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1. Theory of Option Pricing

Definition 1.1 (Brownian motion). A process Wt is a P-Brownian motion if it satisfies

(1) Wt is continuous with W0 = 0 (a.s.)
(2) Wt has stationary and independent increments.
(3) For any t > 0, Wt ∼ N(0, t) under the probability measure P.

Theorem 1.2 (Properties of conditional expectation). Assume we have a probability space (Ω,P)
and σ-algebras G,G1,G2. Assume that G2 ⊂ G1. Then

(1) If X is a random variable, then

E(X | G2) = E(E(X | G1) | G2)

(2) If Y is a G-measurable random variable, then

E(XY | G) = Y E(X | G)

Definition 1.3 (Martingale). A stochastic process Xt is a Ft-martingale if E(|Xt|) < ∞ and

Xs = E(Xt | Fs)

for all s ≤ t.

Theorem 1.4 (Itô’s lemma). If F (Xt, t) is C2,1 and dXt = αt dt+ βt dWt, then

dF = (Ft + αFx +
1

2
β2Fxx) dt+ βFx dWt

Lemma 1.5 (Product and Quotient rule). Let Xt be an Itô processes, so that

dXt = αdt+ βdWt.

Let F (Xt, t), G(Xt, t) be C2,1. Then

d(FG) = (F dG+GdF ) + β2FxGx dt

d(F/G) =
GdF − F dG

G2
+

β2Gx

G3
(FGx −GFx) dt

Lemma 1.6 (Itô isometry). If σs ∈ L2, then

E(
∫ t

0

σs dWs)
2 = E(

∫ t

0

σ2 ds)

Definition 1.7 (Local martingale). Xt is a local martingale if there exists a sequence of stopping
times νn such that for every n, the process Xn

t = Xmin(νn,t) is a martingale.

Theorem 1.8 (Martingale representation theorem). Let Ft be the natural filtration of a Brownian
motion.
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(1) Any progressively measurable process σt satisfying

P(
∫ t

0

σ2
s ds) < ∞ = 1 ∀t

the process

t 7→
∫ t

0

σs dWs

is a local martingale.
(2) If Xt is an L2 martingale, then there exists a progressively measurable process σs such that

Xt =

∫ t

0

σs dWs

Hence the Brownian martingales (martingales with respect to the Brownian filtration) are essen-
tially the Itô integrals.

Theorem 1.9 (Girsanov). Let λt be progressively measurable with

E exp(1
2

∫ T

0

λ2(t) dt) < ∞

Then there exists a measure P⋆ such that

(1) P⋆ is equivalent to P,
(2)

dP ⋆

dP
= exp(−

∫ t

0

λt dWt −
1

2

∫ t

0

λ2
t dt)

(3) W ⋆
t = Wt +

∫ t

0
λs ds is a P⋆-Brownian motion

As a partial corollary, if P⋆ is equivalent to P then there exists a progressively measurable process
λt such that

W ⋆
t = Wt +

∫ t

0

λs ds

is a Brownian motion under P⋆.

Corollary. We can then use Girsanov’s theorem to transform a Brownian motion with drift to a
martingale. e.g. Under P,

dXt = µt dt+ σt dWt

= σtd(Wt +

∫ t

0

σ−1
s µs ds)

= σtdW
⋆
t

where we set λs = σ−1
s µs in Girsanov’s theorem.
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Theorem 1.10 (Multivariate Itô’s lemma). Let dXi,t = αi dt+βi dWi,t with Wi,t correlated Brow-
nian motions. Then if F (X1,t, . . . , Xn,t, t) is C2,1, then

dF =

Ft +

n∑
i=1

αiFi +
1

2

n∑
i=1

n∑
j=1

βiβjρijFij

 dt+

n∑
i=1

βiFi dWi(t)

2. Black-Scholes PDE Method

Theorem 2.1 (Black-Scholes PDE). Let f(Xt, t) represent the price of a contingent claim on an
asset Xt, where Xt is assumed to follow geometric Brownian motion. Under certain assumptions,
we can derive the Black-Scholes PDE,

ft = rf − rxfx − 1

2
σ2x2fxx

Solving the Black-Scholes PDE along with initial conditions and payoff at expiration yields the
function f(Xt, t) which gives the option value at any time t and any underlying value Xt.

3. Martingale method

Consider a market with risky security Xt and riskless security Bt.

Definition 3.1 (Contingent claim). A random variable CT : Ω → R, FT -measurable is called a
contingent claim. If CT is σ(XT )-measurable it is path-independent.

Definition 3.2 (Strategy). Let αt represent number of units of Xt, and βt represent number of
units of Bt. If αt, βt are Ft-adapted, then they are strategies in our market model. Our strategy
value Vt at time t is

Vt = αtXt + βtBt

Definition 3.3 (Self-financing strategy). A strategy (αt, βt) is self financing if

dVt = αt dXt + βt dBt

The intuition is that we make one investment at t = 0, and after that only rebalance between Xt

and Bt.

Definition 3.4 (Admissible strategy). (αt, βt) is an admissible strategy if it is self financing
and Vt ≥ 0 for all 0 ≤ t ≤ T .

Definition 3.5 (Arbitrage). An arbitrage is an admissible strategy such that V0 = 0, VT ≥ 0 and
P(VT > 0) > 0.

Definition 3.6 (Attainable claim). A contingent claim CT is said to be attainable if there exists
an admissible strategy (αt, βt) such that VT = CT . In this case, the portfolio is said to replicate
the claim. By the law of one price, Ct = Vt at all t.
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Definition 3.7 (Complete). The market is said to be complete if every contingent claim is
attainable

Theorem 3.8 (Harrison and Pliska). Let P denote the real world measure of the underlying asset
price Xt. If the market is arbitrage free, there exists an equivalent measure P⋆, such that the
discounted asset price X̂t and every discounted attainable claim Ĉt are P⋆-martingales. Further, if
the market is complete, then P⋆ is unique. In mathematical terms,

Ct = BtE⋆(B−1
T CT | Ft).

P⋆ is called the equivalent martingale measure (EMM) or the risk-neutral measure.

4. Monte Carlo methods

4.1. Method of antithetic variances. Instead of simulating X, also simulate a random variable
Z with the same variance and expectation as X, but is negatively correlated with X. Then take as
Y the random variable

Y =
X + Z

2
Obviously E(Y ) = E(X). On the other side, we have

Var(Y ) = Cov
(
X + Z

2
,
X + Z

2

)
=

1

4
Var(X) + 2Cov(X,Z) + Var(Z) ≤ 1

2
Var(X)

So we can reduce variance by a factor of two.

4.2. Control variate method.

Theorem 4.1. Suppose we seek to estimate θ = E(Y ) where Y = h(X) is the outcome of a
simulation. Suppose that Z is also an output of the simulation, and assume that E(Z) is known.
Let

c =
Cov(Y, Z)

Var(Z)
. (‡)

Then
θ̂c = Y + c(E(Z)− Z) (†)

is an unbiased estimator of θ, and if Cov(Y, Z) ̸= 0, θ̂c has a lower variance than θ̂ = Y , and indeed
has the lowest variance for all estimators of the form

θ̂γ = Y + γ(E(Z)− Z)

Proof. We have
Var(θ̂c) = Var(Y ) + c2Var(Z)− 2cCov(Y, Z). (⋆)
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From elementary methods of calculus, we see that Varθ̂c is minimised at

c =
Cov(Y,Z)

Var(Z)

Substituting in this value for c in (⋆), we obtain

Var(θ̂c) = Var(Y )− Cov(Y, Z)2

Var(Z)

= Var(θ̂)− Cov(Y,Z)2

Var(Z)

and thus we only need Cov(Y, Z) ̸= 0 to obtain our variance reduction.
In practice, we do not know Cov(Y, Z). Thus, we have to do a number of burn-in simulations to

generate Y and Z, and then compute an estimate ĉ to use in the full simulation. �

5. Numerical Simulation of Stochastic Differential Equations

Theorem 5.1. Let
dXt = a(t,Xt) dt+ b(t,Xt) dBt

Assume EX0 < ∞. X0 is independent of Bs and there exists a constant c > 0 such that

(1) |a(t, x)|+ |b(t, x)| ≤ C(1 + |x|).
(2) a(t, x), b(t, x) satisfy the Lipschitz condition in x, i.e.

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C|x− y|

for all t ∈ (0, T ).

Then there exists a unique (strong) solution.

Definition 5.2 (Strong convergence). A numberical scheme for solving an SE is said to converge
with strong order γ, if for sufficiently small ∆, we have

E(|X(T )−XN |) ≤ KT∆
γ

This implies that the generated paths approximate the true paths of the SDE - and so one calls
this path-wise convergence or strong convergence.

Definition 5.3 (Weak convergence). A numerical scheme for solving an SDE is said to converge
with weak order β if for sufficiently small ∆ and each polynomial g, we have

|E(g(XT ))− E(g(XN ))| ≤ Kg,T∆
β

Note that strong convergence always implies weak convergence.
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Note also that strong convergence implies pathwise convergence. This is true by Markov’s in-
equality, we have

P(|Xn −X(T )| ≥ ∆β/2)o ≤ E(|Xn −X(T )|)
∆β/2

≤ C
∆β

∆β/2

Note. (1) Weak convergence is basically convergence in distribution, but it has no path-wise
properties.

(2) If terms like E(h(XT )) are computed via Monte Carlo, then the weak convergence concept
is sufficient.

(3) If the option is a path dependent option, then strong convergence is the right concept, as
the payoff depends on the whole path, rather than the distribution of the terminal value of
the stock.

Theorem 5.4 (Euler-Maruyama scheme).

X0 = X(0)

Xn+1 = Xn + a(tn, Xn)∆tn + b(tn, Xn)∆Wn

where

∆tn = tn+1 − tn

∆Wn = Wtn+1
−Wtn l

Euler-Maruyama has strong convergence order γ = 1
2 and weak convergence order β = 1.

Theorem 5.5 (Milstein scheme). Consider the homogenous scalar stochastic differential equation

dXt = a(Xt) dt+ b(Xt) dWt

X0 = X(0)

Xn+1 = Xn + a(Xn)∆tn + b(Xn)∆Wn +
1

2
b′(Xn)b(Xn)((∆Wn)

2 −∆tn)

One can prove that the Milsten scheme has strong and weak convergence order γ = 1.

6. Stochastic Optimal Control

Definition 6.1 (Controlled stochastic differential equation).

dx(t) = f(t, x(t), u(t)) dt+ σ(t, x(t), u(t)) dW (t)

where u(t, ω) = u(t, x(t, ω)) is a stochastic process, known as the control.
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Definition 6.2 (Admissible control). A control u is called admissible for the constraints if for every
initial value x0 ∈ S the corresponding stochastic differential equation has a unique solution with
x(0) = x0 and u(t, ω) ∈ U for all t ∈ [0,∞]. We denote the set of admissible controls with A.

Definition 6.3 (Stochastic optimal control problem). We seek to solve

max
u∈A

E

[∫ T

0

e−rtB(t, x(t), u(t)) dt+ e−rTS(x(T )) · 1T<∞ dt

]
under the dynamic constraint

dx(t) = f(t, x(t), u(t)) dt+ σ(t, x(t), u(t)) dW (t)

with initial condition x(0) = x0, and discount rate r > 0.
B is called the benefit function, S is called the final payoff, and the control u is called the optimal

control, and the optimal value is called the value of the problem.

Definition 6.4 (Value function).

max
u∈A

E

[∫ T

t

e−r(s−t)B(s, x(s), u(s)) ds+ e−r(T−t)S(x(T )) · 1T<∞ dt |x(t) = x

]
subject to

dx(s) = f(s, x(s), u(s)) ds+ σ(s, x(s), u(s)) dW (s)

x(t) = x

Note that V (0, x0) is the value of the optimal control problem. V (t, x) is the value of the problem,
if we started at time t with initial state x.

Theorem 6.5 (Hamilton-Jacobi-Bellman equation). Assume T < ∞. Let V : [0, T ]× S → R be a
C1,2 function and assume it satisfies the HJB equation

rV (t, x)− Vt(t, x) = max
u∈A

(
B(t, x, u) + Vx(t, x)f(t, x, u(t)) +

1

2
tr(Vxx(t, x)σ(t, x, u)σ(t, x, u)

T )

)
V (T, x) = S(x).

Let ϕ(t, x) be the set of maximisers of the right hand side and let u∗ ∈ A such that u∗(t, ω) ∈
ϕ(t, x(t, ω)) for all t ∈ [0, T ], ω ∈ Ω. Then u∗ is the optimal control and V is the value function for
the stochastic optimal control problem.

Theorem 6.6 (Hamilton-Jacobi-Bellman equation, infinite time). Consider the time homogenous,
infinite time horizon problem

max
u∈A

E
[∫ ∞

0

e−rtB(x(t), u(t)) dt

]
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subject to
dx(t) = f(x(t), u(t)) dt+ σ(x(t), u(t)) dWt.

Then the value function is independent of t, and so V (t, x) = V (x), and the optimal control is of
the type u(t, x) = u(x). The HBJ equation in this case becomes the ODE

rV (x) = max
u

(
B(x, u) + V ′(x)f(x, u) +

1

2
V ′′(x)σ(x, u)2

)
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