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1. PRELIMINARIES

In general, we cannot solve arbitrary PDEs. We generally seek to prove existence of solutions
and various properties of these solutions.

Assessment Schedule:
(i) Assignments - 2 or 3 (40%)
(ii) Exam - (60%)
References
(i) M. Protter and Weinberger — Mazimum Principle ...
(ii) M. Renardy — FElliptic PDEs
(iii) A. Friedman — FElliptic PDEs
(iv) F. John — PDEs

2. INTRODUCTION TO FUNCTIONAL ANALYSIS

Definition 2.1 (Quotient space). If M is a closed subspace of a normed vector space E, then
we define another normed space F/M, the quotient space. Elements of E/M are of the form
{u+m|m e M} where u € E.

We now define the vector space operations. Define (uy + M) + (ug + M) = (ug +uz) + M. If
X € K, define M(u+ M) = Au+ M. These operations make E/M a vector space.

Exercise 2.2. Show these operations are well defined.
Definition 2.3 (Normed quotient space). Define
lu4+ M| = inf ||u+m]|.
meM

If u ¢ M, |lu+ M| > 0. This is because if there exists (m,) € M with ||u + m,|| — 0, then
m, — —u, and so —u € M, which implies v € M.
We can also show that ||Au+ M| = |\|||u + m]|, and

[(ur + uz) + M| < [lug + M| + [Jug + M]|.
With this norm, E/M is a normed space.
Exercise 2.4. Check the triangle and scaling inequalities.
Lemma 2.5. Define an operator P by
P: E—FE/M
z—=x+ M

Then P is linear and bounded.
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Proof.
[Pz| = [z + M| = inf |z + M < [l]|
meM
Hence ||Pz|| < ||z|| and so P is bounded with || P|| < 1. O
Theorem 2.6. If F is a Banach space, then so is E/M, where M is a closed subspace of E.

Theorem 2.7. If M is a closed subspace of a normed space E and z € E\M, there exists f € E’
such that f(m) =0 for allm € M, and f(z) # 0.

Proof. z+ M is not zero in E/M, and so by the Hahn-Banach theorem, there exists h € (E/M)’
such that h(z + M) # 0. Then define f : E — K by f(z) = h(Pzx) where P : E — E/M is the
projection operator defined previously.

As f is the composition of two continuous maps, we have that f € E’. Now, not that f(m) =0
if m € M, as m + M is the zero coset. If z € E\M, then f(z) = h(z + M) # 0 by definition. O

Theorem 2.8. If T € L(X,Y) and IM T is closed, then
IMT={yeY|f(y)=0 forall f € Ker T"}

Remark.

(i) In fact, if IM T is not closed, the above theorem holds with Im 7.
(ii) This gives a solution to the inverse problem, i.e. given y € Y, does there exists € X such
that Tz = y.

Definition 2.9 (Dual mapping). Let T' € £L(X,Y). Define the dual mapping 7" € L(Y”, X') with
(T' f)(z) = f(Tz) for all feY’.

Proof of Theorem @ Let A= R(T), if z € A there existsf € Y’ such that f(y) =0forally € A
and f(z) #0. Let B={y e Y| f(y) =0Yf e N(T")}.
Hence
fly)=0vye A
f(Tz) =0V € X
(T'f)(z) =0Vz € X
so that T'f =0, and so f € N(T"). But f(z) #0, s0 z ¢ B, and so B C A.

If v e R(T), then v = Tz. If f € N(T'), then f(v) = f(Tz) = (T"f)(z) = 0, and so v € B.
Hence A C B. O

Remark. If H is a Hilbert space, and T' € L(H), then

(Tz,y) = (x,T*y) Va,yc H
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where T* is the adjoint. NOte that T* = J'T'J where J : H — H’ and T" is the conjugate
operator. In this case, if R(T) is closed, then

R(T)={ze€ H| (z,y) =0 Vye N(T)}.

Remark. When is R(T) closed?

(i) T A#0and K € £(X), Al — K has closed range.
(ii) If K € K(X), R(K) is closed if and only if R(K) is finite dimensional.
(iii) If N(T') = {0}, X,Y are Banach spaces, and T' € £L(X,Y), then R(T) is closed if and only if
there exists ¢ > 0 such that ||Tz|| > c||z|| for all z € X. Note that if R(T) is closed, it is a

Banach space.

Corollary (Corollary to Theorem @) If X and Y are Banach spaces and T € L(X,Y), then T
is invertible if and only if KER T = {0}, KER T" = {0} and IM T is closed.

Note that the open mapping theorems shows that T is invertible if and only if IMT =Y and
Ker T = {0}.

Proof. If Im T is closed, then by Theorem @,
IMT=Y <= Kger7T = {0},
asIMT={yeY|f(y)=0forall f € KEr T'}. O

In a Hilbert space H, if T € L£(H), then T* = J~1T"J where J : H — H’ is an isomorphism of
Hilbert spaces.

Definition 2.10 (Weak convergence). Let (x,) be a sequence in X. We say that z,, — = weakly
if f(x,) — f(x) for all f e X'

Lemma 2.11. If x,, — = in the usual sense, then z,, — x weakly.
Lemma 2.12. If z, — x weakly, then {x,} is bounded. Furthermore, ||z| < liminf, . ||z

Proof. By Hahn-Banach, there exists f € X’ such that ||f]| =1 and f(z) = ||z|. So ||z|]| = f(z) =

lim,, o0 f(zn) = liminf,, o f(z,). But
[f @)l < N fHlznll < llznll
as || f|l = 1. So
lz]| < liminf |z,
n— o0
O

Exercise 2.13. If (z,) is bounded, then z,, — z weakly if and only if f(z,) — f(z) as n — oo for

all functions in a dense subset of X'.
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In fact, if (x,) is bounded, we only need prove that if f(z,) — f(x) for a subset M of X', then
f(z,) — f(x) for all finite linear combinations of elements of M.
p—1
———
Example 2.14. Let 1 < p < oo, and consider the Banach space ¢P. Then let e,, = (0,0,0,...,1,...).

Then e, = 1 and e, — 0 weakly in 7 as n — oco. Let (#7) = ¢*" where Z%—!— i = 1. If fact,

every f € (¢7)' can be uniquely written as
oo
) =3 i
i=1

where (y;) € ¢¢". In ¢*'| the set of finite linear combinations of the e, are dense in £?', since we can

approximate () by (z1,%2,...,2Zm,0,0...), which is a finite linear combination of the (e,).

Hence a bounded sequence in /P, say ! = (z1,23,...),2% = (22,22,...) converges weakly if

and only if e;(x™) = z}* converges as n — oo for each i.

In particular, e; — 0 weakly in /7.

Theorem 2.15. If x,, — x weakly in X and T € L(X), then Tx,, — Tx weakly in X.

Note that this is not true for continuous non-linear maps.
Proof. Let f € X’'. Then
f(Lay) = (L' f)(zn) = (L' f)(z) = f(Lz)
weakly as ,, — x weakly and (L'f) is a bounded linear operator. O

Definition 2.16 (Bidual). Let X be a normed vector space. Then X’ is a Banach space. The dual
of the dual space, (X') = X" is known as the bidual of X.

There is a natural map
c: X=X

Tz

of X into X", defined as folllows. Let Z(f) = f(z) for all f € X’. Then we can see that Z is a
linear mapping, and we must show that it is a bounded map from X’ to R.
We have

12l = sup [&(f)| = sup [f(z)| < sup [[fll=]l <[]
NES! I£1<1 I£1<1

Thus ||Z|| < ||z||. (By Hahn-Banach, we can show [|Z|| = [|z||. )
Exercise 2.17. Show that KER ¢ = {0}.

Thus c is a bounded linear map with a zero null-space.
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Definition 2.18 (Reflexive). A Banach space is refexive if this map of X onto X" is bijective.

Example 2.19.

(i) Finite dimensional spaces are reflexive (as the bidual has the same dimension as the base
space).
(ii) €7, LP are reflexive if 1 < p < oo, and are not reflexive otherwise.
(iii) Hilbert spaces H are reflexive.

(iv) C(Q), the set of continuous operators on a compact set in R™.

Theorem 2.20 (Compactness property). A Banach space X is reflexive if and only if every bounded

sequence in X has a subsequence that converges weakly in X.

Remark (Closeness property). If C is a closed and convex subset of a Banach space X, and z,, is a

sequence in C' with z,, = y € X weakly, then y € C.
Proof. Uses the geometric version of the Hahn-Banach theorem.

Theorem 2.21 (Geometric Hahn-Banach). If C is a closed and convexr subset in X and z ¢ C,
there exists f € X' and m € R, such that f(x) <m for all x € C and f(z) > m.

If y ¢ C, there exists f € X’ and m € R such that f(z) <m for all z € C and f(y) > m. But
as f(zn) <mand f(x,) = f(y) (by weak convergence), we must have f(y) < m. Thus we achieve
our required result, y € C. O

3. LINEAR OPERATORS ON HILBERT SPACES

Theorem 3.1 (Lax-Milgram theorem). If T' € L(H) and there exists p > 0 such that Re (Tx,x) >
pllz||? for all x € H, then T is invertible.

Proof. If suffices to prove that KER T = {0}, IM T is closed, and KER T* = {0}, by a corollary to
Theorem @

By Cauchy-Swartz, we have
pllzl? < Re(Tz,x) < |(Tz,z) | < | Tz||||z].

If  # 0, then pl|z|| < ||Tz|, so KEr T = {0}.
Secondly, ||Tz|| > pl|z|| for p > 0 implies Im T is closed.

Exercise 3.2. Prove this proposition.

Then finally, we have

Re(Tz,z) = Re(x, T"z) < |{z,T"z) | < ||=||||T*z||
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by Cauchy-Swartz. So
plll® < [l 7|
and so p||z|| < ||T*z| and so KEr T* = {0}. O

Definition 3.3 (Coercive). T is coercive if there exists u > 0 such that Re (T'z, ) > plx?.

Definition 3.4 (Spectral radius). Let X be a complex Banach space. If T' € £(X), then we can
define the spectral radius 7(T) by the formula

r(T) = lim sup HT”||1/".

n— o0
Theorem 3.5. We have
r(T) =sup{|A| | A € o(T)}.
Note that r(T) < ||T||.

Theorem 3.6. If T € L(H) and T is a self-adjoint operator then r(T) = ||T||.

Proof. We have
IT)? = 77| = | 77|,

since for any linear operator T', we have
17> = 7T
Then by induction, we have

r(T) =limsup 72" |"/*" = ||
n— oo

Theorem 3.7 (Raleigh-Rety algorithm). If T € L(H) is self-adjoint, then
sup o (T') = sup{(T'z,z) | [|=]| = 1}
info(T) = inf{(Tz,z) | ||z| =1}

Proof. If suffices to prove the first statement (and then apply to —T'). We first show sup o (T) <

sup{(Tz,2) |Jal] = 1} = pu.
If A > u, then
Mlz||? = (Tz,2) > X —p >0

if ||z|] = 1. Hence

IN

(M =T)a,z) |zl =1
<L = T)lf|
= AL =Tz = (A = )|z

A—p
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and hence KER A — T = {0}, and as IM AI — T is closed by Exercise @7 we have that A\ — T is
invertible. Thus supo(T) > sup{(Tz, z) | ||z| = 1}.

Consequently, it suffices to assume o(T) is non-negative (replace T with T 4 rI). Then if
w € o(Th) with Ty self-adjoint, then there exists a sequence x,, with ||z, || = 1 such that

[T12n — pan| — 0

as n — oo. Existence of such a sequence is proven as if | Tyx — pz|| > «f|z||, then p ¢ o(T1).
Thus
<T133naxn> —

(T2, 20) = (11 — pd) Ty, Tp) + p(Tp, ) -
——

—0 “w

Thus
sup{(Tz,z) |||z|]| = 1} > supo(T).

Exercise 3.8. If || Tz|| > m||z| for all z, then IMm T is closed.

4. GENERALISED DERIVATIVES

Definition 4.1 (L}, .(Q)). Let Q@ C R™ be open. Then u € L}, () if u is measurable and u|x €

LY(K) for every compact K C €.

Definition 4.2 (Generalised derivative). We say u € L}, () has a (weak) generalised j-th partial
derivative if there exists g € L}, .(£2) such that

g == [ o0 (1)
for all ¢ € C°(Q).

Note that g is defined only up to sets of measure zero.
Note. The motivation comes from the integration by parts formula, where if u is C*(£2), then

09
/ axj / Ox; 9,
ou

for all ¢ € C(Q) by integration by parts. Thus we can write g = B

zj

Lemma 4.3. The function g, if it exists, is unique (up to sets of measure zero).

Proof. If g1, g> both satisfy (@) then

/ 8:10] /91¢ /92¢
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for all ¢ € C°(Q2). Thus
s ®
for all ¢ € C°(Q).
Suppose B is a ball with B C Q. Then
(91— 92)|5 € L(B).

Since (%) holds for all ¢ € C2°(B), consider the measurable function

1L (g1—g2)(2) 20

-1 (g1 —g2)(x) <O.
We assume that there exists (¢,) € C2°(B) such that ¢, are uniformly bounded and ¢, (z) —

sgn(g1 — g2) almost everywhere. This can be justified by Young’s inequality, where if

fulz) = /B bl — ) f(y) dy

sgn(g1 — g2) =

then || fulloo < [|¥nll | flloo, SO our approximating function f,, are uniformly bounded.
Then

0= / (91 — 92)bn — / (91 — g2)sgn(g1 — g2) = / l91 — g2
Q B B
as n — oo by the dominate convergence theorem.

Thus g1 — g2 = 0 almost everywhere on B. By the Lindeloff property (Lemma Q), Qis a

countable union of balls, and so we can extend this result to the result,
g1—92=0
almost everywhere on ¢. O

Lemma 4.4 (Lindeloff property). A separable metric space, such as R™, any open set is a countable

union of open balls.

Remark.
(i) If g is the generalised j-th partial derivative of u on Q and ©Q; C Q is open, then g|q, is the
j-th generalised partial derivative of u|q, .
(i) Assume A C €, u has a generalised j-th partial derivative on €2, A is open, and u is C* on A.
Then the generalised j-the partial derivative of u is equal to the classical partial derivative

almost everywhere on A.
Example 4.5. Consider the function
1 y>0

u(z,y) =
0 y<0O
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If the generalised derivative 2 5. exists, it must be zero when y > 0 and when y < 0.

It turns out that % exists but g—Z does not.
Example 4.6. f:R — R define by f(z) = |z| has a generalised derivative g defined by

1 x>0
g(z) =
-1 x>0

Note that f is Ct if x # 0 so if the generalised derivative exists it must be equal to g.
Example 4.7. If B; is the open unit ball in R? and

f@) = {m@ +4?) (v #(0.0)

- thus f(z) = 2In7 in polar coordinates.

Then
ou  2x
Or  x2 + 2
ou 2y
oy T+

are the generalised partial derivatives on R2.

Definition 4.8 (Generalised derivative). We say that u € L}, .(Q) has a generalised derivative on

Q if all the generalised partial derivatives g“ exist for 1 < j < n (where 2 is an open set in R").

Remark.

(i) If uy and uy have generalised derivatives on 2 and Cy, Cy are constant, then Ciu; + Coug has
a generalised derivative on €2, given by the appropriate linear combination.
(ii) If w has a generalised derivative on 2 and ¥ € C*°(Q), then vV has a generalised derivative
on 2 and 5 5 P
U
V)= _—WU
0 9, ) = 0 T dx;
Lemma 4.9. If uy has a generalised derivative on Q and up — w in L}, () as k — oo and if

8“’“ — g in L}, () then u has a generalised derivative on Q and

L
axl - gl'

oo ou
fmge == | o= ()

if 9 € C*(Q). Fix ¢ and choose K compact so the support of ¢ is contained in K. Then
U 5 a¢> —>u6¢ in L' on K.

Proof.
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Then letting k — oo in (%) we obtain

99 :_/ |
/Quaxj Qg]qb.

O
Remark. 1f g; € LP(Q) and g; — g in LP(Q), (1 < p < 00), then g; — g in L}, .(Q).
Proof. If K is compact, then
[ 5= < oy = gl 15
by Holder’s inequality. O

5. SOBOLEV SPACES

Definition 5.1 (Sobolev spaces). If 1 < p < oo and 2 is open in R", then the space
0
WiP(Q) = {u e LP(Q)]| 6“ € LP(Q) for 1 <i < n}
»
;/_/

generalised
derivatives

equipped with the norm

[[ul

] +§n:||—a” [
= ||u
1,p P . 8xi P

is a Banach space. We call W' a Sobolev space.

It is a linear space by linearity of the generalised derivatives. Similarly, the triangle inequality
holds as all components of the norm || - ||1,, satisfy the triangle inequality. It can be shown that
whtr C Lf’(Q)N‘*‘1 and WP is a closed subspace, which shows that WP is Banach, being the

closed subspace of a Banach space.
Proposition 5.2. W? is a Banach space. In fact, W'P is a closed subspace of LP(£2)"+1.

Proof. Consider the the map
Ou; 9

(uj777"'7 )—>(IUO,UJ17...,U)n)
0x1 ox
If uj — wo € LP(Q2), then g%i — wy in LP(Q) which implies that g%i — wy in L}, ,(Q).

By Lemma @, ‘g“;’f exists on Q and equals w!. Similarly, %7“;’? exists and equals w;. Then since

wo € WHP(Q) and %7;’;’ = w the closure property holds. Hence we have a Banach space. O

Note. Recall that all norms on a finite dimensional vector space are equivalent. For example,

"L Ou
P § ’ p\1/p
||qu + = || 8%- Hp)
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and
1/p

"L u
el + | D2 Il
J=1

are equivalent.

Definition 5.3 (Higher Sobolev spaces). We have
ou Ou

8961- ’ 8$i$j

W2P(Q) = {u e LP(Q) | cLP(Q) for1<i<mn,1<j<n}

Definition 5.4. W'?(9) is the closure of C2°(R2) in W'P(Q) in the norm || - ||;,. In general,
Whr(Q) C WhP(Q).
Proposition 5.5. W1?(R") = WhP(R").

Proposition 5.6. W12(Q), WY2(Q) are Hilbert spaces under the inner product (-,-) defined by

where (u,v) = [, u(z)v(z)de.
6. CONVOLUTIONS AND APPROXIMATIONS

Recall that there exists ¢ € CS°(R™) such that ¢(x) > 0 if ||z|| < 1 and ¢(z) = 0 if ||z|| > 1. We
can assume that [, ¢ = 1.
If fe L? (R") and 1 <p < oo, we define T, f by

loc
@0 = [o () st dy= oo f
where ¢. = e V¢ (£).
Proposition 6.1. If f € LP(R™) where 1 < p < oo, then
Tf — f
in LP(R™) as e — 0.
Lemma 6.2. If f has support in a compact set K, then T, f has support in {x € R"™|d(z, K) < €}.

Lemma 6.3. By Proposition , if f € LP(R™), there exists ¢ — 0 such that T., f — [ almost

everywhere as | — oo.

Lemma 6.4.
ITeflloo < [Iflloo

if f € L®(R™).
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Proof. If —1 < f <1 on R"™, then as
Te(_l) S Tef S Tel
that is,
—1<Tf(x) <1 Vz
then since T¢ f is linear we have
1T fllso < [1fllso
if f e L>*(R"). O

Proposition 6.5. C°(R") is dense in WY2(R™) that is, if f € WH2(R™), there exists (f,) €
C>(R™) such that ||f — fnlli,2 = 0 as n — 0.

Note that this is non-trivial as if Q0 is bounded the corresponding result is false.

Proof. Let f € WL2(R") and § > 0. By a previous exercise, there exists fewt? (R™) of compact
support such that 5

I7-fl<g.
Hence it suffices to find f, € C2°(R™) such that || f, — f]l1.2 — 0 as n — oo (as this would imply
I fn — fIl <4 for large enough n).

We prove that T.f € Wh2(R") and T.f — f in WH2(R") as € — 0. Recall that T, f € C°(R™).
Suppose that T, f € B(e){supp(f)} = {z € R"|d(z,supp(f)) < €}. Recall that T.f — f in L*(R")
as € = 0 from MATH 3969.

We thus need to prove

o - of
Zri=1 (2L 6.1
a$l f <a$l> ( )
——
generalised
derivative

If we prove that
0 A of of
87.231 <T€f> a TE <8xl> - 8$l
in L2(R").
We have

gutift@) = o (e [ (T2Y) fay)
— [ oo (F2Y) Fway

e [ o (Z2) Fnay
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where we use the fact that

Continuing, we obtain

as ¢ (Lzy) is a smooth function of compact support. Thus the generalised derivative exists as
f e Wh2(R™), and so the manipulation in (%) is justified.
O

7. FOURIER TRANSFORMS AND WEAK DERIVATIVES

Definition 7.1 (Fourier transform). If f € L'(R™), A € R", then the Fourier transform f of f is
defined by

fN) = [ ft)eMdt. (7.1)
Rn
Theorem 7.2. The map f — [ is a bijection on L2(R™).

Theorem 7.3 (Parseval’s theorem). If f € L2(R™), then (27)"||f||2 = ||f||3. This can be generalised
slightly to if f,g € L*>(R™), then

n)" (.90 = (£.0) = | F@)le)da

Theorem 7.4. If f € L>(R"), the following are equivalent:

(i) fe WH(R"),
(ii) —iNjf(\) € L2(R™) for 1 < j <m,
(iii) 14 |A[f(\) € L2(R™).
f 8;1”

If any of these hold, the generalised derivative 887]_ exists and g5~ (\) = —i)\jf()\) for1<j<n.

Proof. (i1) <= (iii) |\;f(N)] < [A|f(\)] and hence (ii) < (iii).
(i) = (i7) The only thing left to prove is that

of

5y M) = XS )
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for f € WH2(R"). We have

) n 6f n
fewt3R ):%jELQ(R)

of n
= 87j(>\) € L*(R™)

so to prove the previous result we choose f,, € C2°(R™) such that || f,, — f|l1,2 = 0 as n — co. Since

Ofn
&rj

(A) = —ij fu(N),

and f, — f in W12(Q), we have
= f, — fin L*(R")
= fn — f in L3(R")
= fu(A) = f()) a.e. (taking subsequences)

= O _, OF 4, L*(R™)
al'j .Tj
5}},, ou 9

= —iXjfa(N) = ﬁ(A) in L*(R™)
aa:j
Of o :
= a—xj(/\) = —i\; f(A) ae.
(#1) = (i) As —iX\;f(\) € L*(R™), and so there exists g; € L2(R™) such that
4= —iNFON.

Thus we have
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— —(2n)" (95, 9)
L . / 06

wnl Oj
and so g; is the j-th generalised derivative of f and g; € L*(R"), thus f € W12(R") O
Remark. As a consequence,
ue W»3R") < (14 |A?)a(N) € L*(R™)

and a similar result can be obtained for W*2(R™). This follows from the fact that

14 |A]?
O < ———=<(C
T aep
on R"™ where Cq,Cy > 0.
Example 7.5. Consider the PDE
—Autu=f (7.2)
on R", where f € L?*(R) and we look for u € W#2(R"). Taking Fourier transformations, we have
du . A
o = (i)
= —Aehja(N)
- (- > Ai) a() +an) = f(N)
k=1
(1+ A7) an) = Fv
So .
X )
A= I
=T

and u € W22(R") (since (1+ [A[?) a()\) = f(\) € L*(R™). This is the unique solution in W22,
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Example 7.6. Consider a slightly modified version of (@)

—Au = f.

we obtain 4(\) = | )(\‘)‘2) and this is not well defined for A near zero.

Example 7.7. Considering the equation (@), we take u € W12(R™) such that
[ uvorus) = [0 voecrm. ()
If this holds, it follows that ¢ € W2(R"). By Parseval’s theorem, we have

/ 3 i) in 60 + / aNd) = | FNSO

and this is solved by
X )
A) = —"—
W= TIp

Note that (x) has at most one solution in W2(R™). If uy, ug are solutions then we have
/VquH- urp = /f(b Vo € WH2(R™).

Subtracting these obtains
/Vu1 — uQngS + (Ul — Uzd)) =0.
Letting ¢ = uy — up € WH2(R"), we have

/V(Ul — ug)Vuy — ug + (ug — uz)? = 0.

>0 >0

8. POINCARE INEQUALITY AND APPLICATIONS

Lemma 8.1. Ifv € CY(R), a # b and v(a) = v(b) = 0, then
b

b
/ V() dt < (bfa)2/ (W' (t)? dt. (8.1)

a
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Proof. We have v(z) =v(a) + [ v/(t)dt = [Fo/(t)dt for a <z <b. So

lxu@ﬁﬂ
gtébw%o|m

X 1/2
< (b—a)'/? ( / (v (1)? dt) .

Squaring and integrating from a to b, we obtain our result,

o(z)] <

/b V() dt < (b— a)2/b (W' (1)) dt. 0

Theorem 8.2 (Poincaré inequality). If Q is a domain in R™ with Q C C where C is a cube of side
d, then
[w]l2,0 < d[Vwllz,0 (8.2)

forw e WH2(Q).

Remark. Recall that -W12(Q) c W2(Q) if Q is a bounded domain. Note that the identity function
1 € WH2(Q) does not satisfy this inequality.

Proof. First assume u € C2°(2). We can extend u to @ in C°(C') by defining a(z) = 0 if x € C'\Q.
Assume C' = [a,b]". Then (identifying v with @),

b b 2
0
/a w(zy,. .. x,)%dry < (b—a)Q/a ((“)xul> dxq

by Lemma @ Integrating over the entire n-cube, we then have

b b b b 6’1,6 2
/ / u(ml,...,xn)del...dxng(b—a)z/ / () dxy . ..dx,
a a a a 8xl

<G [ [VF

2
as |Vul? =Y 7 (@) . As u is zero on C'\ Q we have the result

=1 8$1
/ u? < d2/ |Vul? ()
Q Q
for u € C°(Q).
Now, if u € W2(Q), there exists u,, € C°(Q) such that ||u, — ull;2 — 0 as n — oo. For each

n, we then have
/ui §d2/ |V, |?
Q Q
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by (x). Taking the limit, we obtain our required result,

/u2 §d2/ |Vul?. O
Q Q

Intuitively, W12(Q) is the set of functions in W2(Q) vanishing on 9Q. If  is a domain with a

smooth boundary, then it can be proven there is a map 7', known as the trace map,
T:Wh3(Q) — L*(09)

such that Wh2 (@) = KER T. The key difficulty in the proof is showing the inequality
[ wlon)? < Kl
o0

if v € W2(Q). By the Poincaré inequality, we can use ||Vull2 as a norm on Wh2(Q) if Q is
abounded domain. This is equivalent to ||ul|2 + [|[Vulz.

Note that this norm is induced by the scalar product (assuming real u, v)

Oou Ov
VuVov = —_—
u,v) / uve= Z/ Oxj Ox;
Proposition 8.3. Consider the equation
—Au=f (8.3)

in Q, with boundary conditions u = 0 on 9Q and f € L?(Q). If Q is bounded, then this has a unique
weak solution in W1H2(Q).

That is, there exists a unique u € W2(Q) such that

/ —Augp = /Vu V¢ = /f(;ﬁ

for all ¢ € C°(Q). This equation follows from multiplying by a smooth function ¢ and integrating
by parts.

Proof. Let (u,v) = fQ VuVw is a scalar product on WLQ(Q) generalising the norm. The map
¢ fQ f¢ is linear in ¢. Our equation then reduces to

(u,0) = (f, )
where the right hand side is the L? inner product. Then we have
(£, )] < [ fll2ll@ll2

< Clfll2llVé|l2 by Poincaré inequality

and so (f, ¢) is a bounded linear functional on W12(Q).
So (f,¢) = (F,¢) where F € W12(Q) by the Reisz representation theorem. Thus setting u = F

we obtain our solution.
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Uniqueness is clear from (u — F,¢) =0=u— F = 0. O

Note. Consider looking for a solution u € C?(2) A C(Q) for the equation
—Au=f inQ
u=0 on 00

with f € L?(Q).

We can prove existence of a weak solution quite generally. If a(u,v) : H®H — k which is linear

in v for fixed u and linear in w for fixed v (bilinear) and there exists K such that
la(u, v)] < Kllulllv],

then we can write a(u,v) = (Lu,v) where L : H — H is bounded and linear.
If a is of this class on on W'2(Q2) and f € L*(Q), then the equation

a(u,v) = (f,v) (%)
for all v € W12(Q) can be written as
(Lu,v) = (F,v)

where L : W1’2(Q) — W172(Q) is bounded linear. Thus Lu = F. Thus the equation is uniquely
soluble if L is invertible. By the Lax-Milgram result (Theorem @), L is invertible if

Re (Lu,u) > cllullf , (%)

on W2(Q) where ¢ > 0. Thus (%) has a unique solution if (%) holds and (Lu,v) is bilinear and
bounded on W12(). Notice that (+*) can be written as Rea(u, u) > c|ul[3 ,.

Recall that the equation
—Au=f inQ
u=0 on 0N

with f € L?(Q). has a unique weak solution if (2 is bounded. We prove that u € Wfof(Q) To prove

thius, suppose that o € Q and choose ¢ € C°(Q2) and that ¢ = 1 in a neighbourhood of xy. We
prove that u¢ is the weak solution of the problem

—A(ug) + (ug) = w (x5 %)

on R™ where
w= f¢—2VuVep —ulAo + u¢p

L2(Rm)

But the solution of (x % x) is W22(R"), which can be derived by Fourier transforms.
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We now seek to prove (x x x). Choose 1) € C>°(R™). Then
[vtwe) - vo = [yt uve). vo
:/qu)-V?/J-i-/d)Vu-Vw (1)

and similarly,

[vuvon = [va-vo+ [vuveve

= [ (rew)
~ [ sou
and so
[ v @op= [ 160 [Tu- (v )
Then we have
[y vo= [uve) vor [ovu-ve by (1)
— [wvs-vor [sov- [Vu- (Vo by (1)

- [vv@vo)+ [ ov~ [ Vu-(vep

- [0 u-vorune)+ [ sov- [Vu- (Vo

= [0y~ 2(7u- V6) - u(do)u.

So
/ (V(ug) - Vb + ugn) = / (F — (2% - V) — u(Ad)) + udu)

Hence u¢ is a weak solution on R™ of —Az + z = w. We can use similar arguments to show that
f € Wk2(Q), which then implies that u € WlkJr2 2(Q).
It can be show that if uw € LP(Q) and —Au+u = f in Q, then u € VVﬁ)f(Q)

Now, consider the weak solutions of

0 ou ou
_g(a ()8x])+bl81+cu_f (8.4)

on Q, with u € W12(Q) We implicitly use the repeated index summation convention.
We seek to find u such that

[ (w52 ) + [ s [[wo= [ 1o
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for all ¢ € W12(Q). The left hand side is a bilinear operator A(u, ¢) where
A WH2(Q) x WH2(Q) - R

is bounded if a;5,b;, ¢ € L*°(£2) and hence are bounded on . In this case, there is a generalised

theorem that
A(u, ¢) = (Lu, ¢)

where L is a bounded linear map W'2(€2) — W2(Q). Then our equation becomes

(Lu, ) = /Q o= (F.9)

by the Reisz representation theorem. That is, Lu = f. Then our problem has a unique solution if
L is invertible. By Lax-Milgram (Theorem @), this is true if

Alu,u) > cllul]? 5.

We now seek to find assumptions such that A satisfies these conditions. We assume that there
exists ¢; > 0 such that
(aij (@), m;) = erlnl® (t1)
for all p e R*, xz € Q.

Consider the operator

Ou v
A(u,v)—/Qai]( )(“)xz oz, /bl%v+/ cuv.

To bound the second term, we have have

ou
bj— < b
‘/Q laffl|v| _/ | l|

|v|
= ol
< 9 lv]|2 by Cauchy-Swartz
Zill2
oull® 1 9 , 12
<Kl|e 3 + —|lvll3 by the inequality |st| < es” + —
Tl |lo € €

Other terms are similar but easier to bound. Thus we have a bounded bilinear map.

With the above assumptions, we have

Ou Ou ou
A = fi— — byt —— 2
(u,w) /Qajaxiaijr/Q lu@xl+/cu
~—_————

> fQ\Vu\z
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Estimating the final term, we have

/cu2 > inf ¢||ul|3.

The first term is bounded by the assumption (}7).

Coercivity is then given, A(u,u) > afullf, for a > 0 if b = 0 and infc > 0. If by = 0 and Q is
bounded, then infec > 0 is sufficient.

If b; does not vanish on €2, then we have the estimate

1 .
Aluu) 2 9l =~ K ([Tl + Hul} ) + el

Choose € such that Ke < p and infe > % Then we get
Alu,u) 2 & (| Vull3 + [Jull3) ,
and we obtain coercivity.
Lemma 8.4. If A(u,v) = fQ fo for all v € WY2(Q), then there is a unique weak solution in
WL2(Q) if A is bounded and bilinear, A is coercive, and f € L*(Q).
9. COMPACTNESS IN SOBOLEV SPACES

Theorem 9.1. If Q is bounded and open in R™ the natural inclusion i : W'2(Q) — L2(Q) is

compact. That is, bounded sets in W2(Q) are contained in a compact set of L*(S2).

Remark. The theorem does not hold for = R™, but true for W12(Q) under minor assumptions
on 9. There is a similar result for W?(Q) for 1 < p < occ.

Lemma 9.2. For e sufficiently small,

’(g?)(es) - 1)‘ < /1|52 (9.1)
on R™.

Proof. We have (;AS(O)— =1, ¢ is continuous and bounded, and so ’q@(s)‘ < K on R". So

’QZ’(GS)*I‘SKJrlSr\/W

K +1\?
|s|22< ha ) 1
"

N—————

#2
And so this is true if |s| > p (uniformly in €). Thus (@) holds if |s| > p.
5 is close to $(0) — 1 = 0. Note that ‘q@(es) - 1’ <rife

if

If |s| < p, es is small, and so ’qf)(es) -1

[(es) — 1| < ry/T+T5P

is small and |s| < p. Hence
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if |s| < p and € is small. Hence (@) holds and our lemma is proven.

Lemma 9.3. Given r > 0, there exists ¢g > 0 such that |Teu — ul] < rljulli2 if 0 < e < € and

ue Wh2(Q).

24

O

Proof. We choose a cube C such that © ¢ INT C. Notice that W12(£2) can be extended to W12(C)

by letting u = 0 on C\{2.
Choose ¢ € C°(R™) such that ¢ >0, [¢ =1, and ¢ even. Let

ﬂu=€”4¢(m;y)wwdw=@*u

where ¢ (z) = e "¢ (£).
Taking Fourier transforms, we have

6.(5) = [ oyt

; t
=" / el (> dt
€
= ¢(es).
Then estimating ||T.u — u||3 by Fourier transforms, we have

N 2
A= |Tou— | = 20)~" || T — uH2

= || Teu —lf5.

But Tiu = ¢t = ¢(es)i(s), and so

A= (277)—”/ ‘ ((éb(es) - 1) a(s))2

From Lemma @, we have

ds

A< (2w)*n/r2 (1—1s2)?|a(s)* ds
< r2(2w)*n/(1+ Is|?) |a(s)|? ds
= r?|[ul?

using the definition of the ||ul||? 5 as ||ul|l2 + || Vul2.
g 1,2 2 2

Hence || Tou — w3 < r2[ullf 5.

0

Definition 9.4 (Finite e-net). A finite set {a;}?; in a metric space Y is a finite e-net if ¥ C

Ui=y Be(ai).

Theorem 9.5. A closed net'Y in a compact metric space is compact if and only if it has a finite €

-net for every € > 0.
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Definition 9.6 (Precompact). A subset T in a complete metric space is said to be precompact if
T is compact.

T is precompact if and only if T has a finite € net for every € > 0.
Proof of Theorem @ It suffices to show that for any § > 0, the set
{ue W Q)| uli2 < 1}

lies in a compact set of L?(Q2) and hence it suffices to prove if § > 0 it haas a finite 5-net in L?(9).
Recall that )
Tou—ul| < =5
(Tew—l <

if u e WH2(Q), |lul12 <1 by Lemma @ Thus it suffices to get a finite S-net in L?(Q) for

{Teu | f|ull1,2}

for e small.

There are C' function on R”, and so

—n— r—y
T a) = [ o (2 ) ut an ()
It suffices to prove for a fixed e,
{Teu|l[ull1,2 < 1}
is precompact in C(C') (the set of continuous functions on the cube C.)
The map i : C(C) — L?(C) is continuous and so maps compact sets to compact sets. For fired
€, |(Tew) (z)| < K if |lul12 <1, as
7| < K [ fulw)]dy < Klul
< Kilfull
< Kiflulliz
< K.
On C,
|Teu(w1) — Teu(ws)| < sup |[(Tew)' (2)||z1 — 22
< Ki|zy — 29|
for any x1,29 € C. So T.u is uniformly bounded. This shows that {Tcu|||ull1 2 < 1} is equicon-

tinuous, in the sense that given p > 0, there exists 7 > 0 such that ||Teu(z1) — Te(z2)|| < w if
|z1 — @] < 7 for all u such that ||ull12 < 1.

Lemma 9.7 (Anzela-Anscoli). A bounded set in C(C) is precompact if and only if it is equicon-

tinuous.
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Proof. See Simmond’s book on Modern Analysis. O

Applying Anzela-Anscoli to our set {T.u| ||ul|1,2 < 1} then proves that it is precompact in C(C').

As a set that is precompact in C(C) is precompact in L?(C'), our theorem is proven. O
Remark. There are similar results for 4 : WHP(Q) — LP(Q) if 1 < p < oo if Q is bounded open.

Recall that W12(Q) — L?(Q) is compact if € is bounded.
Consider the equation
—Au=Xu+f inQ (9.2)
u=0 on N

with € a bounded domain in R™.

For a weak solution, we seek to find u € W2(Q) such that

/Vu-szA/uU—F/fv

for all v € W12(Q). This is equivalent to asking that
(1,0) = A (Bu,v) + (F.) ®

where (Bu,v) = (u,v) is a bounded bilinear form on W2(Q) and [ fv = (F,v). Note that (%) is
equivalent to
u=ABu+F (k)
whern u € WH2(Q).
Recall that

|(Bu,v)| = ‘/uv

< lullzllvll2

< Cl[Vull2[[ Vol

by Poincaré . Moreover, B is compact, as {2 is bounded. This is true as supposing that w, is
a bounded sequence in W12(Q).. Then {u,} has a convergent subsequence in W'2(2). But by

Theorem @, {u,,} has a subsequence which converges in L?(Q). Restricting now to the subsequence,
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for any uy,, u,,, we have
|Buy, — Bumll1,2 = sup [(Bup — B, )]

lvll1,2<1

= sup [(B(un — tm),v)|
[lv]l1,2<1

< sup |(Un — Um, )]
[lv]l1,2<1

< sup Jun —umll2 vl
[[v||1,2<1 N~ ~~
—0 <C|lvll1,2

by convergence in L?(f2), Cauchy-Swartz and the Poincaré inequality.

So || Buy, — By |12 — 0 as n,m — oo, and so {Bu,} converges in W12(Q) as required.

B is also self adjoint as (Bu,v) = [uv.

Theorem 9.8. The problem uw = ABu on Wl’z(Q) has an infinite sequence of eigenvalues {\,}
which are all real and X\, > 0 and A\, — o0 as n — oco. Moreover, I — AB is invertible if X # A\,
for all n.

Proof.

(i) The eigenvalues are all real as B is self-adjoint.
(ii) Note that the null-space of B is {0}, since

(Bu,u)z(u7u):/u2>0
Q
if u # 0.

Hence

u = ABu < (u,u) = (ABu,u)
0
>

A (Bu, u)
_A/

and so all eigenvalues are greater than zero.
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- 2
(iii) The smallest eigenvalue is inf, o / }V;;\ . By Theorem @, for any operator T' we have

supo(T) = sup (Tz,x)

llzll=1
T
o T2
[lz£0]| <.T,SC>

. Lo (@)
fo(B) = inf
info(B) 0 (Bz, )

of W)
i
u£0 (Bu, u)
2
= inf J 1V .
u#0 qu
(iv) If X # Ay, (@) has a unique weak solution for all f € L2(Q). If A = A,,, (@) has a solution
if and only if (f, ¢,,) = 0 for all eigenfunctions ¢,, corresponding to A = \,,.
Recall from Theorem @, Tz = y has a solution if and only if f(y) =0 for all f € KErR T".
Note that the this is satisfied if and only if (F, ¢,,) = (f, ¢;) = 0 for all eigenfunctions ¢,,.
(v) The set of eigenfunctions are an orthogonal basis for L?(€2) and W'2(f).

This is true for any compact self-adjoint operator.

O
Consider the equation
—Au=Xu+f inQ (9.3)
u=0 on 0N
(9.4)

with u € W2(Q) and f € L?(Q).
Consider the equation
0 0 0
— (aiju) —&—bi—u—i-cu:)\u—i—f in
; T Oxy
u=0 on 0N

with © bounded. We can apply the previous theory to this case (modulo some complications.)
Let f = 0. Then if X is the least eigenvalue of (@) then there is a non-negative eigenfunction
of (@) corresponding to A = A.

Theorem 9.9. Recall that )
= inf ‘[ [Vl

weW2(s) fu2 (9.5)
u#0
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If w € WH2(Q) achieves this minimum, then
—Al = \i.

Proof. Consider test functions of the form @ + e¢ where ¢ € WH2(Q). Then

[IV@t el _
J(a+ep)? —°7
and
d [IV(i+ed)|” |V i+ ed)|
de (4 + ep)?
This implies that
/ VuVe — g = 0
As this is true for all ¢ € WH2(Q), we have that @ is a weak solution of (@) for A = X and
f=o. O

Lemma 9.10. If @ is an eigenfunction corresponding to X then |i| is in WH2(Q) and |@ is a

minimiser of (@), and hence, as in Lemma @, |@| is also an eigenfunction corresponding to X.

Proof. Recall that

By the next section,

9 9L q(z) >0
() =4
i GRS
Then
2 Jiiw)| = | 22
ox; ox;
and so

J(viay® _ fival®
JlaP? |

Theorem 9.11. If f € L?(2) is non-negative and

>
O

—Au=f inQ
u=0 onoQ

foru e WH2(Q), then u >0 on 0.

Proof. Consider u~ as a test function in the definition of the weak solution
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and
o _ 0 u(z) >0
u (z) =
Oz g; u(z) < 0.
Since

[vu-vo= [ 1o
/fu_:/VuVu_:/|Vu_}2

Thus Vu~ = 0 and so u~ = 0 by Poincaré inequality (Theorem @) O

letting @ = u~, we have

10. FURTHER PROPERTIES OF W12(Q)
Theorem 10.1. If u € WH2(Q) where Q is bounded and open then u™ € W2(Q) and

0 a—"_ u(x) >0
u+: ox; ()

Iz 0 u(z) <0

Proof. If f € CY(Q), f(0) = 0, and f’ is bounded on R, then f(u) € W'2(Q) and %f(u) =
f’(u)g—fi if u € C°(Q) by the chain rule.
If u € WH2(Q), choose u, € C2(Q) 50 u, — u in WH2(Q) as n — oo. Then

/fUn 99 /f (“)un

in L?, taking subsequences gives

-[rg = [roge .

This can be shown as |f(0) — f(¢)] < K|s — t| by the mean value theorem, and so |f(u,(z)) —
fu(@)| < Klup(z) — u(x)]. On the left hand side, it suffices to show that f(u,) — f(u) in L*(£2),
then we use the dominated convergence theorem. We have

[1f (un(2)) = fu(@))lly < Kljun — ul|
Ounp

On the right hand side, we have L? convergence if we prove that each term (52, f'(un)o)

Since u, — u and 8“" — 8“v

converges in L?(£2), We have
ou, ou

_)
by a lemma of generalised derivatives, and

since they are both uniformly bounded and converge pointwise.
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More explicitly, we have

[ra5e = [ g = [ () - 5w) 52

0
< () = flu)ly | 92
— —mm—— XTg
—0

2

Now, consider the function f.(y) given by

VyZ+e y>0

0 y < 0.

fe(y) =

Then f, € C*, f/(y) = and |f1(y)] < 1.

- [rw5e = [ g

If u € W2(Q), then
Note that f.(y) — yT uniformly in R as € — 0, and hence converges in L?. Thus

[ ttwo= [ut.

Next, note that f/(y) is uniformly bounded and converges pointwise and in L?(£2) to 1,~0. Thus
[ #iw

L 09 ou
/ o 1“>0871:i¢

Remark. This tells us that a” =0 a.e. where u = 0, and also that d“ = —1u<0%.

by the previous step.

by Cauchy-Swartz,

u>0

Hence

dut : : ou
and so 9s, exists and is 1,50 Do

Remark. If u € WH2(Q)m then u™ € W12(Q) with the same formula for %.

Zi

If N =1 and W'2([a,b]) then there exists @ such that & = u almost everywhere and @ € Cla, b).
If N=2and uc W"3(Q), u e LP(Q) for all p > 1.
If N >3 and u € WH2(Q), then u € L?" () where 2* = 2
Exercise 10.2. If u € WH2(Q) and a > 0, then

(u—a)t e WH2(Q).
Remark. Tn general, if F' is Lipschitz on R with F(0) = 0 and u € W2(Q), then

F(u) € WH2(Q).
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Theorem 10.3. If n = 1 and u € WH2(Q), then u € C(Q) and u = 0 on N (assuming Q is
bounded and open). More precisely, there exists K > 0 such that if u € Wl’z(Q) there exists
v € C(Q) such that v =10 on 9Q, v =u almost everywhere, and ||v|locc < K||ull1,2-

This is true for W"P(Q) if n =1 and p > 1.

Proof. We prove for Q = (a,b), as any open set in R is a countable union of disjoint intervals. We
prove that there exists K > 0 such that if u € C°((a, b)), then
[ulloo < Kllull12- (%)

This will be sufficient to prove the theorem. To show this, suppose that w € Wl’z(Q) and
u, € C((a,b)) such that u, — w in W42 ([a,b]) as n — oo, then

ltn — tmlloo < Kl[un —umlli2 by (%)

< K (JJup —w

1.2+ [[tm — wll12)

—0
as m,n — oo. Hence sup ¢, 4] [un(z) —tm(x)| — 0asm,n — oo, and so {u, } is Cauchy in C([a, b]).
Hence there exists v € C([a, b]) such that u,, — v uniformly as n — oo and v(a) = v(b) = 0. Since
un, — w in L?([a,b]) as n — oo, then u,(r) — w(x) almost everywhere as n — oo, and so v = w
almost everywhere, with w continuous and w(a) = w(b) = 0.

So we have
[unlloo < Kllun1,2

[]loc < K]jv

1,2

and this is what we need. It suffices to prove () for u € C°((a,b)). Let x,y € (a,b), with z < y.
THen

So

u(z) —u(y)| <

/wy o' (t) dt
([ )" ([rora)”
< (y—2)"? ( / b |u’<t>|2dt>1/2

< (b= a)"?|[Vul)y
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Theorem 10.4. Ifn > 2 and § is bounded and open, there exists C' depending only on n such that
if u € WH2(Q) hen w € L¥ (Q) and [jull2- < C||Vul|1,2. Here 2* = 2.

Remark. There is a similar theorem for W12(Q) if 1 < p < n. Here p* = L.

Remark. u € L*(Q) and u € L? (Q) implies that u € LI(Q) for all 2 < ¢ < 2* by Hélder’s inequality.

Proof of Theorem . It suffices to assume that u € C°(£2).
Step 1.

Lemma 10.5. If u € Wh1(Q), then |jul1- < ||[Vulli, where 1* = e

n

Proof. By Holder, we have

1 1
n—1 1
Jtalx gl ctgual = ([1a) " ([lgaalr )
n—1 n—1
(/ lgil < |g2| ... |gn— 1) H (/|gzn 1) by induction.

For f € C°(R™), we have

f(l’l,. ..,(En) = (xl,...7xi,1,ti,xi+1,...,xn)dti

—00 6331‘

Then we can estimate |f| by

|f(m1,...,gcn)|§/_i

oo
S/ IVf(x1, . i, b, Tiga, - -, )| di
—o0

of
3177;

(1‘1, e ,xifl,ti,l‘prl, .. .,l‘n) dti

and so

n 00
|f\n§H/ IV (@1, imn, b Tigas - 20| dt
i=1v 7%

Then taking the (n — 1)-th root, we obtain

1Y < H (/ IVf(z1,. . imt, b, Tigt, .- 2n)| dti)

Now, integrating in x1, we have

1
n—1

1

\/|f|1* dzl < </ |Vfdt1> </|Vf 0% TP 7 1,tl,$l+1, ,I‘n)| dtldl'l) B
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Now integrating in x5, we have

1 1

/lVf|1* dzy dty < (/ |V f| dty dmz) " (//Vf it dx2> T .

n n—1
(H // |Vf| d.fl?l dl’g dti>
i=3
By induction, we obtain

/|f‘1* dey...dx, < (ﬁ/Vﬂdwldl‘n) o

=1

n

< (/Vf|dx1...dxn> o

and taking ”gl—th roots obtains the required result. O

We can also show
(i) If p > n, then WP(Q) C C(Q) and |lulls < C[|Vull,.

(ii) If n < 3, function in W22(Q) are continuous on the interior.
(iii) If uw € WH2(Q) and u(z) — 0 as & — I, then u € WH2(Q).

Step 2.

Complete the proof. As before, we construct v € C°(R™). Applying Step 1. to
|u|” where v > 1 and ~ is to be chosen, then

(/(W)n"l)n”l < (V)

<7 [l Vul,

L\ 1/p
<7 </ u”‘”'p—l) (/ |vu|”) by Hoélder

Then choosing y such that y-25 = (y — 1) p% =

p*, we have

(o) <o) (f )

p—1

Then dividing both sides by (f |u|”*)T , we have

1 1

(f1ur)" <cor(f |Vu|p);’
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Lemma 10.6. Consider the differential equation
Vu=f on{Q
u=0 on 0

with Q bounded. This has a weak solution in W42(Q). We claim that any classical solution is also

a weak solution.

Consider a classical solution u € C?(£2) N C(2). Then a classical solution (if it exists) is a weak

solution u € W12(Q) and
[vu-vo= [ 1o

for all ¢ € C2°(92). If u is smooth and ¢ has compact support, then

/vu~v¢:—/Au¢:/f¢
if Vu = f.

We need to check Vu € L*(Q) and u € W2(Q). Consider the function (u — a)™ € W1H2(Q) if
a > 0 that vanishes near 9. Then u —a € WH2(Q) and so (u — a)™ € WH2(Q) on compact sets,

as

0
8.%1‘
Then (u —a)t € WH2(Q) (by an exercise. )

Using (u—a)™ as a text function, we have

/Vu-V(u—a)J“:/f(u—a)+

<< [[fll2ll(w = a)* [l by Cauchy-Swartz

ou

t=_—1 .
(91177; {u>a}

(u—a)

=K
but

[vuv-a = [Vl 100 <K

4/ Va2
u>0

by monotone convergence theorem as a — 0, and so ut € L2. Similarly, Vu~ € L?*(Q), and so
Vu € L*(Q).
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11. APPLICATIONS TO NONLINEAR EQUATIONS
Consider the differential equation
—Au=g(u) inQ
u=0 on 0N

where g : R — R is continuous - so —Au(z) = g(u(x)).
We look for weak solutions, that is u € W2(Q) satisfying

/Vu Vo = /g(u)¢ for all ¢ € C°(Q). (11.1)

12. VARIATIONAL METHODS
Assume that € is bounded and ¢ is continuous and satisfies
lg(y)| < Kilyl + Ko

on R, and if G’ = g we assume that there exists u < A1 such thantEI

1
Gy) < §My2

for |y| large. Equivalently, G(y) < tuy® + K.
Consider the energy function E : W12(Q) — R defined by

LIVl - Gl ). (12.1)
/G )

We prove that there exists w € W12() such that
E(u) > E(w)

for all u € W12(2) and that such a w is a weak solution of our equation.

IHere, A1 is the minimal eigenvalue of the eigenvalue equation
—Au=Au on Q.
u=0 on Q.
Indeed,

JIup
[

A1 = inf
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Step 1. We prove that there exists C; > 0 such that E(u) > —C for all u €
W12(Q). From ([L1.1), we have

E(u)Z/ <1|Vu|2—1uu2—K3)
0 \2 2

%/ (|Vu|2 - uuQ) —Ks

>0

Y

—K;

v

=1.

since \; = inf f}v;;lz and so [ [Vul* > Ay [u?. Hence

/ (IVul* = pu?) > (A — u)/qﬂ > 0.

We get a little more,
B(u) > (O — ) (/u2> K

so if E(u) < Ky, we have that [u? is bounded. Thus by (%),

/ Vu?

E(uyn) — inf{E(u) lu € v'vlv?(gz)} :

is bounded. Thus if

then {u,} is bounded in W12(1).

Lemma 12.1. The sequence {u,} has a subsequence which converges weakly to

w e W2(Q) and w is a minimiser of E.

Proof. Recall from §E that every bounded sequence in a Hilbert space H has a
subsequence which converges weakly. Thus our sequence {u,} has a subsequence
that converges weakly to w.

We now need only show that w is a minimiser of E. Let u, — w in W12(Q)
Let i : W'2(Q) — L?(Q) be the inclusion mapping. Then i is a bounded linear
operator, and

i(un) = i(w)
in L2(Q). That is, u,, — win L?(Q). Since bounded sets in W12(£2) are precompact
sets in L?(Q), we can choose a subsequence such that u, — w (strongly) in L?(£).

Hence the weak convergence in W2 () can be “converted” into strong convergence
in L2(9).

37
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We now need to show that w minimises F and w is a solution to our equation.
We need to show that E(u,) — E(w) = 7. Recall that in a Banach space, if u, — u
weakly, then

[l < [[lim inf {|uy, .
n—oQ
Now, we then have
[w]1,2 < liminf [|up | 2
n— o0

Taking squares, we obtain
Vw2 < liminf ||V, ||2.
n—oo

We also need to prove that

/G(un) — /G(w) as n — oo (% % %)
Then we can show that

1
B(uy) = 5/|vun|2 - /G(un) S
and hence )
Bw) =5 [19uf - [ Gw <o
But E(w) > ~, and so E(w) = 7, that is, w is a minimiser.
It thus remains to prove (x * x). Since u, — w in L?*(Q), we can show that
u, — w a.e by taking subsequences. By a result in analysis (Ergerov’s theorem),

there exists sets Vi of arbitrarily small measure such that

uniformly on 2\ Vj as n — oo, again taking subsequences. We know that w is
bounded off a set of small measure and hence we can find a set Z of small measure

S0 U, — w uniformly on 2\ Z and w is bounded on 2\ Z. This implies that
G(up) = G(w)

uniformly on Q\ Z the fact that a continuous function on R is uniformly continuous

on bounded sets. Hence,

G(up) — G(w).
o\ z o\ z
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We now prove [, G(uy), [, G(w) are uniformly small in Z if Z has small measure.

We have
1
/G(un)g/ (uui—i—Kg)
z z \2

1
< f,u/ u? + Kam(2)
20 Jz

where m(Z) is the measure of Z.

Since u,, is bounded in W12(2), by Sobolev’s embedding theorem, we can show
that ||un||p« is bounded for p* > 2. So the first term is less than or equal to
Lillun3 - Since

1
7

for= (fmrr) ()

for q,q' Holder pairs, so letting p* = 2q for ¢ > 1, we have

[ ([r) oe?

1

< (unllp) = (m(2)) ¥

as required.

Recall that since w is a minimizer, we have

E(w+tg) > E(w) Ve CX(Q) Vit
9 pw+tg) =0
2 BE(w =
dt 0
if it exists. We will now prove that the derivative exists and equals

/Q V- Vo — glw)é.
In this case,
[vw-vo—guis voecz@.

and so —Aw = g(w).
We have

E(w+t¢)=%/wauqs)-wwﬂqs)— [ Glw+19)

1
= 5/ |Vw|? + 2tVw - Vo + 2|V ¢|? —/G(w+t¢).
Q
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Therefore

aEw+t¢ /Vw V¢+t/\v¢|2’ /G(w+t¢)
—E(w+tq’> = 0—/Vw V¢——/G w + t).

We thus need only prove that

G el = [ gwe

[Gw+ t;;ﬁ) —Gw) _ /G’(w + 0(z)tp(z))p(z)

where 0 < f(x) < 1. We need to prove (remembering G’ = g), that

/G’w+9 (2)tp(z —>/

Choose a set T so that p(2 —T') is small and w, ¢ are bounded on T'. Then

g(w +10(z)d(x)) = g(w(x))¢(x)

uniformly on T" as t — 0 as g is uniformly continuous on bounded sets. We need

Now

only prove that
/’gw+wmmmww
O\T

is small for all ¢ small.
. CBF finishing this.

Remark.
(i) If g(0) = 0, our minimum may be u(z) = 0.
(ii) If g(0) = 0 and ¢’(0) > A, 0 may not be the minimum and we must have
a non-trivial solution. We only need to find z € W'?(Q) with E(Z) < 0.
We choose z = t¢, where t is small and positive and ¢; is the eigenfunctino

corresponding to A\;. Then

77’;(28) —~0as s — 0. Then

E(te) = 7t2 (A — /¢1+0t2

if ¢ is small.
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13. FiXED POINT METHODS

Theorem 13.1 (Brower). B™ is the closed ball in R™ and f : B™ — B" is continouus then there
exists © € B™ such that f(x) = x.

Definition 13.2 (Completely continuous). A : E — E is completely continuous (cc) if A is
continuous and if D is bounded in E, then A(D) is compact in E.

Lemma 13.3. If E is an infinite dimensional Banach space hen I : E — E is not cc.

If A is linear, A: E — E, then A is cc if and only if A is compact.

(Shauder). If D is closed, bounded and convex in a Banach space E and A: D — E is cc and
A(D) C D, then there exists x € D such that A(z) = x (fized point).

Example 13.4 (Example of fixed point methods). Let g : R — R be continuous and # — T as

ly| = oo where 7 is not an eigenvalue of

—Au=Mu onf§
u=0 on o)

We prove the problem
—Au=g(u) on{
u=0 on 0N

has a weak solution

9(y) = Ty + h(y)
h(y)

where =% — 0 as [y| — oo.

Note that if such a solution exists, then we have
—Au = Tu+ h(u)
(=) (—A = 71 u = h(u)
(=) u=(—A—70)""h(u) = H(u).
Proof. For simplicity, assume 7 = 0. We prove that for large M, H maps the set Z = {u €
L?(Q) | ||lull2 < M} into itself and is cc.
If we do this then by the Schauder theorem, we can show that H has a fixed point which is our

solution.
Aside. Consider

—Au= f(z) onQ
u=0 on 0N
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Then a weak solution satisfies u € W12(Q) and

/ Vu -V = fé Vo € WH2(Q).
Q Q
bounded linear functional
on WH2(Q) if f € L2(Q)
Thus
(u,9) = (F, ¢)
and so our solution is u = F.
Ifn>3,and if f € L%(Q) with € bounded, then it suffices to prove fQ f¢ is a bounded linear

functional on W12(2). We have

]/m‘ < I1fl) 2 1] 2o, by Holder

< K””f%g IVé|l2 by Sobolev embedding

and so
[Vul3 = /lvu\2 < CO|fl 25, IVulla
and hence
IVullz < CILfIl 22,

Proof of example. We now show that H has the desired properties. Let ¢ > 0. Then there
exists K > 0 such that
Ih(y)| < elyl + K

So we have
[h(u)]l2 < llelu] + K|2
< [leull2 + [|K]|2
< ellullz + Km(9)'/2. (%)
Then we have
IH (u)ll2 = [[(=A™Hh(w)]|
< Kil|h(u)ll2

< K (ellulla + Km(Q)?)

1 1
S §||U||2 + K2 lettlng € = ﬁ
=K1 Km(Q)1/2

Then H maps the set Z = {u € L*(Q) | |lul2 < 2K} into itself (that is, H(Z) C Z.)
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Secondly, the image under H of this ball lies in a compact set in L?(£2). It suffices to prove H
of this set lies in a bounded set in WLQ(Q) and then use the result that the inclusion mapping
i: Wh2(Q) — L%(Q) is compact.

This is easy since {h(u) |u € Z} lies in a bounded set in L?(2) by (x) and (—A)~! maps bounded
sets in L2(Q) to bounded sets in W12(€).

Finally, H is continuos. We prove that the map u — h(u) is continuous and L%(Q) — Lot (Q).
This suffices since H = (—A)~! o h.

Suppose that u,, — u in L?(Q). As before, there exists T a set such that —T has small measure
such that « is bounded on T and w,, — w uniformly on 7. Hence h(u,) — h(u) uniformly on T

and so
/ () — h(u)| 2 — 0,
T

We now need only prove

= [[P(um) = h(w)l] 20, 0\ 7

nta’
B
< ||h(um) — h(u)Hg,Q\T </SI\T 1) by Hoélder

where é + % = 1. We need only then bound

() = h(w)ll2,0\ 7 < [[P(um)l2 + [|A(u)]2
S Kl by (*)

This result can also be shown using the result that if u € L'(Q), Q bounded, then given € > 0
there exists § > 0 such that
[u<e
A

if m(A) < 6. O

Consider the equation

—Au = g(u,Vu) on Q
u=0 on Jf.

This has a weak solution if g is continuous and bounded on R x R™ and €2 is bounded (by Schauder).

It is possible to show that this equation is a mapping of
{ue WH2(Q)||lulli2 < K}

into itself. We need to show that this mapping is compact, as above.
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Lemma 13.5 (Schauder). If A is a Banach
(i) A: E x[0,1] = E is completely continuous, and
(i) A(x,1) = L where L is linear and I — L is invertible, and
(iii) if x = A(x,t) where 0 <t <1, then ||z|| < M,

then the equation x = A(x,0) has a solution.

14. OTHER TYPES OF PROBLEMS

If © is a bounded domain with smooth boundary, and consider the equation

%:Au on

u(z,t) =0 if x € 90
with u(z,0) = ug(z) € L?(Q) given.
Suppose ¢; are the weak eigenfunctions of —A for the Dirichlet Boundary condition u(x,t) = 0

for x € Q. Then | ¢;|l2 = 1 and they form a complete orthonormal basis for L?(£2). Then we can

write -
u(z,0) = Z cipi(x)
i=1

where Y ¢ < oco.

The solution can be then be uniquely written as
oo
u(x, t) = Z CieiAit(]si(ﬂf)
i=1
We can trivially see that
[u(z,t) — u(z,0)]]2 = 0
as
lue,t) = u(@,0)[3 = Y ci (™ = 1) éu(a)|
= Zcf (e_/\” — 1)2 — 0.

Note that ug € L?, but u(z,t) € C* for all t > 0.

Consider now the differential equation

%:—Au on Q)

u(z,t) =0 if x € 90

2
2
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for ¢t > 0. This is equivalent to running the heat equation backwards in time. Formally, the solution
is

Z cieitgi(x)
for t > 0, which does not converge in L2.

It can be shown that there is at most one solution. This is an #ll-posed problem.
15. VARIOUS OTHER RESULTS
Theorem 15.1. Eigenfunctions of a compact self-adjoint operator form a complete set
Theorem 15.2. The inverse of the Laplacian is a compact, self-adjoint operator.

Comments on the exam.
(i) Asked some definitions.
(ii) Asked some simple proofs.
(iii) Asked some problem questions, possibly similar to assignments.
)

(iv) Look at the assignments for questions.
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