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Abstract

In this thesis, we examine the use of intensity models in modelling credit risk. In this approach,
we assume the existence of a stochastic process λt representing the instantaneous default probability
of an obligor. We then specify various Lévy processes for the intensity process λt, with particular
emphasis on non-Gaussian Ornstein-Uhlenbeck process, derive various theoretical properties of
these models, and calibrate these models to credit market data. We ĕnd that Gamma-OU and In-
verse Gaussian-OU Lévy processes can be effectively applied in an intensity context, and provide
several advantages over conventional Poisson processes.

We then extend the intensity approach to modelling multivariate credit derivatives. We dis-
cuss various proposed multivariate intensity models, and extend several copula models using our
candidate Lévy processes to derive our marginal distribution. Our empirical results are then com-
pared and contrasted with previous results in the literature. Again, we show that non-Gaussian OU
processes offer plausible correlation sensitivities and VaR proĕles for several multivariate credit
derivatives.
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An Introduction to Credit Risk Modelling

1.1. Credit Derivatives

Since the global ĕnancial crisis of 2008, much attention has been placed on ĕnancial products
known as credit derivatives, towhich someblame for the crisis has been attributed. Credit derivatives
were ĕrst introduced in 1994 as a product to hedge credit risk - broadly speaking, the risk that an
obligor does not honour his payment obligations.

Credit risk is inherent in all ĕnancial markets. For example, a bank takes on credit risk when it
extends a loan to a person to buy a house - it is exposed to the person defaulting on his debt. With
credit derivatives,market participants are able to hedge, transfer andmanage their exposure to credit
risk - it can be regarded as an insurance against default. A credit derivative is a ĕnancial derivative
whose payoff is affected by the default of a reference entity (or a basket of reference entities).

e cornerstone of the credit derivatives market is the credit default swap (CDS). In a CDS, a
protection buyer transfers default risk to a protection seller for a predetermined amount of time
T. e protection buyer makes predetermined payments to the seller, until the maturity date T of
the contract, or a default event, whichever occurs ĕrst. If a default event occurs, the protection
seller pays the protection buyer the notional amount of the contract [58]. Credit default swaps are
the most commonly traded credit derivative, accounting for approximately 30% of the market. e
Bank of International Settlements (BIS) recently reported the notional amount of outstanding CDS
contracts exceeds $30 trillion. Figure 1.1 illustrates the rapid growth in the CDS market leading up
to the ĕnancial crisis of 2008.

Credit default swaps are traded on almost all forms of debt by a variety of market participants.
Typically, protection buyers are commercial banks and pension funds seeking to hedge their credit
risk, while protection sellers are oen hedge funds in a speculative role. Credit default swaps are
traded on nearly all forms of debt, from CCC sovereign issuers (such as Greece) to AAA corpora-
tions (such as Microso). e credit default swap market is highly active, with over $13 trillion in
net single-name notional exposure being traded in the week of 1/10/11 [37].

A commonly traded derivative of the credit default swap is a credit default swap index, which al-
lowsmarket participants to buy and sell credit protection on a basket of reference entities. Common
CDS indices include the CDX (125 investment-grade North American credits), iTraxx Europe (125
investment-grade European credits), and the CDX HY (100 high yield North American credits).
Over $6 trillion in net CDS index exposure was traded in the week of 1/10/11 [37].
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1.2. Credit Risk Modelling

Credit markets have experienced exponential growth in recent years, and consequently regula-
tory bodies have acted to ensure ĕnancial institutions account for increased credit exposure. Much
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research has gone into developing models to assess credit risk. ese models as typically classiĕed
into two categories: structuralmodels and intensitymodels.

Structural models seek to model the value of the assets on which the debt is written. ese
models were inspired by the classical Black-Scholes insight that the debt of a ĕrm can be viewed
as a contingent claim on the assets of the ĕrm [11, 48]. Typically, the dynamics of the asset value
of a ĕrm Vt is given and the event of a default is speciĕed in terms of boundary conditions on this
process [10].

A large number of variations on the ĕrm-value approach have been developed over the past
forty years, with varying results. e analysis of [41] and [64], amongst others, found that early
ĕrm-value models offered little explanatory power compared to more naïve procedures.

In a response to these issues, researchers turned to so called intensity models, also known as
hazard-rate or reduced-form models, that seek to directly model the instantaneous probability of
default [58]. e key distinction between structural models and intensity models are in the level of
knowledge assumed by the modeller. Indeed,

Structural models assume that the modeller has the same information set as the
ĕrm's manager - complete knowledge of all the ĕrm's assets and liabilities. In most
situations, this knowledge leads to a predictable default time. In contrast, reduced
formmodels assume that the modeller has the same information set as the market -
incomplete knowledge of the ĕrms condition. In most cases, this imperfect knowl-
edge leads to an inaccessible default time. And so we argue that the key distinction
between structural and reduced-formmodels is not whether the default time is pre-
dictable or inaccessible, but whether or not the information set is observed by the
market. Consequently, for pricing and hedging, reduced-form models are the pre-
ferred methodology. [38]

is approach, instigated in [39], assumes that at any instant time there is a probability that a
default will occur. Default is then deĕned as the ĕrst jump of a counting process Nt, where jumps
occur with at an intensity rate λt. e behaviour of intensity over time corresponds to the health of
the reference entity. Intensity models assume that default is not induced by market observables or
fundamentals, but is an exogenous component independent of the default-free information [13].

1.3. Modelling Assumptions

We will be working in a ĕltered probability space (Ω,F ,Q,F) equipped with a default-free ĕl-
tration F. A ĕltration is a non-decreasing family F = {Ft, 0 ≤ t ≤ T} of sub-σ-algebras of F . e
ĕltration represents the information Ęow of interest rates, intensities and possibly other default-free
market quantities [13].
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On occasion, we will deal with an augmented ĕltrationG = {Gt, 0 ≤ t ≤ T}, where

Gt = Ft ∨ σ({τ < u}, u ≤ t),

representing the Ęow of information on whether the default time τ of a reference entity occurred
before t, augmented with the usual default-free information Ft.

We assume the existence of a short-rate process rt, adapted to the ĕltrationFt with the property
that, for any times s and t > s, an investment of one unit at time s, reinvested in a short-term savings
account until time t will yield a market value of e

∫ t
s r(u) du. roughout this thesis, we assume that

the short rate rt is uncorrelated with our default intensity λt.
We assume that our ĕnancial market model is arbitrage-free, in the sense that there exists an

equivalent martingale measureQ, such that the price process of any tradable security which pays no
coupons or dividends, is a F-martingale underQ when discounted by the savings account B, given
as

Bt = e
∫ t
0 ru du

From martingale pricing theory, we recall that there may be inĕnitely many risk-neutral mea-
sures in our market. We assume that the tradable securities consist of both default-free bonds and
credit default swaps (deĕned in §3.2). In this case, the equivalent martingale measure P to be used
for pricing purposes is implied by the market prices [9]. e prices of traded credit default swaps
can be used to imply the cumulative distribution function of the default time τ under P.

Hereaer, we will exclusively use this market implied risk neutral measure. Expressions such as
P(τ > t) and E(VT) are understood as with respect to this market-implied risk-neutral measure.

Given our risk neutral measure, we can calculate the discount factor from times t to T, the rate
at which cash-Ęows at time T should be discounted to at time t. We calculate this discount factor
P(t,T) by the formula

P(t,T) = E
(
exp

(
−
∫ T

t
rs ds

)
| Ft

)
, (1.1)

given in [49].

1.4. Remarks on Notation

roughout this thesis, we denote stochastic processes {Xt(ω), 0 ≤ t ≤ T,ω ∈ Ω} as simply
Xt. Distributions will be denoted in small caps, for example - P(λ).
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An Introduction to Lévy Processes

2.1. Lévy Processes in Finance

Lévy processes are the simplest class of processes whose paths consist of continuous motion
interspersed with jump discontinuities of random size appearing at random times [3]. ey can
be viewed as a generalisation of random walks to continuous time. In recent years Lévy process
have become increasing popular asmodelling tools inmathematical ĕnance, as results indicate Lévy
processes can provide better ĕts to empirical data than geometric Brownian motion [12, 17, 31].

is thesis focuses on modelling credit spreads in an intensity framework, and Lévy processes
with jumps will be used as models of the default intensity. e Lévy process framework is very
attractive in this context for several reasons.

Primarily, the market standard for modelling credit spreads is a derivative of Black's model for
interest rate markets [52], which assumes that the log-returns on credit spreads are normally dis-
tributed. Empirical investigations of credit spread returns, summarised in [58], suggest that log-
returns follow a fat-tailed distribution, which suggest that alternative Lévy processes may be more
suited to modelling credit risk.

Secondly, empirical investigations also showed that credit spreads exhibit signiĕcant mean-
reversion and jump characteristics [53]. is gives further evidence in favour of using Lévy pro-
cesses as models for the intensity rate.

2.2. Properties of Lévy Processes

Formally, we can deĕne a Lévy process by the following four conditions.

Deĕnition 2.1 (Lévy Process [3]). A stochastic process Xt is a Lévy process if the following conditions
hold:
(i) X0 = 0 almost surely.
(ii) Xt has stationary increments.
(iii) Xt has independent increments.
(iv) e map t 7→ Xt is almost surely right continuous with le limits (càdlàg) .
e ĕrst statement is a convenient normalisation, and can be replaced with any constant c ∈ R.

As our frameworkwill use Lévy processes asmodels for the intensity rate in our intensitymodels
for credit risk, we will additionally require that our Lévy processes are non-negative.

5
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A useful property satisĕed by Lévy processes is that of inĕnite divisibility.

Deĕnition 2.2 (Inĕnite Divisibility). Let φ(u) be the characteristic function of a random variable X.
If, for every positive integer n, φ(u) is also the nth power of a characteristic function, we say that the
distribution is inĕnitely divisible.

us, for any n, we can write

X = Y(n)
1 + Y(n)

2 + · · ·+ Y(n)
n ,

where the Y(n)
i are independent and identically distributed random variables with characteristic

function (φ(u))1/n.
One of the most useful characteristics of a Lévy process Xt is that knowing the distribution of Xt

at a speciĕc time - sayX1 - completely determines the distribution at all time t. is is intuitively clear
from the stationary and independent increments. e following theorem illustrates the relationship
between Lévy processes and inĕnitely divisible distributions.

eorem 2.3 (Inĕnite Divisibility of Lévy Processes (Proposition 1.3.1 of [4])). Let Xt be a Lévy
process. en Xt has an inĕnitely divisible distribution F for every t.

Conversely, if F is an inĕnitely divisible distribution there exists a Lévy process Xt such that the
distribution of X1 is given by F.

Proof. To show the forward implication, let Xt be a Lévy process and let n ∈ N. en by the
stationary independent increments property, we have

Xt = Xt/n + (X2t/n − Xt/n) + · · ·+ (Xt − X(n−1)t/n). (2.4)

Now, for all u ∈ R and t ≥ 0, let
ψt(u) = logE

(
eiuXt

)
en by (2.4) we have for any two positive integers p, q that

pψ1(u) = ψp(u) = qψp/q(u)

and thus for any rational t > 0,
ψt(u) = tψ1(u). (2.5)

If t is irrational, then let tn ↓ t be a decreasing sequence of rationals. en by the almost sure
right continuity of Xt, we have right continuity of e−ψt(u) and hence (2.5) holds for any t ≥ 0. us
we achieve our result that for all t ≥ 0,

E
(
eiuXt

)
= etψ(u)

where ψ(u) = ψ1(u) is the characteristic exponent of X1.
e reverse implication is proven in a similar manner. �
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Corollary 2.6. Let Xt be a Lévy process, and let the characteristic function of X1 be φ(u). en the
distribution of an increment over [s, s+ t], s, t > 0, has (φ(u))t as a distribution function.

Proof. By the stationary increments property, we have that Xs+t − Xs ∼ Xt. en from eorem
2.3, the characteristic function of Xt is equal to (φ(u))t. �

e characteristic functions of inĕnitely divisible probability measures, and hence Lévy pro-
cesses, were completely characterised by Lévy and Khintchine in the 1930s. e following result,
given without proof, is a fundamental result in the study of Lévy processes.

eorem 2.7 (Lévy-Khintchine formula (eorem 1.2.14 of [4])). Let Xt be an inĕnitely divisible
process, and deĕne the characteristic exponent ψ(u) by

ψ(u) = logE
(
eiuX1

)
= logφ(u),

where φ(u) is the characteristic function of X1. en the characteristic exponent ψ(u) satisĕes the
following Lévy-Khintchine formula

ψ(u) = iγu− ζ2

2
u2 +

∫
R

(
eiux − 1− iux 1|x|<1

)
dν (2.8)

where γ ∈ R, ζ2 ≥ 0, 1A is the indicator function of A, and ν is a measure of R\{0} such that∫
R
min(1, x2) dν <∞

We call the measure ν the Lévy measure, and it dictates how the jumps occur - jumps of sizes in the set
A occur according to a Poisson process with parameters ν(A) [58].

We see that given parameters
(
γ, ζ2, dν

)
, we uniquely determine the corresponding Lévy pro-

cess. us, we call these parameters
(
γ, ζ2, dν

)
the Lévy triplet.

We ĕnish our theoretical background with a beautiful result, due to Lévy and Itô, providing a
decomposition of any Lévy process into dri, diffusion, and jump components.

eorem 2.9 (e Lévy-Itô decomposition (eorem 2.4.16 of [4])). Let Xt be a Lévy process. en
we can decompose Xt as

Xt = βt+ σBt + Jt +Mt

where Bt is a Brownian motion, Jt is a compound Poisson process, and Mt is a square integrable pure
jump martingale that almost surely has a countable number of jumps on a ĕnite interval.

Proof. As Xt is a Lévy process, then by eorem 2.7, we can characterise Xt by it's Lévy triplet(
γ, ζ2, dν

)
.
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Consider rewriting (2.8) as follows

ψ(u) = iγu− ζ2

2
u2︸ ︷︷ ︸

(⋆)

+ ν (R\(−1, 1))
∫
|x|≥1

(
eiux − 1

) dν
ν (R\(−1, 1))︸ ︷︷ ︸

(⋆⋆)

+

∫
|x|<1

(
eiux − 1− iux

)
dν︸ ︷︷ ︸

(⋆⋆⋆)

We show that (⋆) is the characteristic exponent of a Brownian motion with dri, (⋆⋆) is the charac-
teristic exponent of a Poisson point process, and (⋆ ⋆ ⋆) is the the characteristic exponent of a pure
jump martingale that almost surely has a countable number of jumps on a ĕnite interval.

Consider (⋆). Let Y(1)
t = ζBt + γt with ζ, γ constants and Bt a Brownian motion. en we have

that the characteristic exponent of Y(1)
t is given by

logE
(
eiuY

(1)
1

)
= log

(
eiuγ−

ζ2
2 u2
)

by properties of the normal distribution

= iuγ − ζ2

2
u2

which corresponds to our expression for (⋆).
Consider now (⋆⋆). Let Y(2)

t be a compound Poisson process, that is,

Y(2)
t =

Nt∑
i=1

ξi

with (ξi) a sequence of independent, identically distributed random variables with distribution
function F and Nt a Poisson process with parameter λ (deĕned in §2.3.1), independent of the se-
quence (ξi). en we can calculate the characteristic function of Y(2)

1 by

E
(
eiuY

(2)
1

)
= E

(
eiu

∑N1
i=1 ξi
)

=
∞∑
n=0

E
(
eiu

∑n
i=1 ξi
) e−λλn

n!

=
∞∑
n=0

(∫
R
eiux dF

)n e−λλn

n!

= exp
(
λ
∫
R

(
eiux − 1

)
dF
)
.
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us the characteristic exponent of Y(2)
t is given by

logE
(
eiuY

(2)
1

)
= λ

∫
R

(
eiux − 1

)
dF

us setting λ = ν (R\(−1, 1)) and letting ξi be distributed with distribution dν
ν(R\(−1,1)) on {x |

|x| ≥ 1}, we obtain that the characteristic exponent of Y(2)
t corresponds with (⋆⋆).1

Finally, consider (⋆ ⋆ ⋆). It can be shown (see Appendix A1) that there exists a square integrable
pure jump martingale Y(3)

t with characteristic exponent (⋆ ⋆ ⋆).
Finally, lettingXt = Y(1)

t +Y(2)
t +Y(3)

t , where theY(i) are independent and deĕned above, we have
that the characteristic exponent ofXt satisĕes (2.8). is completes our proof of the proposition. �

2.3. Examples of Lévy Processes

Here we present several examples of Lévy processes which will be used throughout this thesis
in the context of credit risk modelling.

2.3.1. Poisson Process. A Poisson process Nt is a unit-jump increasing, right continuous sto-
chastic process with stationary and independent increments and initial condition N0 = 0 [13].

It can be shown that this general deĕnition implies several useful properties of the distribution
and jump times, collected in the following lemma.

Lemma2.10. Let τ be the ĕrst jump time of the Poisson process Nt. en there exists a positive constant
λ such that

a) lim
dt→0

P(τ ∈ (t, t+ dt) | τ > t)
dt

= λ - that is, the instantaneous conditional jump probability
in an interval of length dt is approximately λ dt.

b) P(Nt = 0) = P(τ > t) = e−λt for all t.
c) λ = E(Nt)

t = Var(Nt)
t , the average arrival rate and variance per unit of time.

d) e random variable τ is distributed according to an exponential distribution with parameter
λ, that is,

τ ∼ E(λ)

e) Finally, the distribution of the process Nt is Poisson with parameter λt, and hence

Nt − Ns ∼ P ((t− s)λ) .

e Poisson process is the simplest pure jump process, with Lévy triplet (0, 0, λδ1), where δ1 is
the Dirac measure at 1 and λ is the positive constant deĕned in the previous lemma..

Figure 2.1 shows a sample path of a Poisson process.

1If ν (R\(−1, 1)) = 0, then simply set Y(2)
t = 0 for all t.
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F .. Poisson process with parameter λ = 1.5.

2.3.2. eGamma Process. We ĕrst deĕne the Gamma distribution, which is characterised by
two positive parameters a, b > 0. e density function of the G(a, b) distribution is given by

fGamma(x; a, b) =
ba

Γ(a)
xa−1e−bx, x > 0. (2.11)

From (2.11), we can write the characteristic function of a G(a, b) distribution as

φGamma(u; a, b) =
(
1− iu

b

)−a

which is inĕnitely divisible. Byeorem 2.3, we can then form the Gamma process.

Deĕnition 2.12 (Gamma process). A stochastic process Xt is a Gamma process with parameters a and
b if the following hold:

a) X0 = 0.
b) e process has independent, stationary, increments.
c) For any 0 < s < t the increment Xt − Xs has a G(a(t− s), b) distribution.

is is a Lévy process with a Lévy triplet given by(
a
b
(
1− e−b) , 0, ae−bx

x
1{x>0} dx

)
2.3.3. Inverse Gaussian Process. Consider a Brownian motion with dri Bt = bt+Wt where

b > 0 andWt is a standard Brownian motion. Let

Ta,b = inf
t>0
{Bt > a}



2.4. O-U P 11

for a > 0, that is, be the ĕrst time a Brownian motion with dri b reaches the positive level a > 0.
en the random variable Ta,b follows an Inverse Gaussian law IG(a, b).

Following the samemethod as with the Gamma process, we can show that the Inverse Gaussian
distribution is inĕnitely divisible, and thus we can deĕne an Inverse Gaussian process.

Deĕnition 2.13 (Inverse Gaussian process). A stochastic process Xt is an Inverse Gaussian process
with parameters a, b > 0 if the following hold:

a) X0 = 0.
b) e process has independent, stationary, increments.
c) For any 0 < s < t, the increment Xt − Xs has a IG(a(t− s), b) distribution.

2.4. Ornstein-Uhlenbeck Processes

Ornstein-Uhlenbeck processes were ĕrst developed by the physicists Orstein and Uhlenbeck
in the early 20th century, in the context of integrating frictional effects with Brownian motion in
statistical physics. In ĕnancial mathematics, Ornstein-Uhlenbeck processes were ĕrst used in mod-
elling interest rates, in the seminal paper of [63], and more recently have been applied in modelling
ĕnancial volatility [5, 6] and credit risk [16, 57].

Deĕnition 2.14 (Ornstein-Uhlenbeck process [5]). An Ornstein-Uhlenbeck (OU) process yt is a sto-
chastic process by the following stochastic differential equation:

dyt = −λyt dt+ dzλt, y0 > 0, (2.15)

where λ is an arbitrary positive parameter and zt is a subordinator - a Lévy process with no Brow-
nian component, non-negative dri, and only positive jumps.2 e subordinator zt is known as the
Background Driving Lévy Process (BDLP) [5].

Equivalently, a stationary process yt is an OU process if

yt = e−λty0 +
∫ t

0
e−λ(t−s) dzλs. (2.16)

Note that yt is strictly positive, and is bounded below by the deterministic function y0e−λt.
A related process oen studied in the context of credit modelling using OU processes is the

integrated OU process (the intOU process) Yt, deĕned by:

Yt =

∫ t

0
ys ds.

We note the following result, given in [16].

2It is possible to deĕne OU processes where the BDLP is a general Lévy process, but we only consider the special case
from above.
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eorem 2.17. Let yt be the OU process solving (2.15). Let Yt be the associated integrated OU process.
en

Yt =
1
λ
(
zλt − yt + y0

)
=

1
λ
(
1− e−λt) y0 + 1

λ

∫ t

0

(
1− e−λ(t−s)) dzλs

Proof. Let T > 0. en from (2.16) we have

YT =

∫ T

0
yt dt

=

∫ T

0

(
e−λty0 +

∫ t

0
e−λ(t−s) dzλs

)
dt

Treating the ĕrst term, we have ∫ T

0
e−λty0 dt =

1
λ
(
1− e−λT) y0.

Treating the second term, we have∫ T

0

∫ t

0
e−λ(t−s) dzλs dt =

∫ T

0

∫ t

0
e−λteλs dzλs dt

=

∫ T

0

∫ T

s
e−λteλs dt dzλs by the stochastic Fubini theorem

=

∫ T

0
eλs
∫ T

s
e−λt dt dzλs

=
1
λ

∫ T

0

(
1− e−λ(t−s)) dzλs

Combining these results, we have

YT =
1
λ
(
1− e−λT) y0 + 1

λ

∫ T

0

(
1− e−λ(t−s)) dzλs

and our theorem is proven. �

Several major developments in the theory of OU processes driven by Lévy processes come from
Sato [54], which we will now quote. We ĕrst need the concept of self-decomposability.

Deĕnition 2.18 (Self-decomposability). Let φ be the characteristic function of a random variable X.
en X is self-decomposable if there exists a family of characteristic functions φc such that

φ(t) = φ(ct)φc(t)

for all t ∈ R and all c ∈ (0, 1).
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Alternatively, a random variable X is said to be self-decomposable if for any 0 < c < 1, there exists
a random variable Yc, independent of X, such that

X ∼ cX+ Yc.

Example 2.19. e following distributions have all been shown to be self-decomposable:
(i) e G(a, b) distribution (see [35]),
(ii) e IG(a, b) distribution (see [35]),

Sato [54] establishes a fundamental relationship between self-decomposable random variables
and the stationarity of OU processes, given below.

eorem 2.20 (eorem 1 of [5]). Let λ > 0 and let D be a self-decomposable random variable. en
there exists a stationary stochastic process yt and a Lévy process zt such that yt ∼ D and yt satisĕes the
Ornstein-Uhlenbeck differential equation

dyt = −λyt dt+ dzλt.

We call an OU process with stationary law D a D-OU process, drawing on notation from [5].

us, given a self-decomposable distribution D, we can construct an OU process with a sta-
tionary distribution D. We proceed to do this explicitly for the G and IG
distributions.

2.4.1. Gamma-OUProcesses. An important class of OU processes is the Gamma-OU process,
where the stationary law is given by a G(a, b) distribution. It can be shown (see [61]) that the
associated BDLP zt is a compound Poisson process

zt =
Nt∑
n=1

wn

where Nt is a Poisson process with intensity a and wn is a sequence of independent identically dis-
tributed E(b) random variables.

If yt is a Gamma-OU process, the characteristic function of the intOU process Yt =
∫ t
0 ys ds is

given by:

φG−OU(u, t; λ, a, b, y0) = E(exp(iuYt) | y0)

= exp
(
iuy0
λ

(1− e−λt) +
λa

iu− λb

×
(
b log

(
b

b− iuλ−1(1− e−λt)

)
− iut

))
. (2.21)

A derivation is given in [51].
Figure 2.2 shows a sample path of the Gamma-OU process.
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F .. Gamma-OU process with parameters λ = 2, a = 0.2, b = 18, y0 = 0.08.

2.4.2. Inverse Gaussian-OUProcesses. We can similarly deĕne the Inverse Gaussian-OU pro-
cess (IG-OU), where the stationary law is given by a IG(a, b) distribution. It can be
shown that the BDLP is a sum of two independent Lévy processes z(1)t and z(2)t . z(1)t is an Inverse
Gaussian process with parameters a/2 and b, and z(2)t is of the form

z(2)t =
1
b

Nt∑
n=1

v2n,

where Nt is a Poisson process with intensity ab/2 and vn is a sequence of independent identically
distributed N(0, 1) random variables.

If yt is an IG-OU process, the characteristic function of the intOU process Yt =
∫ t
0 ys ds is given

by

φIG−OU(u, t; λ, a, b, y0) = E(exp(iuYt) | y0)

= exp
(
iuy0
λ

(1− e−λt) +
2aiu
bλ

A(u, t)
)

(2.22)

where

A(u, t) =
1−

√
1+ κ(1− e−λt)

κ
+

1√
1+ κ

×

[
arctanh

(√
1+ κ(1− e−λt)√

1+ κ

)
− arctanh

(
1√
1+ κ

)]
(2.23)

A derivation is given in [51].
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F .. Inverse Gaussian-OU process with parameters λ = 4, a = 0.2, b =
5, y0 = 0.08.

Figure 2.3 shows a sample path of the Gamma-OU process.
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Pricing Credit Default Swaps

3.1. Survival Probability Modelling

As discussed in §1.1, the payoff from a credit default swap is dependent on the survival or default
of the reference entity. us, accurately modelling the probability of a reference entity defaulting in
a time interval is of key interest to market participants. We now focus onmodelling this probability
in an intensity framework.

3.1.1. Canonical Construction of Default Times. We now introduce the most common con-
struction of a default time in an intensity framework.1 Assume that we are given a F-adapted, right-
continuous, increasing process Γ deĕned on a ĕltered probability space (Ω,G,P). Assume that
Γ(0) = 0 and Γ(∞) = +∞. In our framework, Γ will be given by

Γt =
∫ t

0
λu du, t > 0

for some non-negative, F-progressively measurable intensity process λt.
Let χ be a uniform random variable on [0, 1], independent of the ĕltration F under P. We can

then deĕne the random time τ : Ω→ R+ by the formula

τ = inf{t ∈ R+ | e−Γt ≤ χ} = inf{t ∈ R+ | Γt ≥ ξ} (3.1)

where ξ = − ln χ is a standard exponential random variable.
We then obtain expressions for survival probabilities, deĕned as

PSurv(t) = P(τ > t) (3.2)

as follows. Since {τ > t} = {χ < e−Γt} and Γt is F∞-measurable, we have

P(τ > t | F∞) = P(χ < e−Γt | F∞) = e−Γt

and hence
P(τ > t | Ft) = E(P(τ > t | F∞) | Ft) = e−Γt

Taking expectations with respect to P, we obtain our key result,

PSurv(t) = P(τ > t) = E (P(τ > t | Ft)) = E
(
e−Γt
)

(3.3)

1is canonical construction is not the most general method for obtaining random times associated with a given hazard
process Γ, but is sufficient for our purposes.

16
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e rest of this section follows by introducing various speciĕcations for our intensity process λt,
and deriving expressions for the survival probabilities in these models.

3.1.2. Time Homogenous Poisson Processes. In the simplest possible intensity model, we as-
sume that the intensity process λt is equal to a constant λ. Our hazard process becomes

Γt =
∫ t

0
λ dt = λt.

We obtain an explicit formula for PSurv(t), given as

PSurv(t) = e−Γt = e−λt.

3.1.3. InhomgenousPoissonProcesses. Nowassume that the intensity parameter λt is a strictly
positive, piecewise continuous, and deterministic. From (3.3), we obtain

PSurv(t) = e−Γt = e−
∫ t
0 λt dt.

3.1.4. Cox Processes. e previous models assumed that the default intensity λt was a deter-
ministic function of time. Allowing λt to follow a stochastic process leads us to the study of Cox
processes. e study of the use of Cox processes in modelling default risk was instigated by [45],
with extensions and generalisations discussed in [25, 26].

Deĕnition 3.4 (Cox [20]). Let λt be a strictly positive, Ft-adapted, right continuous function. en
a Poisson process with stochastic intensity λt is known as a Cox process, also referred to as a doubly
stochastic Poisson process.

For Cox processes with parameter λt, the conditions on λt imply that the random variable

Γt =
∫ t

0
λu du.

is well deĕned. We notes that conditioning on the ĕltration generated by λt, denoted F λ
t , a Cox

process becomes an inhomogenous Poisson process with intensity λt.
We can then derive expressions for survival probabilities in the Cox model. We have

PSurv(t) = P(τ > t) = E
(
e−Γt
)

3.2. Credit Default Swaps

e credit default swap is the most commonly traded credit derivative. As discussed in §1.1, a
credit default swap allows two parties, the protection seller and protection buyer to exchange the de-
fault risk on a speciĕed reference entity. Typically, the protection seller receives quarterly payments
(the CDS spread), in return for protecting the protection buyer against the default of the reference
entity. e cash-Ęow diagram is presented in Figure 3.1, and a typical sequence of payments in a
CDS is presented in Figure 3.2.
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F .. Schematic diagram of a CDS. In the event of a default, the protection
seller pays the protection buyer, and the protection buyer periodically pays the CDS
spread to the protection seller.

More speciĕcally, consider a CDS with a notional of N, with a tenor of two years (T = 2). Let
the CDS spread be denoted by c. en at the end of every quarter, the protection buyer would pay
1
4cN to the seller. ere are then two cases:

• If the reference entity does not default before maturity, the protection buyer simply contin-
ues to pay the quarterly payments to the seller, and the swap expires aer two years.
• If the reference entity does default before maturity, the protection seller must pay the buyer
an amount to compensate for the default. e default payment is equal to the difference
between the notional value and the recovered amount N · R aer default.2 at is, the pro-
tection seller will payN(1−R) to the buyer, aer which the swap terminates and no further
payments are made.

3.3. CDS Pricing in Discrete Time

We now turn our attention to pricing a CDS with maturity T - that is, ĕnding the value of the
spread c such that the swap costs nothing at time t = 0 to enter into. For simplicity, let us consider a
2When an entity defaults, investors typically receive some proportion of their investment back as the entity's assets are
liquidated. Typical recovery rates R are around 50% for senior secured debt-holders and 20% for junior subordinated
debt-holders.
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discrete setting, where the payments and default events occur only at discrete times ti, i = 1, 2, . . . , n
and tn = T. For convenience, set t0 = 0. Figure 3.3 illustrates the discrete nature of our pricing
model.

Let P(0, ti) be the discount factor from time 0 to time ti, deĕned in (1.1). e short rate rt can
be stochastic or deterministic, but we require rt to be uncorrelated with the intensity λt. Let Δti be
the time difference between two consecutive payouts (Δti = ti − ti−1). Let the default time of the
reference entity be τ.

en the present value of the cash-Ęows of the fee leg are equal to

CFFees = cN
n∑

i=1

P(0, ti)Δti1τ>ti (3.5)

and the present value of the cash-Ęows of the loss leg are equal to

CFLoss = (1− R)N
n∑

i=1

P(0, ti)(1τ=ti). (3.6)

Taking the risk-neutral expectation of the cash-Ęows of both legs gives

PVFees = cN
n∑

i=1

P(0, ti)PSurv(ti)Δti

PVLoss = (1− R)N
n∑

i=1

P(0, ti) (PSurv(ti−1)− PSurv(ti)) .

where PSurv(ti) indicates the survival probability up to time ti (deĕned in (3.3)) and c is the CDS
spread per annum.

us, in our discrete setting, the par spread c which makes the value of the fee leg equal to the
value of the loss leg is given by

c =
(1− R)

∑n
i=1 P(0, ti) (PSurv(ti−1)− PSurv(ti))∑n

i=1 P(0, ti)PSurv(ti)Δti
. (3.7)

3.4. CDS Pricing in Continuous Time

We now move to the problem of pricing CDS contracts in continuous time, following [13].
When moving to continuous time pricing, we need to consider the possibility of default occurring
at some time in (ti−1, ti). Most commonly, CDS contracts specify that the protection payment oc-
curs immediately following default. is standard form of CDS is known as a running CDS.
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F .. Cash-Ęows of a CDS from the perspective of the protection buyer. Here,
we assume a notional of $100mm, a tenor of 2 years, and a CDS spread of 200 bps
(2.00%). We assume default occurs aer 21 months, and the recovery rate is 40%.

t0 t1 t2 tn-1 tn

PV Fees

PV Loss

F .. Timeline of the discrete CDS model. At each discrete time ti, i =
1, . . . , n, the reference entity either defaults (in which case the protection seller pays
the buyer), or does not default (in which case the protection buyer pays the seller)

Under the same assumptions and following the same process as in the discrete case, we canwrite
the discounted value of cash-Ęows of the fee and protection legs at time t < T as

ΠFees(t, c) = cNP(t, τ)(τ − tβ(τ)−1)1{0<τ<T} + cN
n∑

i=1

P(t, ti)Δti1{τ≥ti}

ΠLoss(t, c) = (1− R)NP(t, τ)1{0<τ≤T}
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where τ is the default time, c is the CDS spread per annum,N is the contract notional, Δti = ti− ti−1

is the year fraction for the payment period, and tβ(t) is the ĕrst date in ti, i = 1, 2, . . . such that ti > t.
e ĕrst term in the ΠFees expression is the accrued interest, reĘecting the possibility of default in
(ti−1, ti).

From elementary martingale pricing theory, we know that the price of a contingent claim is
equal to the discounted risk-neutral conditional expectation of the payoff (see [7, 13, 49] for further
detail). us, the value of a CDS contract with tenor T and spread c, at time t < T, denoted CDSt,
as seen by the protection seller, is

CDSt = E (ΠFees(t, c)− ΠLoss(t, c) | Gt) . (3.8)

Here, Gt is our default-free ĕltrationFt augmented by a default monitoring process, as discussed in
§1.3.

In some cases it may be advantageous to compute this expectation with respect to the default-
free ĕltration Ft. We now introduce and prove this ĕltration switching formula.

Proposition 3.9 (Filtration switching formula). Let Ft and Gt be deĕned as previously. Let X be a
G∞ measurable payoff. Let t < T. en we have

E(1{τ>T}X | Gt) =
1{τ>t}

P (τ > t | Ft)
E(1{τ>T}X | Ft) (3.10)

Proof. Here, we follow [13]. For a proof under more general conditions, see [8].
First, we recall that

Gt = Ft ∨ σ({τ ≤ u}, u ≤ t)

We can write

E(1{τ>T}X | Gt) = E(1{τ>t}1{τ>T}X | Gt)

= 1{τ>t}E(1{τ>T}X | Gt)

= 1{τ>t}E(1{τ>T}X | Ft, {τ > t})

as the only useful information in σ({τ ≤ u}, u ≤ t is whether τ > t. is is because 1{τ>T}X
contributes nothing to the conditional expectation when τ ≤ T.

By the deĕnition of conditional expectation, we then have

1{τ>t}E(1{τ>T}X | Ft, {τ > t}) =
1{τ>t}

P (τ > t | Ft)
E(1{τ>t}1{τ>T}X | Ft)

=
1{τ>t}

P (τ > t | Ft)
E(1{τ>T}X | Ft)
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where P (τ > t | Ft) is the risk-neutral probability that the entity will survive up to time t, condi-
tional on default-free information up to time t. us

E(1{τ>t}X | Gt) =
1{τ>T}

P (τ > t | Ft)
E(1{τ>T}X | Ft)

as required. �

Using this formula we just derived, we can write the expectation in (3.8) as

CDSt =
1{τ>t}

P (τ > t | Ft)
E (ΠFees(t, c)− ΠLoss(t, c) | Ft)

which allows us to calculate the par spread of a running CDS with an expectation using the default-
free ĕltration.

3.5. Term Structure of CDS Contracts

Consider a continuous CDS, in which a spread c is paid continuously for the tenor T of the
contract, with payments ceasing at either an event of default τ or at maturity T. is is the simplest
continuous time generalisation of the discrete timemodel in §3.3. We easily see that the continuous
yearly par spread ccts is a straightforward generalisation of (3.7) given by

ccts =
(1− R)

(
−
∫ T
0 P(0, s) dPSurv(s)

)
∫ T
0 P(0, s)PSurv(s) ds

(3.11)

is analytically tractable model allows us to derive an approximate relationship between the
intensity rate and the CDS spread. Consider the model discussed previously in §3.1.2 - the ho-
mogenous Poisson model ĕrst introduced in [39]. Here, we assume the default time is exponen-
tially distributed with parameter λ, and so the expected default time E(τ) = 1

λ . en we have the
survival probability PSurv(t) = e−λt. By substituting these results into (3.11), we can derive that the
continuous yearly par spread ccts is given by

ccts =
(1− R)

(
−
∫ T
0 P(0, s)λe−λs ds

)
∫ T
0 P(0, s)e−λs ds

= (1− R)λ

us, we see two important features of the homogenous Poisson model.

(i) Continuous CDS spreads are linear functions of the default intensity.
(ii) e homogenous Poisson model suggests the term structure - that is, the relationship between

CDS spreads of different maturities - should be Ęat.

We shall return to these features in §4.2.1, and for now illustrate the relationship between CDS
spreads of different maturities
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F .. CDS term structure ofGeneral Electric aer (le hand side), and during
the height of the credit crunch (right hand side). Note the inversion of the term
structure in times of crisis. Source: Goldman Sachs.

In the credit derivatives market, the most liquid CDS maturity is at 5 years, with trading occur-
ring at {1y, 2y, 3y, 5y, 7y, 10y}. An example CDS term structure is displayed in Figure 3.4. Notice
the upward sloping curve, which is commonly seen. When examining severely distressed names,
we oen observe a downward sloping curve, reĘecting a higher probability of default in the short
term.
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Empirical Investigation of Intensity Models

We now turn to an empirical examination of various intensity models for credit risk. Our goal
is to calibrate a sequence of intensity models to the CDX index, and examine the calibration results.
is is done in a single-name CDS context and for a limited subset of intensity models in [16].

4.1. Data and Methodology

Here we present results from calibrating various Lévy process as stochastic intensities to market
data. e data set used for calibration is the term structure of General Electric CDS spreads from
5/10/07 to 6/10/11. General Electric is a multinational conglomerate, and is the most heavily traded
corporation in the CDS market [37]. e dataset consists of 6 tenors (1y, 2y, 3y, 5y, 7y, 10y) and
corresponding credit spreads. e data was obtained with permission from Goldman Sachs.

e interest rate r is assumed constant, and calibrated to the US Treasury curve at the close of
18/5/11. US Treasury data is obtained from Bloomberg. We test the following intensity models:

(1) e homogenous Poisson (HP) model, explained in §4.2.1.
(2) e inhomogenous Poisson (IHP) model, explained in §4.2.1.
(3) e Cox-Ingersoll-Ross model (CIR), explained in §4.2.2.
(4) e Gamma-OU model (G-OU), explained in §4.2.3.
(5) e Inverse Gaussian-OU model (IG-OU), explained in §4.2.3.

For computational reasons, we revert back to our discrete model of §3.3, and calculate the par
spread as:

c =
(1− R)

∑n
i=1 P(0, ti) (PSurv(ti−1)− PSurv(ti))∑n

i=1 P(0, ti)PSurv(ti)Δti
. (4.1)

All models are calibrated using the Nelder-Mead simplex algorithm, which is a robust method
for optimising nonlinear functions [50]. Here, we seek to minimise the RMSE of our models, given
by

RMSEModel =

√
N∑ |cMarket − cModel|2

N
where N is the number of maturities observed in the market and cMarket and cModel are the observed
and calculated par spreads for the CDS respectively.

4.2. Intensity Models

24
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4.2.1. Homogenous and InhomogenousPoissonModels. esimplest possible intensitymodel
is one where the intensity process λt is equal to a constant λ > 0, with the default time now follow-
ing a homogenous Poisson process. is model, ĕrst explored in [39], was previously discussed in
§3.1.2. ere, we easily derived our expression for the survival probability

PHP
Surv(t) = e−λt.

Given this expression for the survival probability at any time t, we can then extract the implied
par CDS spread from (3.7),

c =
(1− R)

∑n
i=1 P(0, ti) (PSurv(ti−1)− PSurv(ti))∑n

i=1 P(0, ti)PSurv(ti)Δti
.

As we saw in §3.5, this model predicts a Ęat term structure for CDS spreads, which is clearly re-
futed bymarket observations. Acknowledging this deĕcit, we now turn to the inhomogenous Poisson
process, deĕned in §3.1.3. Here, the intensity process λt is assumed to be a deterministic function
of time.

As before, the probability of survival past time t in the inhomogenous model now given by

PIHP
Surv(t) = exp

(
−
∫ t

0
λs ds

)
.

A fundamental example is where we take the intensity λt to be deterministic and piecewise constant:

λt = γi for t ∈ [Ti−1,Ti], 1 ≤ i ≤ n

where the Ti span the maturities we seek to calibrate our model to.
is model is oen used to extract risk-neutral market implied default probabilities [13]. In

the piecewise constant case, we have as many free parameters as data points, and so we can ĕnd
γi, 1 ≤ i ≤ n, such that our calibrated model exactly reproduces the observed CDS prices in the
market. We can then extract implied survival probabilities to each maturity Ti by our expression
for PIHP

Surv given above. An example of this process is given in Table 4.1.

4.2.2. Cox-Ingersoll-Ross Models. We now move to a stochastic framework, where we allow
the process λt to follow a stochastic process. is corresponds to the Cox process, introduced in
§3.1.4. ere we showed that the survival probability PSurv(t) satisĕes

PSurv(t) = E
(
e−

∫ t
0 λs ds

)
.

e paper of [21] introduced the Cox-Ingersoll-Ross (CIR) process λt, where λt satisĕes the
stochastic differential equation

dλt = κ(ν − λt) dt+ γ
√

λt dWt, λ0 > 0. (4.2)

We also apply the restriction 2κν > γ2, which ensures the process is bounded away from zero.
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Maturity (y) Market (bps) Model (bps) Intensity Survival Probability (%)
1 26 26 0.0044 99.6
2 47 47 0.0079 98.8
3 61 61 0.0102 97.8
5 89 89 0.0147 95.1
7 98 98 0.0163 92.9
10 105 105 0.0175 87.3

T .. e calibration of a piecewise-constant inhomogenous Poisson model
to General Electric CDS spreads on 18/5/11. Notice how the model exactly repro-
duces the market spreads, and the survival probabilities are decreasing with time, as
expected. Source: Goldman Sachs.
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F .. Default intensities (LHS) and survival probabilities (RHS) for calibrated
homogenous Poisson (HP) and inhomogenous Poisson (IHP) models. Both models
are calibrated to General Electric CDS spreads on 18/5/11. Source: Goldman Sachs.

If we assume the intensity rate follows theCIR dynamics above, thenwe can derive an expression
for the survival probability PCIR

Surv(t). By noting that

PCIR
Surv(t) = E

(
exp

(
−
∫ t

0
λs ds

))
= φCIR(i, t)



4.3. C R 27

where φCIR is the characteristic function of the integrated CIR process
∫ t
0 λs ds. Using the analytic

expression for φCIR(u, t) from [21], we obtain

PCIR
Surv(t) = φCIR(i, t; κ, ν, γ, λ0)

=
exp(κ2νt/γ2) exp(−2γ0/(κ + ρ coth(ρt/2)))

(coth(ρt/2) + κ sinh(ρt/2)/ρ)2κν/γ2

where ρ =
√

κ2 + 2λ20.

4.2.3. Orstein-Uhlenbeck Models. We also consider Cox models where the intensity rate λt
follows an Orstein-Uhlenbeck process, speciĕcally the Gamma-OU (G-OU) and Inverse Gaussian-
OU (IG-OU)models discussed in §4.2.3. Similar to the analysis above with the Cox process, we use
the fact that

POU
Surv(t) = E

(
exp

(
−
∫ t

0
λs ds

))
= φOU(i, t)

where φOU(u, t) is the characteristic function of the integrated OU process.
In the Gamma-OU case, from (2.21) and [58], we have:

PG−OU
Surv (t) = φG−OU(i, t; γ, a, b, λ0)

= exp
(
−λ0
γ

(1− e−γt)− γa
1+ γb

×

(
b log

(
b

b+ 1
γ (1− e−γt)

)
+ t

))
.

In the Inverse Gaussian-OU case, from (2.22) and [58], we have:

PG−OU
Surv (t) = φIG−OU(i, t; γ, a, b, λ0)

= exp
(
−λ0
γ

(1− e−γt)− 2a
b
A(i, t)

)
where A(u, t) is deĕned in (2.23).

4.3. Calibration Results

Our results for the 17/3/11 are detailed here. Figure 4.2 illustrates the calibrated term struc-
tures of the various models. Figure 4.3 illustrates the calibrated survival probabilities of the various
models. Table 4.2 shows the calibration results and RMSE of the various models.

We note that the CIR, G-OU, and IG-OUmodels can be calibrated successfully to the CDS term
structure, closely replicating the observed market data. e HP is clearly unsuitable for modelling
the term structure of CDS contracts. e IHPmodel can be perfectly calibrated to market data, but
suffers from poor parameter stability and an unrealistic term structure. Our conclusions broadly
support those of [58].
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F .. Term structure of the intensity models. All models are calibrated to
General Electric CDS spreads on 18/5/11. Source: Goldman Sachs.
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to General Electric CDS spreads on 18/5/11. Source: Goldman Sachs.



4.3. C R 29

1y 2y 3y 5y 7y 10y RMSE
Market 26 47 61 89 98 105
HP 71 71 71 71 71 71 28.48
IHP 26 47 61 89 98 105 0.00
CIR 26 47 63 86 99 105 1.38
G-OU 26 48 64 86 98 106 1.82
IG-OU 25 48 64 86 97 106 1.82

T .. A comparison of the intensity models calibration to General Electric
CDS spreads on 18/5/11. Source: Goldman Sachs.

Model Parameters
HP λ = 0.0124
IHP λ0 = 0.0044, λ1 = 0.0079, λ2 = 0.0102, λ3 = 0.0147, λ4 = 0.0163, λ5 = 0.0175
CIR κ = 0.0180, ν = 0.0175, γ = 0.0184, λ0 = 0.0581
G-OU γ = 0.2960, a = 70457, b = 3774752, λ0 = 0.0001
IG-OU γ = 0.2957, a = 31.98, b = 1713, λ0 = 0.0001

T .. Optimal calibration parameters for the intensity models. All models are
calibrated to General Electric CDS spreads on 18/5/11. Source: Goldman Sachs.
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4.4. Parameter Stability and RMSE

We now examine the stability of the calibrated parameters and the distribution of the RMSE
through time for the CIR, Gamma-OU, and Inverse Gaussian-OU intensity models, following [15].
For each model, we consider two different methods for calibrating a series of CDS term structures,
the dynamicmethod and the staticmethod.

In the dynamic approach, the previous calibrated parameters are used as an initial guess for
the calibration of the current day. is method oen provides faster calibration times and greater
parameter stability, yet oen results in higher calibration errors.

In the static approach, the initial values for the calibrations are kept constant throughout the
whole procedure. is avoids the optimisation being stuck in local minima, at a cost of longer
calibration times.

Due to the pathological behaviour of the General Electric CDS term structure over the time
period under consideration,1 we consider the calibration of the intensity models to the CDX index.

e following results indicate that the Gamma-OU and Inverse Gaussian-OU intensity models
can provide excellent ĕts to market data, with low RMSEs and high ĕrst-order parameter autocor-
relations.
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F .. Performance of the CDX credit index from 5/10/2007 to 6/10/2011.
Note that the curve inversion is much less pronounced as compared to GE CDS
spreads. Source: Goldman Sachs.

1See Figure 1.2 for the historical term structure of GE CDS spreads.
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F .. Kernel density estimation of the RMSE for the CIR, Gamma-OU, and
Inverse Gaussian-OU processes. All models are calibrated to the CDX for 500 con-
secutive observations.
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F .. Stability of the parameters for the CIR, Gamma-OU, and the Inverse
Gaussian-OU processes. All models are calibrated to the CDX for 500 consecutive
observations.
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F .. Autocorrelograms of the parameters for the CIR, Gamma-OU, and the
Inverse Gaussian-OU processes. All models are calibrated to the CDX for 500 con-
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Multivariate Intensity Models

We now turn to the modelling of multivariate credit products, with a particular focus on collat-
eralised debt obligations (CDOs). A multivariate credit product is a credit derivative whose payoff
is affected by the default of multiple reference entities. is chapter will ĕrst describe themost com-
monmultivariate credit derivative, the CDO, and proceed to introduce the most commonmethods
of pricing multivariate credit derivatives.

5.1. Introduction to CDOs

A CDO is a complex credit derivative that has been described as playing a pivotal role in the
recent housing bubble and the ensuing ĕnancial crisis of 2008 [33, 34]. Figure 1.1 illustrates the
explosive growth in CDO issuance in the decade leading up to the ĕnancial crisis.

A CDO allocates the credit risk of a portfolio of assets to various tranches, with more senior
ones preferentially receiving cash-Ęows.1 Simplistically, a CDO is a promise to pay cash Ęows to
investors in a prescribed sequence, based on how much cash Ęow the CDO collects from the pool
of bonds or other assets it owns. If cash collected by the CDO is insufficient to pay all of its investors,
those in the lower layers (junior tranches) suffer the ĕrst losses.

ere are two major kinds of CDOs - cash and synthetic. In a cash CDO, a portfolio of assets,
such as bonds or loans, are purchased by the CDOmanager and cash-Ęows arising from these assets
are distributed to investors. In a synthetic CDO, a synthetic CDO manager sells credit protection
via a portfolio of credit default swaps, and cash-Ęows are derived from derivatives are distributed to
investors. Due to greater standardisation and liquidity, we henceforth exclusively consider synthetic
CDOs for our purposes.

We now turn to the issue of pricing CDOs and other multivariate credit derivatives. Both CDOs
and CDSs are functions of default probability of the reference entities, recovery values, and interest
rates. e key distinction between the two credit derivatives is that the value of a CDO is dependent
on the correlation structure between the CDSs in the reference portfolio. Accurately modelling this
correlation structure is a key open problem in ĕnancial mathematics, and various attempts have
been proposed in recent years (see [14, 32] for surveys on this topic).

1e term tranche comes from the French word for slice. By allowing the customisation of risk proĕles, tranches have
the "ability to create one or more classes of securities whose rating is higher than the average rating of the underlying
collateral asset pool or to generate rated securities from a pool of unrated assets" [28].

34
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As in the single-name case, there are two key methods of modelling multivariate credit models:
the industry standard latent-variable approach, descending from the structural model of Merton
[48], and the intensity approach, principally developed in [22, 24, 56, 59]. We now explain these
methods in detail.

5.2. Copulas and Correlation

roughout the rest of this thesis, we will constantly be seeking to model a dependence struc-
ture between random variables. e copula approach is a popular method for introducing arbitrary
dependence between a set of random variables. We proceed by introducing the deĕnition and basic
properties of a copula functions.

Lemma 5.1. Let X denote a continuous random variable with distribution function F. en Z = F(X)
has a uniform distribution on [0, 1].

Proof. Let u ∈ [0, 1]. en

P(Z < u) = P(F(X) < u)

= P(X < F−1(u))

= u �

Recall that the joint distribution function completely characterises the dependence structure of
a sequence of random variables.

Deĕnition 5.2 (Joint distribution function). e joint distribution function F of the random variables
X1,X2, . . . ,Xn is

F(x) = P (X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) .

e basic idea of using copulas in analysing dependency is that the joint distribution function F
consists of two separate parts. e ĕrst is represented by the distribution functions of the random
variables, and the other part is the dependence structure between the random variables which is
described by the copula function. We now introduce the deĕnition of the copula.

Deĕnition 5.3 (Copula). A copula is any function C : [0, 1]n → [0, 1] which has the following prop-
erties:
(i) C(1−i, vi) = vi for all i = 1, . . . , n, vi ∈ [0, 1].
(ii) C(v) = 0 if at least one co-ordinate of the vector v is 0.
(iii) For all a, b ∈ [0, 1]n, with a ≤ b, the volume of the hypercube with corners a and b is positive,

that is.
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(vi1 , . . . , vin) ≥ 0,

where vj1 = aj and vj2 = bj for all j = 1, . . . , n.
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ese conditions ensure that a copula deĕnes a distribution function on [0, 1]n.

e central theorem of copula theory, providing the basis for the application of copulas to mul-
tivariate dependence, is Sklar's theorem.

eorem 5.4 (Sklar [60]). Let X1, . . . ,Xn be random variables with marginal distribution functions
F1, . . . Fn and joint distribution function F. en there exists an n-dimensional copula C such that for
all x ∈ Rn,

F(x) = C (F1(x1), F2(x2), . . . , Fn(xn))

Furthermore, if F1, . . . , Fn are absolutely continuous, then C is unique.

Typically, we will consider the case where the marginal distribution functions Fi are continuous
and strictly increasing. In this case, the copula of their joint distribution function is given by

C(u) = C(u1, . . . , un) = F
(
F−1
1 (u1), . . . , F−1

n (un)
)

(5.5)

where the functions F−1
i are the inverse marginal distribution functions.

5.3. e Latent-Variable Approach

We now turn to the structural approach to modelling multivariate risk, oen referred to as the
latent-variable approach. We develop the market-standard one-factor Gaussian model introduced
by Li [46], following the exposition in [58].

Consider modelling over a ĕnite time horizon T a portfolio of n obligors. We assume that for
each obligor i, we can extract the term structure of survival probabilities P(i)

Surv(t) from the single
name market.2

e health of an obligor is deĕned to be equal to the latent variable

A(i) = ρi Z+
√

1− ρ2i Zi

where Z,Zi, i = 1, . . . , n are independent standard normal random variables. e coefficient ρi
determines to correlation of the latent variable with the common factor Y.

Clearly, the vector of latent variables A(i) is multivariate normally distributed with a correlation
matrix given by 

1 ρ1ρ2 . . . ρ1ρn
ρ1ρ2 1 . . . ρ2ρn
... ... . . . ...

ρ1ρn ρ2ρn . . . 1

 .

Now, for each obligor i, deĕne the barrier function K(i)
t by

K(i)
t = Φ−1(1− P(i)

Surv(t)).
2See Table 4.1 and the accompanying discussion for an example of this procedure.
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Analogous with the structural approach in §1.2, we ĕnally deĕne the default time for obligor i, τ(i),
by

τ(i) = inf{t > 0 | A(i) ≤ Ki(t)} =
(
1− P(i)

Surv

)−1 (
Φ
(
A(i)))

where Ki(t) is our barrier function. Note that we have that the probability for default of the ith

obligor is equal to

P
(
A(i) ≤ K(i)

t

)
= P

(
A(i) ≤ Φ−1

(
1− P(i)

Surv(t)
))

= Φ
(
Φ−1

(
1− P(i)

Surv(t)
))

= 1− P(i)
Surv(t)

= P(i)
Def(t).

and so the one-factor model has the correct marginal distributions. ByMonte Carlo simulation and
the efficient algorithm of [2], this approach allows for the efficient calculation of the distribution
of the number of defaults in the portfolio. Appendix A2 shows an example calculation of the loss
distribution in the homogenous, constant-correlation case.

If we calibrate aGaussian copula tomarket-observed prices ofCDO tranches (examined in §6.1),
we typically observe a sloped structure similar to that in Figure 5.1. is graph illustrates themarket
implied constant parameter value of ρ for various 0%-K% CDX tranches at two different points
of time. Due to the light tailed behaviour of the normal distribution, senior tranches (tranches
with higher attachment levels) have very high implied correlations - up to 98%, reĘecting a market-
implied tailed dependency that is unaccounted for by the Gaussian copula model [58].

is is a relatively simple model, and has been extended in various directions. Andersen et al.
[2] use a Student's t distribution to model the latent variables. Hull andWhite [36] use the Student's
t distribution to model the common factor and the individual term.3 Andersen and Sidenius [1]
introduce stochastic factor weights ρi and stochastic recovery rates.

Unfortunately, the one-factor approach has several well-documented drawbacks [58, 59, 62].
Notably, the model is static, in that it is only concerned with the number of defaults up to time
T, and not the timing of them. Typically, market participants are interested in the time evolution
of the portfolio default process, and thus must seek other models. Finally, due to the light tailed
behaviour of the normal distribution, the one-factor Gaussian copula model cannot be calibrated
to observed market data for reasonable correlation parameters, as it cannot accurately model the
observed distribution of joint default probabilities [57]. ese difficulties can all be surmounted by
a dynamic reduced-form approach to multivariate credit modelling.

3Note that these approaches are not equivalent, as the Student's t distribution is not stable.
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F .. Market implied Gaussian copula correlations for various 0%-K% CDX
tranches during (3/3/08) and aer the credit crisis (20/9/10). e parameter ρ is the
Ęat correlation parameter in the Gaussian copula model that recovers the market
value of the 0%-K% tranche. Note the higher correlations during the credit crisis,
and the artiĕcially high correlation parameters for senior tranches. Source: Goldman
Sachs.

5.4. Default Intensity Approaches

We now review the major approaches to incorporating default correlation within the intensity
model framework of §1.2.

ere are three major models that we consider here. e ĕrst are the conditionally independent
defaults models, where the obligors default intensities are correlated by making them dependent
on a set of common factors and an idiosyncratic factor. e second approach considered are the
contagion models of Davis and Lo [22] and Jarrow and Yu [40], where when a ĕrm defaults, the de-
fault intensities of related ĕrms jump upwards. e ĕnal approach considered are the copula-based
methods of Schubert and Schönbucher [59], where the marginal default probabilities are estimated
and then transformed into a joint distribution via a copula function.

We now ĕx notation to be used furthermore. roughout, we consider i = 1, . . . , n different
obligors (typically ĕrms) with default intensities λ(i)t and τ(i).

5.4.1. Conditionally Independent Default Models. In conditionally independent models, we
consider the default intensities λ(i)t to be driven by both state variables Xt and independent idiosyn-
cratic intensities λ(i)t . As in the latent-factor model, default correlation is speciĕed through the
dependence of each obligor on the state variables Xt.
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Consider the conditionally independent defaults (CID) model from [23]. e dynamics of this
model are given as follows:

drt = dX1
t + dX2

t (5.6)

dλ(i)t = a1λidX
1
t + a2λidX

2
t + dλ(i)t (5.7)

dλ(i)t = κi
(
θi − λ(i)t

)
dt+ σi

√
λ(i)t dW(i)

t (5.8)

where κi, σi, θi, a1λi , a
2
λi are constant coefficients andW(1)

t , . . . ,W(n)
t are independent Brownian mo-

tions. Notice that the dynamics of the idiosyncratic intensities λ(i)t follow a Cox-Ingersoll-Ross
process.

e common factors X1
t ,X2

t are typically calibrated to the term structure of risk-free rates.
e CID modelling methodology has been challenged in the literature [36, 56]. e princi-

pal argument is that the default correlations generated by this procedure are too low compared to
empirical results.

5.4.2. Contagion Mechanisms. Contagion models extend the CID models by incorporating
the empirical fact that defaults are clustered. at is, defaults tend to concentrate in certain peri-
ods of time (default contagion), and the default of one ĕrm can trigger the default of related ĕrms
(counterparty contagion).

e Davis and Lo [22] model incorporates default contagion effects into multivariate intensity
models. Each ĕrm has an initial intensity rate of λ(i)t , which follows any aforementioned intensity
processes. When a default occurs, then the default intensity for all remaining ĕrms is increased by
a factor a > 1, called the enhancement factor, to aλ(i)t . is augmentation lasts for an exponentially
distributed period of time, aer which the contagion period ends.

5.4.3. Copula Intensity Models. A novel approach to incorporating correlation in intensity
models comes from [56, 59]. is approach, conceptually the intensity counterpart to the structural
model of Li [46], differs from themodels of the previous sections by not seeking to couple the default
intensities λ(i)t , and instead couple the default thresholds ui.

Recall that in an intensity setup, the random default time of the i-th obligor τ(i) is deĕned by the
equation

τ(i) = inf
{
t ≥ 0 | exp

(
−
∫ t

0
λ(i)t
)
≤ ui

}
where ui is a standard uniform random variable independent of λ(i)t . In the Schubert and Schön-
bucher approach, these default thresholds ui are linked via an arbitrary copula function. Under
fairly simple assumptions on the copula C and intensity processes λ(i)t , we can derive the following.

Lemma 5.9 (Proposition 4.3 of [59]). Consider a model where we have n obligors, and consider the
i-th obligor for 1 ≤ i ≤ n with associated intensity λ(i). Let C be an n-dimensional copula, coupling
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the threshold random variables ui. Let

γi(t) = exp
(
−
∫ t

0
λ(i)t
)
,

γ−i(t) =
(
γ1(t), . . . , γi−1(t), γi+1(t), . . . , γn(t)

)
,

γ(t) =
(
γ1(t), . . . , γn(t)

)
.

Let Gt represent the ĕltration containing information on λ(i)u , 0 ≤ u ≤ t and also the information
on the survival time {τ(i) ≥ u}, 0 ≤ u ≤ t.

en if no obligor has defaulted until time t then

P
(
τ(i) > T

)
= Pi

Surv(T) = E

(
C
(
γ−i(t), γi(T)

)
C (γ(t))

| Ht

)
Furthermore, deĕne an intensity process hi(t) by the formula4

∂ Pi
Surv(t,T)
∂T

∣∣∣∣
T=t

= 1{τi>t}hi(t)

en we can show that

hi(t) = λ(i)t γi(t)
∂
∂xiC (γ(t))
C(γ(t))

= λ(i)(t)γi(t)
∂

∂xi
lnC(γ(t)).

e interpretation is that given the additional information that none of the other obligors have
defaulted yet, we can infer information about the i-th default threshold ui, and thus we adjust the
default intensity λ(i)t for the i-th obligor to compensate for this. We call hi(t) the real intensities and
λ(i)t the pseudo intensities.

e dynamics of the real intensity are also affected by the default of other obligors. is is to be
expected by the coupling of our default thresholds ui. Indeed, we have the following theorem.

Lemma 5.10 (Proposition 4.7 of [59]). If the pseudo default intensities follow diffusion processes, then
the dynamics of the default intensity are

dhi =
Cxi
C
· λ(i)γi ·

(dλ(i)

λ(i)
− λ(i) dt

)
−

n∑
j=1

(Cxixj

Cxi
−

Cxj

C

)
γj λ

(j) dt


if there is no default at time t, and a jump of

Δhi = λ(i)γi
Cxi
C

[Cxjxi

Cxj

C
Cxi
− 1
]

if the obligor j ̸= i defaults at time t. Here, we suppress the dependence on t, γ(t) and use the subscript
notation for partial derivatives.

4In the univariate deterministic intensity case, we can show that h(t) = λt.



5.4. D I A 41

us the dynamics of the real intensities h1, . . . , hn include default contagion effects implied by
the default threshold copula. In contrast to the contagion models of [22, 40], contagion effects arise
endogenously, rather than through external speciĕcation.
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Empirical Analysis of Multivariate Intensity Models

Wenow seek to examine pricing and sensitivities of variousmultivariate credit derivatives, using
the structural model of §5.3, along with the non-Gaussian Orstein-Uhlenbeck intensity models of
§4.2.3. We seek to extend the results of [1, 2, 46] by considering pricing various multivariate credit
derivatives using non-Gaussian copula methods with IG-OU and G-OU marginal distributions.
We seek to examine properties of model-implied prices, correlation sensitivities, and distribution
of extreme numbers of defaults.

6.1. e k-th to Default Basket Swap and CDO Tranches

We now introduce several simpliĕed multivariate credit derivatives, which will be examined in
a computational context in later sections. More detailed descriptions of these products are given by
[19, 29, 47].

We ĕrst consider the pricing of an idealised k-th to default basket swap. is is a multivariate
credit derivative speciĕed by choosing n reference entities and the contract tenor T.

e payoff of our idealised k-th to default swap is calculated as follows. Consider a realisation
of the default times of our n entities τ(1), . . . , τ(n), with τ(1) ≤ τ(2) ≤ · · · ≤ τ(n). en the derivative
pays off V = 1 at time τ(k) if τ(k) occurs before the contract tenor T. at is, the contract pays off if
and only if the k-th default in the basket occurs before time T.

By martingale pricing techniques, the fair price of a k-th to default basket swap is then seen too
be equal to

V0 = E
(
P(0, τ(k))1{τ(k)<T}

)
(6.1)

where our discount factor P(0, ·) is assumed to be independent of the default times τ(k).
Note that the price of this derivative is determined by the joint distribution of the default times

(τ(1), . . . , τ(n)), and thus modelling the dependency structure of these random variables is critical
in accurately determining the price. is contract is valuable as implied prices of the contract allow
us to explicitly determine the implied probability of k or more defaults occurring in a given time
period.

We also consider the pricing of stylised CDO tranches in our multivariate intensity setup.1 at
is, we consider a contract on a basket of n obligors with attachment points K% and L% and tenor T

1is stylised contract differs in several major ways from a traded CDO tranche. In particular, traded CDO exchanges
a regular spread payment, as in a CDS, instead of an upfront premium, as in our stylised case
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such that the payoff VK,L
T of our contract at time T is given by

VT =


L

L−K if more than L% of obligors default before time T
x−K
L−K if L%≥ x ≥ K% of obligors default before time T

0 if less than K% of obligors default before time T

As before, the fair price V0 of a K%-L% CDO tranche is equal to

V0 = E (P(0,T)VT)

where our discount factor P(0, ·) is assumed to be independent of the default times τ(k).

6.2. Simulation of the Joint Default Distribution

Following the suggestion of [46], we simulate the joint distribution of default times τ(i) as fol-
lows.

(i) Generate n correlated uniform random variables ui on [0, 1] from an n-dimensional copula.
(ii) Translate the uniform random variables ui into the default times by inverting the marginal

distribution function τ(i) =
(
P(i)
Def

)−1
(ui) where P(i)

Def(t) = P(τ(i) ≤ t).

We consider introduce the three classes of copula models considered in our model. Recall (5.5),
where we showed that a copula is determined by a joint distribution function F and n marginal
distribution functions Fi by

C(u) = C(u1, . . . , un) = F
(
F−1
1 (u1), . . . , F−1

d (ud)
)
.

Constructing a copula is then equivalent to specifying the distribution functions F and Fi.

(i) e Gaussian copula is deĕned by letting F being the distribution function of the multivari-
ate normal distribution N(0,Σ) and Fi being the distribution function of a standard normal
distribution.

(ii) e Student's t copula is deĕned by letting F be the distribution function of the multivariate
t distribution tν(0,Σ) where Σ is the covariance matrix and ν is the number of degrees of
freedom. e marginal distributions Fi are t distributions with ν degrees of freedom. Note
that as ν →∞, the Student's t copula approaches the Gaussian copula.

Simulation procedures for these copulas are discussed in Appendix A3. Figure 6.1 depicts sim-
ulations from Gaussian and Student's t copulas.

6.3. Methodology

We consider the pricing of a k-th to default basket swap on n obligors and various values of k.
We assume a Ęat correlation structure, so that the copula covariance matrix Σ satisĕes (Σ)ij = 1
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F .. Simulation of 2000 random draws from bivariate Gaussian and Stu-
dent's t copulas. e covariance matrix Σ satisĕes (Σ)ij = 1 if i = j and ρ otherwise.
e Student's t copula has 2 degrees of freedom. Note the higher tail-dependence of
the Student's t copula as compared to the Gaussian copula.

if i = j and ρ otherwise. We assume that the single-name CDS term structure of our obligors is
available and identical across obligors.

We price our derivative using Monte Carlo simulation of the default times τ(i) and (6.1). We
examine the sensitivity of option prices to

(i) Various levels of the correlation parameter ρ,
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(ii) Type of copula function C,
(iii) Model of the intensity process λi.

Formally, we calculate our the price of our k-th to default basket swap by the following approach.

(i) Given an intensity model λi and single names CDS spreads, calibrate our intensity model
and obtain our model implied default distribution function P(i)

Def(t).
(ii) Simulate N draws of correlated uniform random variables (u1, . . . , un) from our n-

dimensional copula C with correlation parameter ρ.
(iii) Invert the default distribution function P(i)

Def(t) to obtain simulated default times
(τ(1), . . . , τ(n)).

(iv) Given the simulated default times τ(i), calculate the value of k-th to default basket swap.

Figure 6.2 illustrates the simulation of default times in a bivariate case with Gamma-OU mar-
ginal distributions. Notice that the higher tail dependence of the Student's t copula is reĘected in
the simulated default times τ(i).
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F .. Simulation of 1000 default times from bivariate Gaussian and Student's
t copulas. e covariance matrix Σ satisĕes (Σ)ij = 1 if i = j and ρ otherwise. e
Student's t copula has 2 degrees of freedom.
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6.4. Computational Results

6.4.1. k-th to Default Basket Swaps. We now consider the results of the procedure in the pre-
vious section. Figure 6.3 contains prices of 1st, 5th, and 10th to default basket swap prices for a
range of copulas, intensity models, and correlation parameters.

ere are several key conclusions that we can draw from this data. In particular, prices for se-
nior tranches (higher values of k) derived from the Student's t copula are higher than corresponding
prices from a Gaussian copula model. is is due to the higher degree of tail dependence in the Stu-
dent's t distribution, and correspondingly increasing the probability of more extreme joint default
events occurring, and thus increasing the payoff of the k-th to default basket swaps.

6.4.2. CDO Tranches. To quantify the impact of copula tail dependence on the pricing of the
various contracts, we consider the Value at Risk (VaR) of various stylised CDO tranches. e α%
VaR of our ĕnancial contract paying off VT at time T is deĕned as

sup {c ∈ R | P(VT > c) ≤ 1− α} .

at is, an α%VaR for a time period T is the level c such that the probability of our contract paying
off more than c is less than α.2 e VaR is typically estimated by Monte Carlo methods.

Our results are broadly supportive of previous results in the literature [30]. For senior tranches,
the Student's t copula generates lower premiums, reĘecting the fact that the Student's t distribution
has heavier tails than the Gaussian distribution, and thus generates higher probabilities of extreme
events. As a corollary, the prices of 1st to default contracts are higher for Gaussian copula models
as compared with the Student's t copula models.

Note also that as the correlation parameter ρ tends to 1, k-th to default basket swap prices con-
verge to a constant for all values of k, reĘecting the fact that the likelihood of one default is equal to
the likelihood of n defaults when defaults are perfectly correlated.

epricing ofCDO tranches ismore ambiguous, and indicates that the 5%VaR for variousCDO
tranches is insensitive to the pricing copula used. is is potentially due to the simulation procedure,
as only 5,000 n-dimensional simulations were generated for each value of the correlation parameter
ρ. us, not enough extreme events were observed in our simulation to distinguish between the
Student's t and Gaussian copulas.

As in the univariate case, we see that non-Gaussian OU processes can generate plausible corre-
lation dependency structures for various basket swaps and CDO tranches. In the absence of traded
price histories for these structures, we can accept these processes as effective candidates for con-
structing our multivariate intensity models.

2Typically, the VaR is deĕned for risk management purposes as inf {c ∈ R | P(VT < c) ≤ 1− α}; that is, a measure of
the probability of losing more than c in a given time period. is distinction makes little difference for our purposes.
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Summary

7.1. Further Extensions

ere has been a vast amount of research conducted in the ĕeld of intensity models for credit
risk, of which our work examines only a small subset.

In the multivariate context, we have focused on the bottom-up approach to credit risk mod-
elling. us, we examine individual intensities λ(i) and construct the joint distribution of default
times through a variety of techniques (§5.4.1, §5.4.2, §5.4.3). is has been shown to be an effective
method of incorporating correlation effects in multivariate credit modelling [18]. Unfortunately,
the vast number of parameters can be hard to consistently calibrate to market data

An alternative approach, that we have broadly neglected in this work, is the top-down approach,
where the portfolio loss and number of defaults are modelled directly as the fundamental objects.
e top-down approach has become more and more popular, as it provides a much simpler spec-
iĕcation in cases where modelling the individual obligors in a portfolio is unnecessary, such as in
credit default swap indices [27]. is approach has also been successfully applied in some scenarios
[18].

We have also neglected to consider the modelling of the recovery rate R, instead assuming it
as a given constant. During the credit crisis, the Gaussian copula model with ĕxed recovery rates
was unable to be calibrated1 to senior CDO tranches, and in response to this, stochastic recovery
rate models were adopted by market participants [43]. First introduced in [1], the recovery rate R
is typically modelled as a function of the common market factor, idiosyncratic risk factors, and the
default triggering variable. is model allows for consistent calibration and pricing to market data
for senior CDO tranches in highly distressed credit environments.

e computational aspects of credit risk modelling have also been a topic of much research. In
particular, the topic of efficiently calibrating bottom-up credit risk models for multivariate credit
derivatives has been addressed by [19], seeking to resolve some of the computational difficulties
with applying simple optimisation algorithms to the high-dimensional nonlinear equations arising
in the calibration context. Other research in the multivariate credit risk context has focused upon
estimating copulas from observed data [42, 55]. Parameter estimations have been stymied by the
lack of data - to quote Davis and Lo [22];

1Recall the sample calibration of the Gaussian copulamodel to the CDX in Figure 5.1 and the accompanying discussion.

49



7.2. C 50

e most obvious feature of this whole area is lack of data. Default events are in-
frequent and data collected over many years can hardly be supposed to be a sample
from a stationary process. us reliable statistical estimates of distributional param-
eters are practically impossible to obtain, particularly the key correlation estimates.
In these circumstances there is no point at all in introducing complicated models
with lots of additional parameters.

7.2. Conclusions

We have examined univariate andmultivariate intensity models for credit risk, with a particular
focus on the use of Lévy processes. We ĕrst introduce our Lévy processes, and then consider the
pricing and calibration of intensity models for single-name credit default swaps. We then assess our
various stochastic intensity models by calibrating them to market data and examining properties of
these ĕts.

We then outline the most common multivariate credit risk models, with a particular focus on
multivariate intensity approaches. We ĕnally examine the pricing of multivariate credit derivatives
in a bottom-up copulamodel using our non-GaussianOrnstein-Uhlenbeck Lévy processes formar-
ginal default time distributions.

roughout, we see that our non-Gaussian Ornstein-Uhlenbeck Lévy models provide empiri-
cally appealing term-structure calibrations and sensitivities. ese models have several theoretical
and empirical advantages over the market-standard deterministic intensity models.
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A A

Further Derivations

A1. A Proof of the Lévy-Itô Decomposition

Recall the Lêy-Itô decomposition (eorem 2.9), quoted below for convenience.

eoremA.1 (e Lévy-Itô decomposition). Let Xt be a Lévy process. en we can decompose Xt as

Xt = βt+ σBt + Jt +Mt

where Bt is a Brownian motion, Jt is a compound Poisson process, and Mt is a pure jump martingale.

e ĕnal step in the proof required us to show that the expression∫
|x|<1

(
eiux − 1− iux

)
dν︸ ︷︷ ︸

(⋆⋆⋆)

was the characteristic exponent of a square integrable pure jump martingale that almost surely has
a countable number of jumps on a ĕnite interval. We now seek to prove this result. Our proof draws
from [44].

Lemma A.2. Let (ξi) be a sequence of independent and identically distributed random variables with
distribution function F which does not assign mass to the origin. Let Nt be an independent Poisson
process with rate λ. Assume that

∫
R |x| dF <∞. en

(i) e process Mt deĕned by

Mt =
Nt∑
i=1

ξi − λt
∫
R
x dF (A.3)

is a martingale with respect to its natural ĕltration.
(ii) Moreover, if

∫
R x

2 dF <∞ then M is a square integrable martingale such that

E(M2
t ) = λt

∫
R
x2 dF (A.4)

Proof.

(i) Note the second term in (A.3) is the compensator of the compound Poisson process
∑Nt

i=1 ξi,
and soMt is a martingale by deĕnition.
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(ii) By the independence and independent distribution properties, we have

E(M2
t ) = E

( Nt∑
i=1

ξi

)2
− λ2t2

(∫
R
x dF

)2

= E

( Nt∑
i=1

ξ2i

)2

+ E

∑
i̸=j

ξiξj

− λ2t2 (x dF)2

= λt
∫
R
x2 dF+ E(N2

t − Nt)

(∫
R
x dF

)2

− λ2t2
(∫

R
x dF

)2

= λt
∫
R
x2 dF+ λ2t2

(∫
R
x2 dF

)2

− λ2t2
(∫

R
x dF

)2

= λt
∫
R
x2 dF

as required. �

Now, we introduce notation. Let n = 1, 2, . . . . en let
(i) Nn

t be independent Poisson processes with rate λn
(ii) (ξi) a sequence of (mutually independent) independent and identically distributed random

variables with distribution function Fwhich does not assignmass to the origin and
∫
R x

2 dF <

∞.
(iii) Mn

t is the associated martingale, deĕned in Lemma A.2.
(iv) e ĕltration Ft, the common complete, right continuous ĕltration generated by all the pro-

cessesMn.
With this in mind, we have the following result.

Lemma A.5. If
∞∑
n=1

∫
R
x2 dFn <∞ (A.6)

then there exists a Lévy process Xt which is also a square integrablemartingale andwhose characteristic
exponent is given by

ψ(u) =
∫
R

(
eiux − 1− iux

)∑
n≥1

λn dFn. (A.7)

Proof. Fix T > 0. First, note that Xk
t =

∑k
n=1 Mn

t is a square integrable martingale. We can also
show that by independence ofMn, we have

E

( k∑
n=1

Mn
t

)2

= t
k∑

n=1

λn
∫
R
x2 dFn <∞ (A.8)

by assumption.
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We claim that the sequence {Xk
t | k ≥ 1} is Cauchy in the L2T norm ∥ · ∥. Let k ≥ l. en

∥Xk − Xl∥2 = E
(
Xk
T − Xl

T
)2

= T
k∑

n=l

λn
∫
R
x2 dFn

→ 0

as k, l→∞ by assumption. By the martingale convergence theorem, there then exists a martingale
Xt with respect to the ĕltration Ft. By Doob's martingale inequality, we can show that

lim
k→∞

E
(

sup
0≤t≤T

(Xt − Xk
t )

2
)

= 0.

us the ĕnite dimensional distributions of Xk
t converge to Xt. Consequently,

E
(
eiu(Xt−Xs)

)
= lim

k→∞
E
(
eiu(Xk

t−Xk
s)
)

= lim
k→∞

E
(
eiuXk

t−s

)
as Xk

t is a Lévy process

= E
(
eiuXt−s

)
so that Xt has stationary and independent increments.

We also have that the characteristic exponent ψ(u) of Xt is given by

eψ(u) = lim
k→∞

k∏
n=1

E
(
eiuMn

1
)

= lim
k→∞

exp

(∫
R

(
eiux − 1− iux

) k∑
n=1

λndFn

)
which converges by (A.6).

Right continuity and independence of the time horizon T can be disposed of by a closure result
in metric space theory. us Xt is a Lévy process with the required properties. �

We are now in a position to prove the Lévy-Itô decomposition result. Note that we have∫
|x|<1

(
eiux − 1− iux

)
dFn =

∞∑
n=0

[
λn
∫
2−(n+1)≤|x|<2−n

(
eiux − 1

)
dFn

−iuλn
(∫

2−n+1≤|x|<2−n
xdν
)]

where
λn = ν

{
x | 2−(n+1) ≤ |x| < 2−n}
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and
Fn(dx) =

1
λn

ν(dx) |{2−(n+1)≤|x|<2−n}
en the existence of a square integrable pure jump martingale Xt is given by Lemma A.5. is
completes the proof of the Lévy-Itô decomposition.

A2. Loss Distribution in the One-Factor Gaussian Copula

Consider the one-factor Gaussian copula model developed in §5.3. We seek to derive expres-
sions for the distribution of the loss in a synthetic CDO containing n obligors. Assume ρi = ρ, the
Ęat correlation assumption, and P(i)

Surv(T) = p for all i, the identical default probability. Assume that
all obligors have equal recovery rates and nationals.1

Recall that the obligor i defaults before time T if the random variable

A(i) = ρZ+
√
1− ρ2Z(i)

falls below the default threshold C = Φ−1(p). us, conditional on the realisation of the common
component Z, the probability of asset i defaulting is

Π(Z) = Φ

(
C− ρZ√
1− ρ2

)
us the conditional loss is the sum of n independent random variables with an expected value of
Π(Z)(1− R)N, where R is the recovery rate and N is the notional. If we assume that the number of
issuers is sufficiently large, the law of large numbers applies and thus the conditional loss is exactly
Π(Z)(1− R)N.

us under the Gaussian copula model, the probability of the total portfolio loss L being greater
than some level K is equal to

P(L > K) = E
(
1{Π(Z)(1−R)N>K} | Z

)
= P(Z < B) = Φ(B)

where
B =

1
ρ

(
C−

√
1− ρ2Φ−1

(
K

N(1− R)

))
.

1ese assumptions are not necessary, but they simplify the following derivation. is approach is referred to as the
large homogenous portfolio (LHP) approximation.
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Furthermore, we can calculate E (min(L,K)), an expression used in calculating tranche prices
in CDOs. We have

E (min(L,K)) = E
(
K1{L>K} + 1{L≤K}

)
= KΦ(B) + E

(
L1{L<K}

)
= KΦ(B) + E

(
E
(
L1{L≤K} | Z

))
= KΦ(B) + E

(
E
(
Π(Z)(1− R)N1{L≤K} | Z

))
= KΦ(B) + (1− R)NE

(
E
(
Π(Z)1{Z>B} | Z

))
= KΦ(B) + (1− R)N

∫ ∞

A
Φ

(
C− ρz√
1− ρ2

)
φ(z) dz

= KΦ(B) + (1− R)NΦ2,−ρ(C,−B)

where Φ2,−ρ is the bivariate Gaussian distribution function with correlation ρ.

A3. Sampling from Copula Functions

We present several algorithms to sample n uniformly distributed random variables from a vari-
ety of copula functions.

Algorithm A3.1 Returns n correlated uniform random variables from a Gaussian copula CGaussian
Σ

with covariance matrix Σ.
1: procedure GCS(n, Σ)
2: Calculate A, the Cholesky decomposition of Σ
3: Draw an n-dimensional vector z of independent standard normal variables
4: x← Az
5: u← 0
6: for all x ∈ x do
7: u← Φ(x)whereΦ(·) is the cumulative distribution function of the normal distribution
8: end for
9: en u ∼ CGaussian

Σ
10: return u
11: end procedure
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AlgorithmA3.2 Returns n correlated uniform random variables from a Student's t copula Ct
Σ,ν with

covariance matrix Σ and ν degrees of freedom.
1: procedure STCS(n, Σ, ν)
2: Calculate A, the Cholesky decomposition of Σ
3: Draw an n-dimensional vector z of independent standard normal variables
4: x← Az
5: s← a random draw from a χ2ν distribution
6: y←

√ ν
s x

7: u← 0
8: for all y ∈ y do
9: y ← tν(y), where tν(·) is the distribution function of the Student's t distribution with ν

degrees of freedom
10: end for
11: en u ∼ Ct

Σ,ν
12: return u
13: end procedure



A B

Code Listings

Please note that all code used in this thesis is available at
https://github.com/zaguar/CDS-Thesis
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