ in L2(Rn)

as ϵ→ 0 from math 3969.
We thus need to prove

∂

∂xl
Tϵf̃ = Tϵ

(
∂f̃

∂xl

)
︸ ︷︷ ︸

generalised
derivative

(6.1)

If we prove that
∂

∂xl

(
Tϵf̃
)
= Tϵ

(
∂f̃

∂xl

)
→ ∂f̃

∂xl

in L2(Rn).
We have

∂

∂xl
Tϵf̃(x) =

∂

∂xl

(
ϵ−n

∫
ϕ

(
x− y

ϵ

)
f̃(y) dy

)
= ϵ−n

∫
∂

∂xl
ϕ

(
x− y

ϵ

)
f̃(y) dy

= e−n

∫
− ∂

∂yl
ϕ

(
x− y

ϵ

)
f̃(y) dy
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where we use the fact that
∂

∂xl
g(x− y) = − ∂

∂yl
g(x− y).

Continuing, we obtain
∂

∂xl
Tϵf̃(x) = −ϵ−n

∫
∂

∂yl

(
ϕ

(
x− y

ϵ

))
f̃(y) dy

= ϵ−n

∫
ϕ

(
x− y

ϵ

)
∂

∂yl
f̃(y) dy (⋆)

= Tϵ

(
∂f̃

∂yl

)
as ϕ

(
x−y
ϵ

)
is a smooth function of compact support. Thus the generalised derivative exists as

f̃ ∈W 1,2(Rn), and so the manipulation in (⋆) is justified.
�

7. Fourier Transforms and Weak Derivatives

Definition 7.1 (Fourier transform). If f ∈ L1(Rn), λ ∈ Rn, then the Fourier transform f̂ of f is
defined by

f̂(λ) =

∫
Rn

f(t)eiλt dt. (7.1)

Theorem 7.2. The map f 7→ f̂ is a bijection on L2(Rn).

Theorem 7.3 (Parseval’s theorem). If f ∈ L2(Rn), then (2π)n∥f∥22 = ∥f̂∥22. This can be generalised
slightly to if f, g ∈ L2(Rn), then

(2π)n ⟨f, g⟩ =
⟨
f̂ , ĝ
⟩
=

∫
Rn

f̂(x)ĝ(x) dx

Theorem 7.4. If f ∈ L2(Rn), the following are equivalent:

(i) f ∈W 1,2(Rn),
(ii) −iλj f̂(λ) ∈ L2(Rn) for 1 ≤ j ≤ n,

(iii) 1 + |λ|f̂(λ) ∈ L2(Rn).

If any of these hold, the generalised derivative ∂f
∂xj

exists and ∂̂f
∂xj

(λ) = −iλj f̂(λ) for 1 ≤ j ≤ n.

Proof. (ii) ⇐⇒ (iii) |λj f̂(λ)| ≤ |λ||f̂(λ)| and hence (ii) ⇐⇒ (iii).
(i) ⇒ (ii) The only thing left to prove is that

∂f̂

∂xj
(λ) = −iλj f̂(λ)
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for f ∈W 1,2(Rn). We have

f ∈W 1,2(Rn) ⇒ ∂f

∂xj
∈ L2(Rn)

⇒ ∂̂f

∂xj
(λ) ∈ L2(Rn)

so to prove the previous result we choose fn ∈ C∞
c (Rn) such that ∥fn−f∥1,2 → 0 as n→ ∞. Since

ˆ∂fn
∂xj

(λ) = −iλj f̂n(λ),

and fn → f in W 1,2(Ω), we have

⇒ fn → f in L2(Rn)

⇒ f̂n → f̂ in L2(Rn)

⇒ f̂n(λ) → f̂(λ) a.e. (taking subsequences)

⇒ ∂fn
∂xj

→ ∂f

∂xj
in L2(Rn)

⇒
ˆ∂fn
∂xj

→ ∂̂u

∂xj
inL2(Rn)

⇒ −iλj f̂n(λ) →
∂̂f

∂xj
(λ) in L2(Rn)

⇒ ∂̂f

∂xj
(λ) = −iλj f̂(λ) a.e.

(ii) ⇒ (i) As −iλj f̂(λ) ∈ L2(Rn), and so there exists gj ∈ L2(Rn) such that

ĝj = −iλj f̂(λ).

Thus we have
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(2π)n
(
f,

∂ϕ

∂xj

)
=

(
f̂ ,

∂̂ϕ

∂xj

)
ϕ ∈ C∞

c (Rn)

=

∫
Rn

f̂(λ)−iλj ϕ̂(λ)

=

∫
Rn

f̂(λ)iλj ϕ̂(λ)

=

∫
Rn

iλj û(λ)ϕ̂(λ)

=

∫
Rn

ĝj ϕ̂(λ)

= −(2π)n (gj , ϕ)

⇒
∫
Rn

f
∂ϕ

∂xj
= −

∫
gjϕ

and so gj is the j-th generalised derivative of f and gj ∈ L2(Rn), thus f ∈W 1,2(Rn) �

Remark. As a consequence,

u ∈W 2,2(Rn) ⇐⇒
(
1 + |λ|2

)
û(λ) ∈ L2(Rn)

and a similar result can be obtained for W k,2(Rn). This follows from the fact that

C2 ≤ 1 + |λ|2

(1 + |λ|)2
≤ C1

on Rn where C1, C2 > 0.

Example 7.5. Consider the PDE
−∆u+ u = f (7.2)

on Rn, where f ∈ L2(R) and we look for u ∈W 2,2(Rn). Taking Fourier transformations, we have
ˆ∂2u

∂xj∂xk
= (−iλk)(−iλj)û(λ)

= −λkλj û(λ)

−

(
−

n∑
k=1

λ2k

)
û(λ) + û(λ) = f̂(λ)

(
1 + |λ|2

)
û(λ) = f̂(λ).

So
û(λ) =

f̂(λ)

1 + |λ|2

and u ∈W 2,2(Rn) (since
(
1 + |λ|2

)
û(λ) = f̂(λ) ∈ L2(Rn). This is the unique solution in W 2,2.
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Example 7.6. Consider a slightly modified version of (7.2)

−∆u = f.

we obtain û(λ) = f̂(λ)
|λ|2 and this is not well defined for λ near zero.

Example 7.7. Considering the equation (7.2), we take u ∈W 1,2(Rn) such that∫
(∇u∇ϕ+ uϕ) =

∫
fϕ ∀ϕ ∈ C∞

c (Rn). (⋆)

If this holds, it follows that ϕ ∈W 1,2(Rn). By Parseval’s theorem, we have∫ ∑
j

−iλj û(λ)−iλj ϕ̂(λ) +
∫
û(λ)ϕ̂(λ) =

∫
f̂(λ)ϕ̂(λ)

and this is solved by

û(λ) =
f̂(λ)

1 + |λ|2

Note that (⋆) has at most one solution in W 1,2(Rn). If u1, u2 are solutions then we have∫
∇u1∇ϕ+ u1ϕ =

∫
fϕ ∀ϕ ∈W 1,2(Rn).∫

∇u2∇ϕ+ u2ϕ =

∫
fϕ.

Subtracting these obtains ∫
∇u1 − u2∇ϕ+ (u1 − u2ϕ) = 0.

Letting ϕ = u1 − u2 ∈W 1,2(Rn), we have∫
∇(u1 − u2)∇u1 − u2︸ ︷︷ ︸

≥0

+(u1 − u2)
2︸ ︷︷ ︸

≥0

= 0.

8. Poincaré Inequality and Applications

Lemma 8.1. If v ∈ C1(R), a ̸= b and v(a) = v(b) = 0, then∫ b

a

v2(t) dt ≤ (b− a)2
∫ b

a

(v′(t))
2
dt. (8.1)
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Proof. We have v(x) = v(a) +
∫ x

a
v′(t) dt =

∫ x

a
v′(t) dt for a < x < b. So

|v(x)| ≤
∣∣∣∣∫ x

a

v′(t) dt

∣∣∣∣
≤
∫ b

a

|v′(t)| dt

≤ (b− a)1/2

(∫ b

a

(v′(t))
2
dt

)1/2

.

Squaring and integrating from a to b, we obtain our result,∫ b

a

v2(t) dt ≤ (b− a)2
∫ b

a

(v′(t))
2
dt. �

Theorem 8.2 (Poincaré inequality). If Ω is a domain in Rn with Ω ⊆ C where C is a cube of side
d, then

∥w∥2,Ω ≤ d∥∇w∥2,Ω (8.2)

for w ∈ Ẇ 1,2(Ω).

Remark. Recall that ·W 1,2(Ω) ⊂W 1,2(Ω) if Ω is a bounded domain. Note that the identity function
1 ∈W 1,2(Ω) does not satisfy this inequality.

Proof. First assume u ∈ C∞
c (Ω). We can extend u to ũ in C∞

c (C) by defining ũ(x) = 0 if x ∈ C \Ω.
Assume C = [a, b]n. Then (identifying u with ũ),∫ b

a

u(x1, . . . , xn)
2 dx1 ≤ (b− a)2

∫ b

a

(
∂u

∂x1

)2

dx1

by Lemma 8.1. Integrating over the entire n-cube, we then have∫ b

a

. . .

∫ b

a

u(x1, . . . , xn)
2 dx1 . . . dxn ≤ (b− a)2

∫ b

a

. . .

∫ b

a

(
∂u

∂x1

)2

dx1 . . . dxn

≤ (b− a)2
∫
C

|∇u|2

as |∇u|2 =
∑n

i=1

(
∂u
∂x1

)2
. As u is zero on C \Ω we have the result∫

Ω

u2 ≤ d2
∫
Ω

|∇u|2 (⋆)

for u ∈ C∞
c (Ω).

Now, if u ∈ Ẇ 1,2(Ω), there exists un ∈ C∞
c (Ω) such that ∥un − u∥1,2 → 0 as n → ∞. For each

n, we then have ∫
Ω

u2n ≤ d2
∫
Ω

|∇un|2
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by (⋆). Taking the limit, we obtain our required result,∫
Ω

u2 ≤ d2
∫
Ω

|∇u|2. �

Intuitively, Ẇ 1,2(Ω) is the set of functions in W 1,2(Ω) vanishing on ∂Ω. If Ω is a domain with a
smooth boundary, then it can be proven there is a map T , known as the trace map,

T :W 1,2(Ω) → L2(∂Ω)

such that Ẇ 1,2(Ω) = Ker T . The key difficulty in the proof is showing the inequality∫
∂Ω

(v|∂Ω)2 ≤ K∥v∥21,2

if v ∈ W 1,2(Ω). By the Poincaré inequality, we can use ∥∇u∥2 as a norm on Ẇ 1,2(Ω) if Ω is
abounded domain. This is equivalent to ∥u∥2 + ∥∇u∥2.

Note that this norm is induced by the scalar product (assuming real u, v)

⟨u, v⟩ =
∫
Ω

∇u∇v =
n∑

j=1

∫
Ω

∂u

∂xj

∂v

∂xj

Proposition 8.3. Consider the equation

−∆u = f (8.3)

in Ω, with boundary conditions u = 0 on ∂Ω and f ∈ L2(Ω). If Ω is bounded, then this has a unique
weak solution in Ẇ 1,2(Ω).

That is, there exists a unique u ∈ Ẇ 1,2(Ω) such that∫
Ω

−∆uϕ =

∫
Ω

∇u · ∇ϕ =

∫
Ω

fϕ

for all ϕ ∈ C∞
c (Ω). This equation follows from multiplying by a smooth function ϕ and integrating

by parts.

Proof. Let ⟨u, v⟩ =
∫
Ω
∇u∇v is a scalar product on Ẇ 1,2(Ω) generalising the norm. The map

ϕ 7→
∫
Ω
fϕ is linear in ϕ. Our equation then reduces to

⟨u, ϕ⟩ = (f, ϕ)

where the right hand side is the L2 inner product. Then we have

|(f, ϕ)| ≤ ∥f∥2∥ϕ∥2

≤ C∥f∥2∥∇ϕ∥2 by Poincaré inequality

and so (f, ϕ) is a bounded linear functional on Ẇ 1,2(Ω).
So (f, ϕ) = ⟨F, ϕ⟩ where F ∈ Ẇ 1,2(Ω) by the Reisz representation theorem. Thus setting u = F

we obtain our solution.
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Uniqueness is clear from ⟨u− F, ϕ⟩ = 0 ⇒ u− F = 0. �

Note. Consider looking for a solution u ∈ C2(Ω) ∧ C(Ω) for the equation

−∆u = f in Ω

u = 0 on ∂Ω

with f ∈ L2(Ω).

We can prove existence of a weak solution quite generally. If a(u, v) : H⊕H → k which is linear
in v for fixed u and linear in u for fixed v (bilinear) and there exists K such that

|a(u, v)| ≤ K∥u∥∥v∥,

then we can write a(u, v) = ⟨Lu, v⟩ where L : H → H is bounded and linear.
If a is of this class on on Ẇ 1,2(Ω) and f ∈ L2(Ω), then the equation

a(u, v) = (f, v) (⋆)

for all v ∈ Ẇ 1,2(Ω) can be written as

⟨Lu, v⟩ = ⟨F, v⟩

where L : Ẇ 1,2(Ω) → Ẇ 1,2(Ω) is bounded linear. Thus Lu = F . Thus the equation is uniquely
soluble if L is invertible. By the Lax-Milgram result (Theorem 3.1), L is invertible if

Re ⟨Lu, u⟩ ≥ c∥u∥21,2 (⋆⋆)

on Ẇ 1,2(Ω) where c > 0. Thus (⋆) has a unique solution if (⋆⋆) holds and ⟨Lu, v⟩ is bilinear and
bounded on Ẇ 1,2(Ω). Notice that (⋆⋆) can be written as Rea(u, u) ≥ c∥u∥21,2.

Recall that the equation

−∆u = f in Ω

u = 0 on ∂Ω

with f ∈ L2(Ω). has a unique weak solution if Ω is bounded. We prove that u ∈W 2,2
loc (Ω). To prove

thius, suppose that x0 ∈ Ω and choose ϕ ∈ C∞
c (Ω) and that ϕ = 1 in a neighbourhood of x0. We

prove that uϕ is the weak solution of the problem

−∆(uϕ) + (uϕ) = w (⋆ ⋆ ⋆)

on Rn where
w = fϕ− 2∇u∇ϕ− u∆ϕ+ uϕ︸ ︷︷ ︸

L2(Rn)

But the solution of (⋆ ⋆ ⋆) is W 2,2(Rn), which can be derived by Fourier transforms.
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We now seek to prove (⋆ ⋆ ⋆). Choose ψ ∈ C∞
c (Rn). Then∫

∇(uϕ) · ∇ψ =

∫
(ψ∇u+ u∇ϕ) · ∇ψ

=

∫
u∇ϕ · ∇ψ +

∫
ϕ∇u · ∇ψ (†)

and similarly, ∫
∇u · ∇(ϕψ) =

∫
∇u · (∇ϕ)ψ +

∫
∇u(∇ψ)∇ϕ

=

∫
Ω

(fϕψ)

=

∫
fϕψ

and so ∫
∇u · (∇ϕ)ψ =

∫
fϕψ −

∫
∇u · (∇ψ)ϕ (‡)

Then we have∫
∇(uϕ) · ∇ψ =

∫
u(∇ϕ) · ∇ψ +

∫
ϕ∇u · ∇ψ by (†)

=

∫
u∇ϕ · ∇ψ +

∫
fϕψ −

∫
∇u · (∇ϕ)ψ by (‡)

= −
∫
ψ∇(u∇ϕ) +

∫
fϕψ −

∫
∇u · (∇ϕ)ψ

= −
∫
ψ (∇u · ∇ϕ+ u∆ϕ) +

∫
fϕψ −

∫
∇u · (∇ϕ)ψ

=

∫
(fϕ)ψ − 2(∇u · ∇ϕ)− u(∆ϕ)ψ.

So ∫
(∇(uϕ) · ∇ψ + uϕψ) =

∫
(fϕψ − (2∇u · ∇ϕ)ψ − u(∆ϕ)ψ + uϕψ) .

Hence uϕ is a weak solution on Rn of −∆z + z = w. We can use similar arguments to show that
f ∈W k,2(Ω), which then implies that u ∈W k+2,2

loc (Ω).
It can be show that if u ∈ Lp(Ω) and −∆u+ u = f in Ω, then u ∈W 2,p

loc (Ω).
Now, consider the weak solutions of

− ∂

∂xl
(aij(x)

∂u

∂xj
) + bl

∂u

∂xl
+ cu = f. (8.4)

on Ω, with u ∈ Ẇ 1,2(Ω). We implicitly use the repeated index summation convention.
We seek to find u such that∫

Ω

(
aij(x)

∂u

∂xj

∂ϕ

∂xl

)
+

∫
Ω

bl
∂u

∂xl
ϕ+

∫
C

cuϕ =

∫
Ω

fϕ
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for all ϕ ∈ Ẇ 1,2(Ω). The left hand side is a bilinear operator A(u, ϕ) where

A : Ẇ 1,2(Ω)× Ẇ 1,2(Ω) → R

is bounded if aij , bj , c ∈ L∞(Ω) and hence are bounded on Ω. In this case, there is a generalised
theorem that

A(u, ϕ) = ⟨Lu, ϕ⟩

where L is a bounded linear map Ẇ 1,2(Ω) →W 1,2(Ω). Then our equation becomes

⟨Lu, ϕ⟩ =
∫
Ω

fϕ = ⟨F, ϕ⟩

by the Reisz representation theorem. That is, Lu = f . Then our problem has a unique solution if
L is invertible. By Lax-Milgram (Theorem 3.1), this is true if

A(u, u) ≥ c∥u∥21,2.

We now seek to find assumptions such that A satisfies these conditions. We assume that there
exists c1 > 0 such that

⟨aij(x)ηi, ηj⟩ ≥ c1|η|2 (††)

for all η ∈ Rn, x ∈ Ω.
Consider the operator

A(u, v) =

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
+

∫
Ω

bl
∂u

∂xl
v +

∫
Ω

cuv.

To bound the second term, we have have∣∣∣∣∫
Ω

bl
∂u

∂xl
|v|
∣∣∣∣ ≤ ∫

Ω

|bl|
∣∣∣∣ ∂u∂xl

∣∣∣∣ |v|
≤ K

∫ ∣∣∣∣ ∂u∂xl
∣∣∣∣ |v|

≤ K

∥∥∥∥ ∂u∂xl
∥∥∥∥
2

∥v∥2 by Cauchy-Swartz

≤ K

(
ϵ

∥∥∥∥ ∂u∂xl
∥∥∥∥2
2

+
1

ϵ
∥v∥22

)
by the inequality |st| ≤ ϵs2 +

t2

ϵ

Other terms are similar but easier to bound. Thus we have a bounded bilinear map.
With the above assumptions, we have

A(u, u) =

∫
Ω

aij
∂u

∂xi

∂u

∂xj︸ ︷︷ ︸
≥µ

∫
Ω
|∇u|2

+

∫
Ω

blu
∂u

∂xl
+

∫
cu2
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Estimating the final term, we have ∫
cu2 ≥ inf c∥u∥22.

The first term is bounded by the assumption (††).
Coercivity is then given, A(u, u) ≥ α∥u∥21,2 for α > 0 if bl = 0 and inf c ≥ 0. If bl = 0 and Ω is

bounded, then inf c ≥ 0 is sufficient.
If bl does not vanish on Ω, then we have the estimate

A(u, u) ≥ µ∥∇u∥22 −K

(
ϵ∥∇u∥22 +

1

ϵ
∥u∥22

)
+ inf c∥u∥22.

Choose ϵ such that Kϵ < µ and inf c > K
ϵ . Then we get

A(u, u) ≥ c̃
(
∥∇u∥22 + ∥u∥22

)
,

and we obtain coercivity.

Lemma 8.4. If A(u, v) =
∫
Ω
fv for all v ∈ Ẇ 1,2(Ω), then there is a unique weak solution in

Ẇ 1,2(Ω) if A is bounded and bilinear, A is coercive, and f ∈ L2(Ω).

9. Compactness in Sobolev Spaces

Theorem 9.1. If Ω is bounded and open in Rn the natural inclusion i : Ẇ 1,2(Ω) → L2(Ω) is
compact. That is, bounded sets in Ẇ 1,2(Ω) are contained in a compact set of L2(Ω).

Remark. The theorem does not hold for Ω = Rn, but true for W 1,2(Ω) under minor assumptions
on ∂Ω. There is a similar result for Ẇ 1,p(Ω) for 1 < p <∞.

Lemma 9.2. For ϵ sufficiently small,∣∣∣(ϕ̂(ϵs)− 1
)∣∣∣ ≤ r

√
1− |s|2 (9.1)

on Rn.

Proof. We have ϕ̂(0)− = 1, ϕ̂ is continuous and bounded, and so
∣∣∣ϕ̂(s)∣∣∣ ≤ K on Rn. So∣∣∣ϕ̂(ϵs)− 1

∣∣∣ ≤ K + 1 ≤ r
√
1 + |s|2

if
|s|2 ≥

(
K + 1

r

)2

− 1︸ ︷︷ ︸
µ2

.

And so this is true if |s| ≥ µ (uniformly in ϵ). Thus (9.1) holds if |s| ≥ µ.
If |s| ≤ µ, ϵs is small, and so

∣∣∣ϕ̂(ϵs)− 1
∣∣∣ is close to ϕ̂(0) − 1 = 0. Note that

∣∣∣ϕ̂(ϵs)− 1
∣∣∣ ≤ r if ϵ

is small and |s| ≤ µ. Hence ∣∣∣ϕ̂(ϵs)− 1
∣∣∣ ≤ r

√
1 + |s|2
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if |s| ≤ µ and ϵ is small. Hence (9.1) holds and our lemma is proven. �

Lemma 9.3. Given r > 0, there exists ϵ0 > 0 such that ∥Tϵu − u∥ ≤ r∥u∥1,2 if 0 < ϵ ≤ ϵ0 and
u ∈ Ẇ 1,2(Ω).

Proof. We choose a cube C such that Ω ⊂ Int C. Notice that Ẇ 1,2(Ω) can be extended to Ẇ 1,2(C)

by letting u = 0 on C\Ω.
Choose ϕ ∈ C∞

c (Rn) such that ϕ ≥ 0,
∫
ϕ = 1, and ϕ even. Let

Tϵu = ϵ−n

∫
Ω

ϕ

(
x− y

ϵ

)
u(y) dy = ϕϵ ⋆ u

where ϕϵ(x) = ϵ−nϕ
(
x
ϵ

)
.

Taking Fourier transforms, we have

ϕ̂ϵ(S) =

∫
Rn

eitsϕϵ(t) dt

= ϵ−n

∫
eitsϕ

(
t

ϵ

)
dt

= ϕ̂(ϵs).

Then estimating ∥Tϵu− u∥22 by Fourier transforms, we have

A = ∥Tϵu− u∥22 = (2π)−n
∥∥∥ ˆTϵu− u

∥∥∥2
2

= ∥ ˆTϵu− û∥22.

But ˆTϵu = ϕ̂ϵû = ϕ̂(ϵs)û(s), and so

A = (2π)−n

∫ ∣∣∣∣((ϕ̂(ϵs)− 1
)
û(s)

)2∣∣∣∣ ds
From Lemma 9.2, we have

A ≤ (2π)−n

∫
r2
(
1− |s|2

)2 |û(s)|2 ds
≤ r2(2π)−n

∫ (
1 + |s|2

)
|û(s)|2 ds

= r2∥u∥21,2

using the definition of the ∥u∥21,2 as ∥u∥22 + ∥∇u∥22.
Hence ∥Tϵu− u∥22 ≤ r2∥u∥21,2. �

Definition 9.4 (Finite ϵ-net). A finite set {ai}ni=1 in a metric space Y is a finite ϵ-net if Y ⊆∪n
i=1Bϵ(ai).

Theorem 9.5. A closed net Y in a compact metric space is compact if and only if it has a finite ϵ
-net for every ϵ > 0.
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Definition 9.6 (Precompact). A subset T in a complete metric space is said to be precompact if
T is compact.
T is precompact if and only if T has a finite ϵ net for every ϵ > 0.

Proof of Theorem 9.1. It suffices to show that for any δ > 0, the set

{u ∈ Ẇ 1,2(Ω) | ∥u∥1,2 ≤ 1}

lies in a compact set of L2(Ω) and hence it suffices to prove if δ > 0 it haas a finite δ-net in L2(Ω).
Recall that

∥Tϵu− u∥ ≤ 1

2
δ

if u ∈ Ẇ 1,2(Ω), ∥u∥1,2 ≤ 1 by Lemma 9.3. Thus it suffices to get a finite δ
2 -net in L2(Ω) for

{Tϵu | ∥u∥1,2}

for ϵ small.
There are C1 function on Rn, and so

(Tϵu)
′(x) = ϵ−n−1

∫
ϕ′
(
x− y

ϵ

)
u(y) dy. (⋆)

It suffices to prove for a fixed ϵ,
{Tϵu | ∥u∥1,2 ≤ 1}

is precompact in C(C) (the set of continuous functions on the cube C.)
The map i : C(C) → L2(C) is continuous and so maps compact sets to compact sets. For fixed

ϵ, |(Tϵu)′(x)| ≤ K if ∥u∥1,2 ≤ 1, as

|T ′(u)(x)| ≤ K

∫
|u(y)| dy ≤ K∥u∥1

≤ K1∥u∥2

≤ K1∥u∥1,2

≤ K1.

On C,

|Tϵu(x1)− Tϵu(x2)| ≤ sup |(Tϵu)′(x)||x1 − x2|

≤ K1|x1 − x2|

for any x1, x2 ∈ C. So Tϵu is uniformly bounded. This shows that {Tϵu | ∥u∥1,2 ≤ 1} is equicon-
tinuous, in the sense that given µ > 0, there exists τ > 0 such that ∥Tϵu(x1) − Tϵ(x2)∥ ≤ µ if
|x1 − x2| ≤ τ for all u such that ∥u∥1,2 ≤ 1.

Lemma 9.7 (Anzela-Anscoli). A bounded set in C(C) is precompact if and only if it is equicon-
tinuous.
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Proof. See Simmond’s book on Modern Analysis. �

Applying Anzela-Anscoli to our set {Tϵu | ∥u∥1,2 ≤ 1} then proves that it is precompact in C(C).
As a set that is precompact in C(C) is precompact in L2(C), our theorem is proven. �

Remark. There are similar results for i : Ẇ 1,p(Ω) → Lp(Ω) if 1 < p <∞ if Ω is bounded open.

Recall that Ẇ 1,2(Ω) → L2(Ω) is compact if Ω is bounded.
Consider the equation

−∆u = λu+ f in Ω (9.2)

u = 0 on ∂Ω

with Ω a bounded domain in Rn.
For a weak solution, we seek to find u ∈ Ẇ 1,2(Ω) such that∫

∇u · ∇v = λ

∫
uv +

∫
fv

for all v ∈ Ẇ 1,2(Ω). This is equivalent to asking that

⟨u, v⟩ = λ ⟨Bu, v⟩+ ⟨F, v⟩ (⋆)

where ⟨Bu, v⟩ = (u, v) is a bounded bilinear form on Ẇ 1,2(Ω) and
∫
fv = ⟨F, v⟩. Note that (⋆) is

equivalent to
u = λBu+ F (⋆⋆)

whern u ∈ Ẇ 1,2(Ω).
Recall that

|⟨Bu, v⟩| =
∣∣∣∣∫ uv

∣∣∣∣
≤ ∥u∥2∥v∥2

≤ C∥∇u∥2∥∇v∥2

by Poincaré . Moreover, B is compact, as Ω is bounded. This is true as supposing that un is
a bounded sequence in Ẇ 1,2(Ω).. Then {un} has a convergent subsequence in Ẇ 1,2(Ω). But by
Theorem 9.1, {un} has a subsequence which converges in L2(Ω). Restricting now to the subsequence,
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for any un, um, we have

∥Bun −Bum∥1,2 = sup
∥v∥1,2≤1

|⟨Bun −Bum, v⟩|

= sup
∥v∥1,2≤1

|⟨B(un − um), v⟩|

≤ sup
∥v∥1,2≤1

|(un − um, v)|

≤ sup
∥v∥1,2≤1

∥un − um∥2︸ ︷︷ ︸
→0

∥v∥2︸︷︷︸
≤C∥v∥1,2

by convergence in L2(Ω), Cauchy-Swartz and the Poincaré inequality.
So ∥Bun −Bum∥1,2 → 0 as n,m→ ∞, and so {Bun} converges in Ẇ 1,2(Ω) as required.
B is also self adjoint as ⟨Bu, v⟩ =

∫
uv.

Theorem 9.8. The problem u = λBu on Ẇ 1,2(Ω) has an infinite sequence of eigenvalues {λn}
which are all real and λn > 0 and λn → ∞ as n → ∞. Moreover, I − λB is invertible if λ ̸= λn

for all n.

Proof.

(i) The eigenvalues are all real as B is self-adjoint.
(ii) Note that the null-space of B is {0}, since

⟨Bu, u⟩ = (u, u) =

∫
Ω

u2 > 0

if u ̸= 0.
Hence

u = λBu ⇐⇒ ⟨u, u⟩︸ ︷︷ ︸
>0

= ⟨λBu, u⟩

= λ ⟨Bu, u⟩

= λ

∫
u2︸ ︷︷ ︸

>0

and so all eigenvalues are greater than zero.
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(iii) The smallest eigenvalue is infu̸=0

∫
|∇u|2∫
u2 . By Theorem 3.7, for any operator T we have

supσ(T ) = sup
∥x∥=1

⟨Tx, x⟩

= sup
∥x ̸=0∥

⟨Tx, x⟩
⟨x, x⟩

infσ(B) = inf
x ̸=0

⟨x, x⟩
⟨Bx, x⟩

= inf
u̸=0

⟨u, u⟩
⟨Bu, u⟩

= inf
u̸=0

∫
|∇u|2∫
u2

.

(iv) If λ ̸= λn, (9.2) has a unique weak solution for all f ∈ L2(Ω). If λ = λn, (9.2) has a solution
if and only if (f, ϕn) = 0 for all eigenfunctions ϕn corresponding to λ = λn.

Recall from Theorem 2.8, Tx = y has a solution if and only if f(y) = 0 for all f ∈ Ker T ′.
Note that the this is satisfied if and only if ⟨F, ϕn⟩ = (f, ϕl) = 0 for all eigenfunctions ϕn.

(v) The set of eigenfunctions are an orthogonal basis for L2(Ω) and Ẇ 1,2(Ω).
This is true for any compact self-adjoint operator.

�

Consider the equation

−∆u = λu+ f in Ω (9.3)

u = 0 on ∂Ω

(9.4)

with u ∈ Ẇ 1,2(Ω) and f ∈ L2(Ω).
Consider the equation

∂

∂xi

(
aij

∂u

∂xj

)
+ bi

∂u

∂xl
+ cu = λu+ f in Ω

u = 0 on ∂Ω

with Ω bounded. We can apply the previous theory to this case (modulo some complications.)
Let f = 0. Then if λ̃ is the least eigenvalue of (9.3) then there is a non-negative eigenfunction

of (9.3) corresponding to λ = λ̃.

Theorem 9.9. Recall that

λ̃ = inf
u∈Ẇ 1,2(Ω)

u̸=0

∫
|∇u|2∫
u2

(9.5)
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If ũ ∈ Ẇ 1,2(Ω) achieves this minimum, then

−∆ũ = λ̃ũ.

Proof. Consider test functions of the form ũ+ ϵϕ where ϕ ∈ Ẇ 1,2(Ω). Then∫
|∇(ũ+ ϵϕ)|2∫
(ũ+ ϵϕ)2

≥ λ̃.

and
d

dϵ

∫
|∇(ũ+ ϵϕ)|2∫
(ũ+ ϵϕ)2

∣∣∣∣∣
ϵ=1

= 0.

This implies that ∫
∇u∇̃ϕ− λ̃ũϕ = 0

As this is true for all ϕ ∈ Ẇ 1,2(Ω), we have that ũ is a weak solution of (9.3) for λ = λ̃ and
f = 0. �

Lemma 9.10. If ũ is an eigenfunction corresponding to λ̃ then |ũ| is in Ẇ 1,2(Ω) and |ũ is a
minimiser of (9.5), and hence, as in Lemma 9.9, |ũ| is also an eigenfunction corresponding to λ̃.

Proof. Recall that

|ũ|(x) =

ũ(x) ũ ≥ 0

−ũ(x) ũ(x) < 0

By the next section,
∂

∂xi
|ũ|(x) =

 ∂ũ
∂xi

ũ(x) ≥ 0

− ∂ũ
∂xi

ũ(x) < 0

Then ∣∣∣∣ ∂∂xi |ũ|(x)
∣∣∣∣ = ∣∣∣∣ ∂ũ∂xi

∣∣∣∣
and so ∫

(∇|ũ|)2∫
|ũ|2

=

∫
|∇ũ|2∫
ũ2

= λ̃. �

Theorem 9.11. If f ∈ L2(Ω) is non-negative and

−∆u = f in Ω

u = 0 on ∂Ω

for u ∈ Ẇ 1,2(Ω), then u ≥ 0 on ∂Ω.

Proof. Consider u− as a test function in the definition of the weak solution

u−(x) =

0 u(x) ≥ 0

u(x) u(x) < 0.
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and
∂

∂xi
u−(x) =

0 u(x) ≥ 0

∂u
∂xi

u(x) < 0.

Since ∫
∇u · ∇ϕ =

∫
fϕ

letting ϕ = u−, we have ∫
fu−︸ ︷︷ ︸
≤0

=

∫
∇u∇u− =

∫ ∣∣∇u−∣∣2︸ ︷︷ ︸
≤0

Thus ∇u− = 0 and so u− = 0 by Poincaré inequality (Theorem 8.2). �

10. Further Properties of Ẇ 1,2(Ω)

Theorem 10.1. If u ∈ Ẇ 1,2(Ω) where Ω is bounded and open then u+ ∈ Ẇ 1,2(Ω) and

∂

∂xi
u+ =

 ∂u
∂xi

u(x) > 0

0 u(x) ≤ 0

Proof. If f ∈ C1(Ω), f(0) = 0, and f ′ is bounded on R, then f(u) ∈ Ẇ 1,2(Ω) and ∂
∂xi

f(u) =

f ′(u) ∂u
∂xi

if u ∈ C∞
c (Ω) by the chain rule.

If u ∈ Ẇ 1,2(Ω), choose un ∈ C∞
c (Ω) so un → u in Ẇ 1,2(Ω) as n→ ∞. Then

−
∫
f(un)

∂ϕ

∂xl
=

∫
f ′(un)

∂un
∂xi

ϕ

Since un → u and ∂un

∂xi
→ ∂u

∂xi
in L2, taking subsequences gives

−
∫
f(u)

∂ϕ

∂xi
=

∫
f ′(u)

∂u

∂xi
ϕ �.

This can be shown as |f(0) − f(t)| ≤ K|s − t| by the mean value theorem, and so |f(un(x)) −
f(u(x))| ≤ K|un(x)− u(x)|. On the left hand side, it suffices to show that f(un) → f(u) in L1(Ω),
then we use the dominated convergence theorem. We have

∥f(un(x))− f(u(x))∥1 ≤ K∥un − u∥

On the right hand side, we have L2 convergence if we prove that each term (∂un

∂xi
, f ′(un)ϕ)

converges in L2(Ω), We have
∂un
∂xi

→ ∂u

∂xi
by a lemma of generalised derivatives, and

f ′(un)ϕ→ f ′(u)ϕ

since they are both uniformly bounded and converge pointwise.
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More explicitly, we have∫
f(u)

∂ϕ

∂xl
−
∫
f(un)

∂ϕ

∂xl
=

∫
(f(un)− f(u))

∂ϕ

∂xi

≤ ∥f(u)− f(un)|2︸ ︷︷ ︸
→0

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
2

Now, consider the function fϵ(y) given by

fϵ(y) =


√
y2 + ϵ2 y ≥ 0

0 y < 0.

Then fϵ ∈ C1, f ′ϵ(y) = y√
y2+ϵ2

, and |f ′ϵ(y)| ≤ 1.

If u ∈ Ẇ 1,2(Ω), then

−
∫
fϵ(u)

∂ϕ

∂xi
=

∫
f ′ϵ(u)

∂u

∂xi
ϕ

by the previous step.
Note that fϵ(y) → y+ uniformly in R as ϵ→ 0, and hence converges in L2. Thus∫

fϵ(u)ϕ =

∫
u+ϕ.

Next, note that f ′ϵ(y) is uniformly bounded and converges pointwise and in L2(Ω) to 1y>0. Thus
by Cauchy-Swartz, ∫

f ′ϵ(u)
∂u

∂xi
ϕ→

∫
1u>0

∂u

∂xi
ϕ.

Hence ∫
u+

∂ϕ

∂xl
=

∫
1u>0

∂u

∂xi
ϕ

and so ∂u+

∂xi
exists and is 1u>0

∂u
∂xi

.

Remark. This tells us that ∂u+

∂xi
= 0 a.e. where u = 0, and also that ∂u−

∂xi
= −1u<0

∂u
∂xi

.

Remark. If u ∈W 1,2(Ω)m then u+ ∈W 1,2(Ω) with the same formula for ∂u
∂xi

.
If N = 1 and Ẇ 1,2([a, b]) then there exists ũ such that ũ = u almost everywhere and ũ ∈ C[a, b].
If N = 2 and u ∈ Ẇ 1,2(Ω), u ∈ Lp(Ω) for all p ≥ 1.
If N ≥ 3 and u ∈ Ẇ 1,2(Ω), then u ∈ L2∗(Ω) where 2⋆ = 2N

N−2 .

Exercise 10.2. If u ∈ Ẇ 1,2(Ω) and a > 0, then

(u− a)+ ∈ Ẇ 1,2(Ω).

Remark. In general, if F is Lipschitz on R with F (0) = 0 and u ∈ Ẇ 1,2(Ω), then

F (u) ∈ Ẇ 1,2(Ω).
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Theorem 10.3. If n = 1 and u ∈ Ẇ 1,2(Ω), then u ∈ C(Ω) and u = 0 on ∂Ω (assuming Ω is
bounded and open). More precisely, there exists K > 0 such that if u ∈ Ẇ 1,2(Ω) there exists
v ∈ C(Ω) such that v = 0 on ∂Ω, v = u almost everywhere, and ∥v∥∞ ≤ K∥u∥1,2.

This is true for Ẇ 1,p(Ω) if n = 1 and p > 1.

Proof. We prove for Ω = (a, b), as any open set in R is a countable union of disjoint intervals. We
prove that there exists K > 0 such that if u ∈ C∞

c ((a, b)), then

∥u∥∞ ≤ K∥u∥1,2. (⋆)

This will be sufficient to prove the theorem. To show this, suppose that w ∈ Ẇ 1,2(Ω) and
un ∈ C∞

c ((a, b)) such that un → w in Ẇ 1,2([a, b]) as n→ ∞, then

∥un − um∥∞ ≤ K∥un − um∥1,2 by (⋆)

≤ K (∥un − w∥1,2 + ∥um − w∥1,2)

→ 0

as m,n→ ∞. Hence supx∈[a,b] |un(x)−um(x)| → 0 as m,n→ ∞, and so {un} is Cauchy in C([a, b]).
Hence there exists v ∈ C([a, b]) such that un → v uniformly as n → ∞ and v(a) = v(b) = 0. Since
un → w in L2([a, b]) as n → ∞, then un(x) → w(x) almost everywhere as n → ∞, and so v = w

almost everywhere, with w continuous and w(a) = w(b) = 0.
So we have

∥un∥∞ ≤ K∥un∥1,2

∥v∥∞ ≤ K∥v∥1,2

and this is what we need. It suffices to prove (⋆) for u ∈ C∞
c ((a, b)). Let x, y ∈ (a, b), with x < y.

THen
u(x)− u(y) =

∫ y

x

u′(t) dt

So

|u(x)− u(y)| ≤
∣∣∣∣∫ y

x

u′(t) dt

∣∣∣∣
≤
(∫ y

x

dt

)1/2(∫ y

x

|u′(t)|2 dt
)1/2

≤ (y − x)
1/2

(∫ b

a

|u′(t)|2 dt

)1/2

≤ (b− a)1/2∥∇u∥2

�
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Theorem 10.4. If n > 2 and Ω is bounded and open, there exists C depending only on n such that
if u ∈ Ẇ 1,2(Ω) hen u ∈ L2⋆(Ω) and ∥u∥2⋆ ≤ C∥∇u∥1,2. Here 2⋆ = 2n

n−2 .

Remark. There is a similar theorem for Ẇ 1,2(Ω) if 1 ≤ p < n. Here p⋆ = np
n−p .

Remark. u ∈ L2(Ω) and u ∈ L2⋆(Ω) implies that u ∈ Lq(Ω) for all 2 ≤ q ≤ 2⋆ by Hölder’s inequality.

Proof of Theorem 10.4. It suffices to assume that u ∈ C∞
c (Ω).

Step 1.

Lemma 10.5. If u ∈ Ẇ 1,1(Ω), then ∥u∥1⋆ ≤ ∥∇u∥1, where 1⋆ = n
n−1 .

Proof. By Hölder, we have∫
|g1| × |g2| . . . |gn−1| ≤

(∫
|g1|n−1

) 1
n−1

. . .

(∫
|gn−1|n−1

) 1
n−1

(∫
|g1| × |g2| . . . |gn−1

)n−1

≤
n−1∏
i=1

(∫
|gi|n−1

)
by induction.

For f ∈ C∞
c (Rn), we have

f(x1, . . . , xn) =

∫ xi

−∞

∂f

∂xi
(x1, . . . , xi−1, ti, xi+1, . . . , xn) dti

Then we can estimate |f | by

|f(x1, . . . , xn)| ≤
∫ xi

−∞

∣∣∣∣ ∂f∂xi (x1, . . . , xi−1, ti, xi+1, . . . , xn)

∣∣∣∣ dti
≤
∫ ∞

−∞
|∇f(x1, . . . , xi−1, ti, xi+1, . . . , xn)| dti

and so
|f |n ≤

n∏
i=1

∫ ∞

−∞
|∇f(x1, . . . , xi−1, ti, xi+1, . . . , xn)| dti

Then taking the (n− 1)-th root, we obtain

|f |1
⋆

≤
n∏

i=1

(∫ ∞

−∞
|∇f(x1, . . . , xi−1, ti, xi+1, . . . , xn)| dti

) 1
n−1

.

Now, integrating in x1, we have∫
|f |1

⋆

dx1 ≤
(∫ ∞

−∞
|∇f | dt1

) 1
n−1

n∏
i=2

(∫
|∇f(x1, . . . , xi−1, ti, xi+1, . . . , xn)| dti dx1

) 1
n−1
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Now integrating in x2, we have∫
|∇f |1

⋆

dx1 dt2 ≤
(∫∫

|∇f | dt1 dx2
) 1

n−1
(∫∫

|∇f | dt1 dx2
) 1

n−1

(
n∏

i=3

∫∫
|∇f | dx1 dx2 dti

) 1
n−1

By induction, we obtain∫
|f |1

⋆

dx1 . . . dxn ≤

(
n∏

i=1

∫
|∇f | dx1 . . . dxn

) 1
n−1

≤
(∫

|∇f | dx1 . . . dxn
) n

n−1

and taking n−1
n -th roots obtains the required result. �

We can also show
(i) If p > n, then Ẇ 1,p(Ω) ⊆ C(Ω) and ∥u∥∞ ≤ C∥∇u∥p.
(ii) If n ≤ 3, function in W 2,2(Ω) are continuous on the interior.
(iii) If u ∈W 1,2(Ω) and u(x) → 0 as x→ ∂Ω, then u ∈ Ẇ 1,2(Ω).

Step 2.

Complete the proof. As before, we construct u ∈ C∞
c (Rn). Applying Step 1. to

|u|γ where γ > 1 and γ is to be chosen, then(∫
(|u|γ)

n
n−1

)n−1
n

≤
∥∥γ|u|γ−1(∇u)

∥∥
1

≤ γ
∥∥|u|γ−1∇u

∥∥
1

≤ γ

(∫
u(γ−1)· p

p−1

) p−1
p
(∫

|∇u|p
)1/p

by Hölder

Then choosing γ such that γ n
n−1 = (γ − 1) p

p−1 = p⋆, we have(∫
|u|p

⋆

)n−1
n

≤ γ
(
|u|p

⋆
) p−1

p

(∫
|∇u|p

) 1
p

Then dividing both sides by
(∫

|u|p⋆) p−1
p , we have(∫

|u|p
⋆

) 1
p⋆

≤ C(γ)

(∫
|∇u|p

) 1
p

�
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Lemma 10.6. Consider the differential equation

∇u = f on Ω

u = 0 on ∂Ω

with Ω bounded. This has a weak solution in Ẇ 1,2(Ω). We claim that any classical solution is also
a weak solution.

Consider a classical solution u ∈ C2(Ω) ∩ C(Ω). Then a classical solution (if it exists) is a weak
solution u ∈ Ẇ 1,2(Ω) and ∫

∇u · ∇ϕ =

∫
fϕ

for all ϕ ∈ C∞
c (Ω). If u is smooth and ϕ has compact support, then∫

∇u · ∇ϕ = −
∫

∆uϕ =

∫
fϕ

if ∇u = f .
We need to check ∇u ∈ L2(Ω) and u ∈ Ẇ 1,2(Ω). Consider the function (u − a)+ ∈ W 1,2(Ω) if

a > 0 that vanishes near ∂Ω. Then u− a ∈ W 1,2(Ω) and so (u− a)+ ∈ W 1,2(Ω) on compact sets,
as

∂

∂xi
(u− a)+ =

∂u

∂xi
1{u>a}.

Then (u− a)+ ∈ Ẇ 1,2(Ω) (by an exercise.)
Using (u− a)+ as a text function, we have∫

∇u · ∇(u− a)+ =

∫
f(u− a)+

≤≤ ∥f∥2∥(u− a)+∥2 by Cauchy-Swartz

= K

but ∫
∇u · ∇(u− a)+ =

∫
|∇u|2 1{u>a} ≤ K

→
∫
u≥0

|∇u|2

by monotone convergence theorem as a → 0, and so u+ ∈ L2. Similarly, ∇u− ∈ L2(Ω), and so
∇u ∈ L2(Ω).
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11. Applications to Nonlinear Equations

Consider the differential equation

−∆u = g(u) in Ω

u = 0 on ∂Ω

where g : R → R is continuous - so −∆u(x) = g(u(x)).
We look for weak solutions, that is u ∈ Ẇ 1,2(Ω) satisfying∫

∇u · ∇ϕ =

∫
g(u)ϕ for all ϕ ∈ C∞

c (Ω). (11.1)

12. Variational Methods

Assume that Ω is bounded and g is continuous and satisfies

|g(y)| ≤ K1|y|+K2

on R, and if G′ = g we assume that there exists µ < λ1 such that1

G(y) ≤ 1

2
µy2

for |y| large. Equivalently, G(y) ≤ 1
2µy

2 +K3.
Consider the energy function E : Ẇ 1,2(Ω) → R defined by∫

Ω

(
1

2
|∇u|2 −G(u)

)
. (12.1)

We prove that there exists w ∈ Ẇ 1,2(Ω) such that

E(u) ≥ E(w)

for all u ∈ Ẇ 1,2(Ω) and that such a w is a weak solution of our equation.

1Here, λ1 is the minimal eigenvalue of the eigenvalue equation
−∆u = λu on Ω.

u = 0 on Ω.

Indeed,

λ1 = inf
∫
|∇u|2∫
u2

.
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Step 1. We prove that there exists C1 > 0 such that E(u) ≥ −C1 for all u ∈
Ẇ 1,2(Ω). From (11.1), we have

E(u) ≥
∫
Ω

(
1

2
|∇u|2 − 1

2
µu2 −K3

)
(⋆⋆)

≥ 1

2

∫ (
|∇u|2 − µu2

)
︸ ︷︷ ︸

≥0

−K̃3

≥ −K̃3

≡ γ.

since λ1 = inf
∫
|∇u|2∫
u2 and so

∫
|∇u|2 ≥ λ1

∫
u2. Hence∫ (

|∇u|2 − µu2
)
≥ (λ1 − µ)

∫
u2 ≥ 0.

We get a little more,
E(u) ≥ (λ1 − µ)

(∫
u2
)
−K3

so if E(u) ≤ K4, we have that
∫
u2 is bounded. Thus by (⋆⋆),∫

|∇u|2

is bounded. Thus if

E(un) → inf
{
E(u) |u ∈ Ẇ 1,2(Ω)

}
,

then {un} is bounded in Ẇ 1,2(Ω).

Lemma 12.1. The sequence {un} has a subsequence which converges weakly to
w ∈ Ẇ 1,2(Ω) and w is a minimiser of E.

Proof. Recall from §3 that every bounded sequence in a Hilbert space H has a
subsequence which converges weakly. Thus our sequence {un} has a subsequence
that converges weakly to w.

We now need only show that w is a minimiser of E. Let un ⇀ w in Ẇ 1,2(Ω).
Let i : Ẇ 1,2(Ω) → L2(Ω) be the inclusion mapping. Then i is a bounded linear
operator, and

i(un)⇀ i(w)

in L2(Ω). That is, un → w in L2(Ω). Since bounded sets in Ẇ 1,2(Ω) are precompact
sets in L2(Ω), we can choose a subsequence such that un → w (strongly) in L2(Ω).
Hence the weak convergence in Ẇ 1,2(Ω) can be “converted” into strong convergence
in L2(Ω).
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We now need to show that w minimises E and w is a solution to our equation.
We need to show that E(un) → E(w) = γ. Recall that in a Banach space, if un ⇀ u

weakly, then
∥u∥ ≤ ∥ lim inf

n→∞
∥un∥.

Now, we then have
∥w∥1,2 ≤ lim inf

n→∞
∥un∥1,2

Taking squares, we obtain

∥∇w∥22 ≤ lim inf
n→∞

∥∇un∥22.

We also need to prove that∫
G(un) →

∫
G(w) as n→ ∞ (⋆ ⋆ ⋆)

Then we can show that

E(un) =
1

2

∫
|∇un|2 −

∫
G(un) → γ

and hence
E(w) =

1

2

∫
|∇w|2 −

∫
G(w) ≤ γ.

But E(w) ≥ γ, and so E(w) = γ, that is, w is a minimiser.
It thus remains to prove (⋆ ⋆ ⋆). Since un → w in L2(Ω), we can show that

un → w a.e by taking subsequences. By a result in analysis (Ergerov’s theorem),
there exists sets Vk of arbitrarily small measure such that

un(x) → w(x)

uniformly on Ω \Vk as n → ∞, again taking subsequences. We know that w is
bounded off a set of small measure and hence we can find a set Z of small measure
so un → w uniformly on Ω \Z and w is bounded on Ω \Z. This implies that

G(un) → G(w)

uniformly on Ω \Z the fact that a continuous function on R is uniformly continuous
on bounded sets. Hence, ∫

Ω \Z

G(un) →
∫
Ω \Z

G(w).
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We now prove
∫
Z
G(un),

∫
Z
G(w) are uniformly small in Z if Z has small measure.

We have ∫
Z

G(un) ≤
∫
Z

(
1

2
µu2n +K3

)
≤ 1

2
µ

∫
Z

u2n +K3m(Z)

where m(Z) is the measure of Z.
Since un is bounded in Ẇ 1,2(Ω), by Sobolev’s embedding theorem, we can show

that ∥un∥p⋆ is bounded for p⋆ > 2. So the first term is less than or equal to
1
2µ∥un∥

2
2,Z . Since ∫

Z

u2n ≤
(∫

Z

(
|un|2

)q) 1
q
(∫

Z

1q
) 1

q′

for q, q′ Hölder pairs, so letting p⋆ = 2q for q > 1, we have∫
Z

u2n ≤
(∫

Z

|un|p
⋆

) 1
q

(m(Z)
1
q′

≤ (∥un∥p⋆)
p⋆

2 (m(Z))
1
q′

as required.
Recall that since w is a minimizer, we have

E(w + tϕ) ≥ E(w) ∀ϕ ∈ C∞
c (Ω) ∀t

d

dt
E(w + tϕ)

∣∣∣∣
t=0

= 0

if it exists. We will now prove that the derivative exists and equals∫
Ω

∇w · ∇ϕ− g(w)ϕ.

In this case, ∫
∇w · ∇ϕ = g(w)ϕ ∀ϕ ∈ C∞

c (Ω),

and so −∆w = g(w).
We have

E(w + tϕ) =
1

2

∫
Ω

∇(w + tϕ) · ∇(w + tϕ)−
∫
Ω

G(w + tϕ)

=
1

2

∫
Ω

|∇w|2 + 2t∇w · ∇ϕ+ t2|∇ϕ|2 −
∫
G(w + tϕ).
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Therefore
d

dt
E(w + tϕ) =

∫
Ω

∇w · ∇ϕ+ t

∫
Ω

|∇ϕ|2 − d

dt

∫
G(w + tϕ)

d

dt
E(w + tϕ)|t=0 =

∫
Ω

∇w · ∇ϕ− d

dt

∫
G(w + tϕ).

We thus need only prove that
d

dt
(

∫
G(w + tϕ))|t=0 =

∫
g(w)ϕ.

Now ∫
G(w + tϕ)−G(w)

t
=

∫
G′(w + θ(x)tϕ(x))ϕ(x)

where 0 ≤ θ(x) ≤ 1. We need to prove (remembering G′ = g), that∫
G′(w + θ(x)tϕ(x))ϕ(x) →

∫
g(w)ϕ(x)

Choose a set T so that µ(Ω− T ) is small and w, ϕ are bounded on T . Then

g(w + tθ(x)ϕ(x)) → g(w(x))ϕ(x)

uniformly on T as t → 0 as g is uniformly continuous on bounded sets. We need
only prove that ∫

Ω\T
g(w + tθ(x)ϕ(x))ϕ(x)

is small for all t small.
.... CBF finishing this.

Remark.
(i) If g(0) = 0, our minimum may be u(x) = 0.
(ii) If g(0) = 0 and g′(0) > λ, 0 may not be the minimum and we must have

a non-trivial solution. We only need to find z ∈ Ẇ 1,2(Ω) with E(Z) < 0.
We choose z = tϕ, where t is small and positive and ϕ1 is the eigenfunctino
corresponding to λ1. Then

G(s) =
1

2
g′(0)s2 +m(s),

where m(s)
s2 → 0 as s→ 0. Then

E(tϕ1) =
1

2
t2 (λ1 − g′(0))

∫
Ω

ϕ21 + o(t2) < 0

if t is small.

�
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13. Fixed Point Methods

Theorem 13.1 (Brower). Bn is the closed ball in Rn and f : Bn → Bn is continouus then there
exists x ∈ Bn such that f(x) = x.

Definition 13.2 (Completely continuous). A : E → E is completely continuous (cc) if A is
continuous and if D is bounded in E, then A(D) is compact in E.

Lemma 13.3. If E is an infinite dimensional Banach space hen I : E → E is not cc.
If A is linear, A : E → E, then A is cc if and only if A is compact.
(Shauder). If D is closed, bounded and convex in a Banach space E and A : D → E is cc and

A(D) ⊆ D, then there exists x ∈ D such that A(x) = x (fixed point).

Example 13.4 (Example of fixed point methods). Let g : R → R be continuous and g(y)
y → τ as

|y| → ∞ where τ is not an eigenvalue of

−∆u = λu on Ω

u = 0 on ∂Ω

We prove the problem

−∆u = g(u) on Ω

u = 0 on ∂Ω

has a weak solution
g(y) = τy + h(y)

where h(y)
y → 0 as |y| → ∞.

Note that if such a solution exists, then we have

−∆u = τu+ h(u)

(⇒) (−∆− τI)u = h(u)

(⇒) u = (−∆− τI)
−1
h(u) ≡ H(u).

Proof. For simplicity, assume τ = 0. We prove that for large M , H maps the set Z = {u ∈
L2(Ω) | ∥u∥2 ≤M} into itself and is cc.

If we do this then by the Schauder theorem, we can show that H has a fixed point which is our
solution.

Aside. Consider

−∆u = f(x) on Ω

u = 0 on ∂Ω
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Then a weak solution satisfies u ∈ Ẇ 1,2(Ω) and∫
Ω

∇u · ∇ϕ =

∫
Ω

fϕ︸ ︷︷ ︸
bounded linear functional
on Ẇ 1,2(Ω) if f ∈ L2(Ω)

∀ϕ ∈ Ẇ 1,2(Ω).

Thus
⟨u, ϕ⟩ = ⟨F, ϕ⟩

and so our solution is u = F .
If n ≥ 3, and if f ∈ L

2n
n+2 (Ω) with Ω bounded, then it suffices to prove

∫
Ω
fϕ is a bounded linear

functional on Ẇ 1,2(Ω). We have∣∣∣∣∫ fϕ

∣∣∣∣ ≤ ∥f∥ 2n
n+2

∥ϕ∥ 2n
n−2

by Hölder

≤ K∥∥ 2n
n+2

∥∇ϕ∥2 by Sobolev embedding

and so

∥∇u∥22 =

∫
|∇u|2 ≤ C∥f∥ 2n

n+2
∥∇u∥2

and hence
∥∇u∥2 ≤ C∥f∥ 2n

n+2

Proof of example. We now show that H has the desired properties. Let ϵ > 0. Then there
exists K > 0 such that

|h(y)| ≤ ϵ|y|+K

So we have

∥h(u)∥2 ≤ ∥ϵ|u|+K∥2

≤ ∥ϵu∥2 + ∥K∥2

≤ ϵ∥u∥2 +Km(Ω)1/2. (⋆)

Then we have

∥H(u)∥2 = ∥(−∆−1)h(u)∥

≤ K1∥h(u)∥2

≤ K1

(
ϵ∥u∥2 +Km(Ω)1/2

)
≤ 1

2
∥u∥2 + K2︸︷︷︸

=K1Km(Ω)1/2

letting ϵ = 1

2K1

Then H maps the set Z = {u ∈ L2(Ω) | ∥u∥2 ≤ 2K2} into itself (that is, H(Z) ⊆ Z.)
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Secondly, the image under H of this ball lies in a compact set in L2(Ω). It suffices to prove H
of this set lies in a bounded set in Ẇ 1,2(Ω) and then use the result that the inclusion mapping
i : Ẇ 1,2(Ω) → L2(Ω) is compact.

This is easy since {h(u) |u ∈ Z} lies in a bounded set in L2(Ω) by (⋆) and (−∆)−1 maps bounded
sets in L2(Ω) to bounded sets in Ẇ 1,2(Ω).

Finally, H is continuos. We prove that the map u→ h(u) is continuous and L2(Ω) → L
2n

n+2 (Ω).
This suffices since H = (−∆)−1 ◦ h.

Suppose that un → u in L2(Ω). As before, there exists T a set such that Ω−T has small measure
such that u is bounded on T and un → u uniformly on T . Hence h(un) → h(u) uniformly on T

and so ∫
T

|h(un)− h(u)|
2n

n+2 → 0.

We now need only prove ∫
Ω \T

|h(um)− h(u)|
2n

n+2 is small for large m

= ∥h(um)− h(u)∥ 2n
n+2 ,Ω \T

≤ ∥h(um)− h(u)∥α2,Ω \T

(∫
Ω \T

1

)β

by Hölder

where 1
α + 1

β = 1. We need only then bound

∥h(um)− h(u)∥2,Ω \T ≤ ∥h(um)∥2 + ∥h(u)∥2

≤ K1 by (⋆).

This result can also be shown using the result that if u ∈ L1(Ω), Ω bounded, then given ϵ > 0

there exists δ > 0 such that ∫
A

|u| ≤ ϵ

if m(A) ≤ δ. �

Consider the equation

−∆u = g(u,∇u) on Ω

u = 0 on ∂Ω.

This has a weak solution if g is continuous and bounded on R×Rn and Ω is bounded (by Schauder).
It is possible to show that this equation is a mapping of

{u ∈ Ẇ 1,2(Ω) | ∥u∥1,2 ≤ K}

into itself. We need to show that this mapping is compact, as above.
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Lemma 13.5 (Schauder). If A is a Banach

(i) A : E × [0, 1] → E is completely continuous, and
(ii) A(x, 1) = L where L is linear and I − L is invertible, and

(iii) if x = A(x, t) where 0 ≤ t ≤ 1, then ∥x∥ ≤M ,

then the equation x = A(x, 0) has a solution.

14. Other Types of Problems

If Ω is a bounded domain with smooth boundary, and consider the equation
∂u

∂t
= ∆u on Ω

u(x, t) = 0 if x ∈ ∂Ω

with u(x, 0) = u0(x) ∈ L2(Ω) given.
Suppose ϕi are the weak eigenfunctions of −∆ for the Dirichlet Boundary condition u(x, t) = 0

for x ∈ ∂Ω. Then ∥ϕi∥2 = 1 and they form a complete orthonormal basis for L2(Ω). Then we can
write

u(x, 0) =

∞∑
i=1

ciϕi(x)

where
∑
c2i <∞.

The solution can be then be uniquely written as

u(x, t) =
∞∑
i=1

cie
−λitϕi(x)

We can trivially see that

∥u(x, t)− u(x, 0)∥2 → 0

as

∥u(x, t)− u(x, 0)∥22 =
∥∥∥∑ ci

(
e−λit − 1

)
ϕi(x)

∥∥∥2
2

=
∑

c2i
(
e−λit − 1

)2 → 0.

Note that u0 ∈ L2, but u(x, t) ∈ C∞ for all t > 0.
Consider now the differential equation

∂u

∂t
= −∆u on Ω

u(x, t) = 0 if x ∈ ∂Ω
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for t ≥ 0. This is equivalent to running the heat equation backwards in time. Formally, the solution
is ∑

cie
λitϕi(x)

for t ≥ 0, which does not converge in L2.
It can be shown that there is at most one solution. This is an ill-posed problem.

15. Various Other Results

Theorem 15.1. Eigenfunctions of a compact self-adjoint operator form a complete set

Theorem 15.2. The inverse of the Laplacian is a compact, self-adjoint operator.

Comments on the exam.
(i) Asked some definitions.
(ii) Asked some simple proofs.
(iii) Asked some problem questions, possibly similar to assignments.
(iv) Look at the assignments for questions.
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