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1. Metric Spaces

Definition 1.1 (Metric). A metric, or distance function, on a set X is a mapping d : X ×X → R
such that

• d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y.
• d(x, y) = d(y, x) for all x, y ∈ X.
• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We call (X, d) a metric space.

Definition 1.2 (Open ball). Let (X, d) be a metric space. For x ∈ X and ϵ > 0, the set Bd(x, ϵ)

defined by
Bd(x, ϵ) = {y ∈ X | d(x, y) < ϵ}

is callen an open ball in the set X.

Definition 1.3 (Open sets in metric spaces). Let (X, d) be a metric space and let U be any subset
of X. Then U is called an open set in X if every point of U is an interior point of U ; that is, for
any a ∈ U , there is an open ball B(a, ϵ) such that B(a, ϵ) ⊆ U .

Definition 1.4 (Properties of open sets). Let (X, d) be a metric space.

• ∅ and X are open.
• The union of an arbitrary collection of open sets is open.
• The intersection of a finite number of open sets is open.

Definition 1.5 (Closed set). A subset A of a metric space (X, d) is closed if it’s complement X\A
is open in X.

Definition 1.6 (Properties of closed sets). Let (X, d) be a metric space.

• ∅ and X are closed.
• The union of an finite collection of closed sets is closed.
• The intersection of an arbitrary number of closed sets is closed.

Definition 1.7 (Limit point of a subset). Let (X, d) be a metric space and let A be a subset of X.
Then a point x in X is a limit point of A if every open ball B(x, ϵ) contains at least one point of
A.

The set of all limit points of A is called the derived set A′.

Definition 1.8 (Closure of a set). Let (X, d) be a metric space and let A ⊆ X. Then the set
consisting of A and its limit points is called the closure of A, denoted A.

A = A ∪A′
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Theorem 1.9. The closure of a set is a closed set, and a set is closed if and only if it is equal to
its closure.

Definition 1.10 (Interior of a set). Let (X, d) be a metric space and let A ⊆ X. A point a ∈ A is
an interior point of A if there exists ϵ > 0 such that

B(a, ϵ) ⊆ A

The set of interior points of A is called IntA, the interior of A.

Theorem 1.11. The set IntA is open, and a set A is open if and only if IntA = A.

Theorem 1.12 (Properties of interior and closure). The interior of a set A is the largest open
subset contained in A, and the closure of A is the smallest closed set containing A.

Definition 1.13 (Isolated point). Let (X, d) be a metric space and let A be a subset of X. A point
x ∈ A is called an isolated point if there exists an ϵ > 0 such that

B(x, ϵ)\{x} ∩A = ∅

Definition 1.14 (Boundary of a subset). Let (X, d) be a metric space and A ⊆ X. Then the
boundary of A is defined as

∂A = A ∩X\A = A\IntA

Theorem 1.15 (Properties of the boundary). Let (X, d) be a metric space and A ⊂ X. Then we
have

• A = IntA ∪ ∂A.
• A is closed if and only if ∂A ⊆ A.
• A is open if and only if ∂A ⊆ X\A.
• ∂(X\A) = ∂A.

Definition 1.16 (Diameter of a set). The diameter of a subset A of a metric space (X, d), δ(A) is
defined as

δ(A) = sup
x,y∈A

d(x, y)

Definition 1.17 (Bounded set). A subset A of a metric space (X, d) is bounded if its diameter
is finite. Alternatively, a subset is bounded if it is contained in a large enough open set - i.e., there
exists x ∈ X and ϵ > 0 such that A ⊆ B(x, ϵ)

1.1. Separable metric spaces.

Definition 1.18 (Separable metric space). Let (X, d) be a metric space. Then a subset A of X
is said to be dense in X if A = X. A metric space (X, d) is said to be separable if X has a
countable dense subset.



MATH 3961 - METRIC SPACES 4

Corollary 1.19. We note that A is dense in X if and only if for any x ∈ X and ϵ > 0, there is a
point a ∈ A such that d(x, a) < ϵ.

1.2. Subspaces.

Definition 1.20 (Open sets in a subspace). Let (X, d) be a metric space and (Y, dY ) be a metric
subspace of (X, d). Let G be a subset of Y . Then G is open in Y if and only if, for any x ∈ G,
there is an open ball B(x, ϵ) in X such that

B(x, ϵ) ∩ Y ⊆ G

A subset H of Y is closed in Y if its complement G = Y \H of H is open in Y .

Theorem 1.21 (Open sets in a metric subspace). Let (Y, dY ) be a metric subspace of a metric
space (X, d), and let G ⊆ Y . Then G is open in Y if and only if there exists an open subset U in
X such that G = U ∩ Y .

1.3. Convergence in a Metric Space.

Definition 1.22 (Convergence). A sequence (xn) in a metric space (X, d) is said to converge to
a point x ∈ X if for any ϵ > 0, there exists N such that

n > N implies d(xn, x) < ϵ

The point x is called a limit of the sequence (xn)

Corollary 1.23. A sequence (xn) in a metric space (X, d) is said to converge to a point x ∈ X

if any open ball B(x, ϵ) contains almost all xn.

Theorem 1.24 (Connection between closed sets and convergent sequences). Let (X, d) be a metric
space, A ⊆ X and x ∈ X. Then

• x ∈ A if and only if there is a sequence (xn) in A such that xn → x.
• A is closed if and only if A contains all the limits of convergent sequences in A.

Definition 1.25 (Uniform convergence). Let (fn) be a sequence of real-valued functions defined
on a set S and let f be a function defined on S. Then we say that the sequence (fn) converges to
f uniformly if for any ϵ > 0, there exists N such that

sup
x∈S

d(fn(x), f(x)) < ϵ

for all n > N , and where N is independent of x.

Definition 1.26 (Cauchy Sequences). A sequence (xn) in a metric space (X, d) is said to be
Cauchy in X if for any ϵ > 0, there exists N such that

m,n > N ⇒ d(xm, xn) < ϵ
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Definition 1.27 (Completeness in Metric Spaces). A space X is said to be complete if every
Cauchy sequence in X converges in X.

Proposition 1.28. Every convergent sequence (xn) in a metric space (X, d) is a Cauchy sequence.

Corollary 1.29. Let (X, d) be a complete metric space. Then a closed metric subspace Y = (Y, dY )

of X is complete.

Proposition 1.30. Let (X, d) be a metric space. If a Cauchy sequence (xn) in (X, d) has a
subsequence converging to x, then (xn) converges to x.

2. Continuous Mappings

Definition 2.1 (Continuous mapping between metric spaces). Let (X, d) and (Y, dY ) be two metric
spaces. Then a mapping f : X → Y is said to be continuous at a point a ∈ X if for any ϵ > 0,
there exists δ such that

dX(x, a) < δ ⇒ dY (f(x), f(a)) < ϵ

Theorem 2.2 (Topological characterisations of continuity). A funtion f : X → Y is continuous
at a ∈ X if and only if for any open set W containing f(a), there exists an open set G containing
A such that f(G) ⊆ W .

Theorem 2.3 (Sequential characterisation of continuity). A function f : X → Y is continuous at
a ∈ X if and only if for any sequence (xn) which converges to a in X, the corresponding sequence
(f(xn)) converges to f(a) in Y .

Definition 2.4 (Continuous mapping). A map is continuous on X if any only if it is continuous
at every point in X.

Theorem 2.5 (Topological definition of continuous mapping). A mapping f : X → Y is continuous
on X if and only if for any open set W in Y , the set f−1(W ) is open in X. Alternatively, a function
is continuous if the preimage of open sets are open in X.

Theorem 2.6 (Continuity in terms of closed sets). A mapping f : X → Y is continuous on X if
and only if the preimage of closed sets are closed in X.

3. Homeomorphism and Equivalent Metrics

Definition 3.1 (Homeomorphism). Let X and Y be metric spaces and let f : X → Y be a map
between them. Then f is a homeomorphism from X to Y if we have

• f is a bijection.
• f and f−1 are continuous
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If a homeomorphism exists between X and Y , we say that X and Y are homeomorphic, and
that X ≃ Y .

Definition 3.2 (Characterisations of homeomorphism). Let f : X → Y be a bijective mapping.
Then the following are equivalent.

• f is a homeomorphism;
• for any U ⊆ X, U is open in X if and only if f(U) is open in Y ;
• for any G ⊆ X, G is closed in X if and only if f(G) is closed in Y ;
• for any A ⊆ X, f(A) = f(A);
• for any B ⊆ Y , f−1(B) = f−1(B)

• for any B ⊆ Y , f−1(IntB) = Int f−1(B)

Definition 3.3 (Isometric mappings). Let (X, d) and (Y, dY ) be two metric spaces and f : X → Y

a mapping. Then f is said to be isometric or an isometry if f preserves distances; that is, for all
x, y ∈ X,

dY (f(x), f(y)) = dX(x, y)

The space X is said to be isometric with the space Y if there exists a bijective isometry of X onto
Y . The spaces X and Y are isometric spaces

Theorem 3.4. Any isometric mapping from X onto Y is a homeomorphism. Moreover, if X is
complete and Y is isometric with X, then Y is also complete.

Definition 3.5 (Equivalent metrics). Let (X, d1) and (X, d2) be two metric spaces. If the identity
mapping id : (X, d1) → (X, d2) is a homeomorphism, then the metrics d1 and d2 are said to be
equivalent on X.

Theorem 3.6 (Characterisations of equivalent metrics). Let (X, d1) and (X, d2) be two metric
spaces. Then the following are equivalent.

• The metrics d1 and d2 are equivalent on X;
• for any U ⊆ X, U is open in (X, d1) if and only if U is open in (X, d2);
• for any G ⊆ X, G is closed in (X, d1) if and only if G is closed in (X, d2);
• The sequence (xn) converges to a in (X, d1) if and only if it converges to a in (X, d2).

Theorem 3.7 (Equivalent metrics). Let (X, d1) and (X, d2) be two metric spaces. If there exist
strictly positive numbers c and C such that

cd1(x, y) ≤ d2(x, y) ≤ Cd1(x, y)

for all x, y ∈ X, then the metrics d1, d2 are equivalent on X.
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4. Contraction Mapping Theorem

Definition 4.1 (Uniformly continuous). A function f : X → Y is uniformly continuous if for any
ϵ > 0 there exists δ > 0 such that

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ϵ

where δ is independent of x, y.

Definition 4.2 (Contraction mapping). Let f be a mapping from a metric space (X, d) to itself.
Then f is called a contraction mapping if there exists a constant K > 1 such that for all x, y ∈ X,

d(f(x), f(y)) ≤ K(x, y)

Proposition 4.3. If f : X → X is a contraction mapping, then f is uniformly continuous, and
hence continuous, on X

Theorem 4.4 (Banach fixed point theorem). Let (X, d) be a complete metric space and let f :

X → X be a contraction mapping. Then f has a unique fixed point p in X

Proof. Existence: Show that the sequence (xn), defined as xn = fn(x0) for some x0 ∈ X is
Cauchy.

Uniqueness: If p and q are fixed points of f , the we have that

d(p, q) = d(f(p), f(q)) ≤ Kd(p, q)

and so p = q. �

Corollary 4.5 (Application of Banach fixed point theorem to ordinary differential equations). We
seek to solve the differential equation

dx

dt
= f(t, x)

given the initial condition x(t0) = x0.
Define Y be the subspace of the set of all continuous functions on [t0−β, t0+β] with the supremum

metric, satisfying d(x(t), x0) < cβ We claim that the mapping F : Y → Y defined by

F (x(t)) = x0 +

∫ t

t0

f(s, x(s)) ds

is a contraction mapping. As F is a contraction mapping on a complete metric space, we must have
that it has a unique fixed point, which satisfies the differential equation above.

5. Completeness

We recall the definition of completeness in metric spaces.

Definition 5.1 (Completeness in Metric Spaces). A space X is said to be complete if every Cauchy
sequence in X converges in X.
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We now state the theorem that every metric space can be completed. The space X̂ in the theorem
is called the completion of the given space X.

Theorem 5.2 (Completion of a metric spaces). Let (X, d) be a metric space. Then there exists a
complete metric space X̂ = (X̂, d̂) which has a subspace W that is isometric with X and is dense
in X̂

Proof. TO DO �

6. Connectedness

Definition 6.1 (Disconnected). Let X be a metric space (or topological space). Then X is said
to be disconnected if there exist two non-empty subsets A1, A2 of X such that

X = A1 ∪A2 and A1 ∩A2, A1 ∩A2 = ∅

If no two sets A1, A2 exist, we say that X is connected

Theorem 6.2 (Characterisations of connectedness). Let (X, d) be a metric space. Then the fol-
lowing statements are equivalent:

• X is disconnected;
• There exist two non-empty disjoint open subsets A1, A2 in X such that X = A1 ∪A2;
• There exist two non-empty disjoint closed subsets A1, A2 in X such that X = A1 ∪A2;
• There exists are proper subset of X which is both open and closed in X

Definition 6.3 (Connected subspace). Let (X, d) be a metric space and A a non-empty subset of
X. Then A is said to be a connected subst of X if A is connected as a metric subspace and to be
a disconnected subset of X if A is disconnected as a metric subspace.

Theorem 6.4 (Intervals in R). A subset A of R containing at least two points is connected if and
only if A is a interval.

Theorem 6.5 (Characterisations of connectedness). Let S(2) be the two point discrete metric space.
If A is connected then any continuous mapping f : A → S(2) is a constant mapping. Alternatively,
if f : A → S(2) is continuous, then f(A) = {0} or {1}.

Theorem 6.6 (Connectedness is a topological property). Let X and Y be two metric spaces, and
let f : X → Y be a continuous mapping. Then if A ⊆ X is connected in X, then the image f(A)

is connected in Y .

Definition 6.7 (Path-connected). Let X be a metric space and A a subset of X. Then A is said
to be path-connected if for any a, b ∈ A, there is a path joining a and b, that is, a continuous
mapping f : [0, 1] → A such that f(0) = a, f(1) = b.
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Theorem 6.8 (Path-connectedness implies connectedness). Let X be a metric space and A a subset
of X. If A is path-connected, then A is connected.

We note that the converse is not necessarily true - that is, there exist connected sets that are
not path connected. However, in Rn, we have the following.

Theorem 6.9 (For open sets in Rn, path-connectedness is equivalent to connectedness). Let X be
any open set in Rn. Then X is connected if and only if X is path-connected.

7. Compactness

Compactness in metric spaces.

Definition 7.1 (Open covering of a set). Let X be a metric space (or any topological space), and
let A ⊆ X. Then a family U of open sets in X, is called an open covering of A if

A ⊆ ∪U∈UU

A subset V of U is called a finite subcovering if V covers A and has a finite number of elements.

Definition 7.2 (Compact subset of a topological space). let X be a metric space (or any topological
space), and let A ⊆ X. Then A is called a compact subset of X if every open covering U of A
has a finite subcovering V of A.

In metric spaces, we have the following useful theorem.

Theorem 7.3 (Implications of compactness in metric spaces). Let (X, d) be a metric space. If A
is a compact subset in X, then A is closed and bounded in X.

In Rn, we have the following, more general, results. These are key results in characterising
compact subsets of Euclidean space.

Theorem 7.4 (Heine-Borel). Every closed and bounded interval in R is compact.

Theorem 7.5 (Compactness in Rn). Let A be a subset of Rn. Then A is compact if and only if A
is closed and bounded.

7.1. Properties of compact sets.

Theorem 7.6. A subset A in Rn is compact if and only if every sequence in A has a convergent
subsequence with limit in A.

Definition 7.7 (Compactness is a topological property). Let X and Y be topological spaces, and
let f : X → Y be a continuous mapping. If a subset A in X is compact, then the image f(A) is
compact in Y .

That is, continuous images of compact sets are compact.
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Corollary 7.8. The following are true in an arbitrary metric space.

• A continuous image of a compact subset is closed.
• A continuous image of a compact subset is bounded.

Theorem 7.9. Any closed subspace A of a compact space X is compact.

Proof. TO DO �

8. Applications to Continuous Functions f : [a, b] → R

Theorem 8.1 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous function. Let K

be a number lying between f(a) and f(b). Then there exists a point c ∈ [a, b] such that f(c) = K.

Proof. Using connectedness of [a, b], we have that f([a, b]) is connected. Thus, if f(a) < K < f(b),
then K ∈ f([a, b]). Hence, there exists c ∈ [a, b] such that f(c) = K. �

9. Topological Spaces

A topological space is defined as follows. Let X be a non-empty set. Then a family τ of subsets
of X is called a topology for X if τ satisfies

• ∅, X ∈ τ ;
• The union of any subfamily of members of τ is in τ ;
• The intersection of any finite subfamily of members of τ is in τ .

The pair (X, τ) is called a topological space, and the members of τ are called the open sets
in (X, τ).

Definition 9.1 (Interior of a subset). Let (X, τ) be any topological space and A ⊆ X. Then a ∈ A

is called an interior point of A if there exists an open set U containing a such that U ⊆ A. We
denote by IntA the set of all interior points of A.

Theorem 9.2 (Properties of the interior). Let (X, τ) be any topological space and let A ⊆ X. Then
IntA is the largest open subset contained in A.

Definition 9.3 (Closed subsets). Let A be a subset of a topological space (X, τ). Then A is called
a closed set in X if the complement X\A is open in X, that is, if X\A ∈ τ .

Theorem 9.4. In a topological space (X, τ),

• ∅ and X are closed;
• The intersection of any collection of closed sets is closed;
• The union of any finite collection of closed sets are closed.
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Definition 9.5 (Limit point of a subset). Let (X, τ) be a topological space and let A ⊆ X. Then
a point x ∈ X is called a limit point or accumulation point of A if every open set G containing
x contains a point of A different from x, i.e.,

G ∈ τ, x ∈ G ⇒ (G\{x}) ∩A ̸= ∅

We denote by A′ the set of all limit points of A, and is called the derived set of A.

Theorem 9.6 (Properties of closed sets). Let (X, τ) be a topological space and let A ⊆ X. Then
A is closed if and only if A′ ⊆ A.

Definition 9.7 (Closure of a subset). Let (X, τ) be a topological space and A ⊆ X. Then the set
consisting of A together with all its limit points is called the closure of A, and is denoted by A.
Thus,

A = A ∪A′

Proposition 9.8. Let (X, τ) be a topological space and A ⊆ X. Then

A = {x ∈ X | for every open set U containing x, U ∩A ̸= ∅}.

Theorem 9.9. Let (X, τ) be a topological space and A ⊆ X. Then A is the smallest closed set
containing A.

Definition 9.10 (Dense subset). Let (X, τ) be a topological space and A ⊆ X. Then a subset A

of X is said to be dense in X if A = X.

Definition 9.11 (Nowhere dense). Let (X, τ) be a topological space and A ⊆ X. Then A is
nowhere dense in X if and only if the interior of the closure of A is empty. That is, Int (A) = ∅.

Alternatively, a set is nowhere dense if and only if X\A is dense in X.

Definition 9.12 (Boundary of a subset). Let (X, τ) be a topological space and A ⊆ X. Then the
boundary of A, denoted by ∂A, is defined as

∂A = A ∩X\A

Theorem 9.13 (Characterisation of the boundary). Let (X, τ) be a topological space and A ⊆ X.
Then

A = IntA ∪ ∂A

Definition 9.14 (Convergence in topological spaces). Let (X, τ) be a topological space. Then a
sequence (xn) of points in X is said to converge to a point x ∈ X if for any open set U containing
x, there exists a positive integer N such that

n > N ⇒ xn ∈ U

That is, if any open set U containing x contains almost all of the terms of the sequence.
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Definition 9.15 (Induced or relative topology). Let (X, τ) be a topological space and Y ⊆ X. Let

τY = {G ⊆ Y |G = U ∩ Y for some U ∈ τ}

Then τY is a topology for Y , called the induced or relative topology on Y and the space (Y, τY )

is called a subspace of (X, τ)

Definition 9.16 (Bases for a topology). Let (X, τ) be a topological space. Then a subfamily B
of τ is called a base for the topology if for every open set U in τ is the union of members of B.
Equivalently, B ⊆ τ is a basis for τ if and only if for any point a in an open set U ∈ τ , there exists
V ∈ B such that a ∈ V ⊆ U .

Theorem 9.17 (Characterisation of a basis for a topology). A family of nonempty subsets of a set
X is a base for some topology τ on X if and only if it satisfies the following properties.

• X = ∪B∈BB

• For any B1, B2 ∈ B, B1 ∩ B2 is the union of members of B. Equivalently, if b ∈ B1 ∩ B2,
then there exists Bb ∈ B such that b ∈ Bb ⊆ B1 ∩B2.

Theorem 9.18 (Continuity in terms of a basis). Let (X, τX) and (Y, τY ) be topological spaces and
f : X → Y a mapping. Let BY be a basis for τY . Then f is continuous if and only if for any
B ∈ BY , f−1(B) is open in X - i.e., is in τX .

Theorem 9.19 (Product spaces). Let (X, τX) and (Y, τY ) be topological spaces. Then the family
B given by

B = {U × V |U ∈ τX , V ∈ τY }

is a base for a topology on X × Y .

9.1. Compactness.

Definition 9.20 (Compactness in terms of a basis). A topological space (X, τ) is compact if and
only if there exists a base B for τ such that every open covering of X be members of B has a finite
subcovering.

Theorem 9.21. The product space of two compact topological spaces is compact.

9.2. Connectedness.

Theorem 9.22. Let X and Y be topological spaces and let f : X → Y be a homeomorphism. Then
X is connected if and only if Y is connected.

Theorem 9.23. Let X be a topological space. Let {Ai}be a family of connected subsets in X and
suppose that for all i, j, Ai ∩Aj ̸= ∅. Then the union A = ∪iAi is connected.
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10. Separation Properties

Definition 10.1 (T0-spaces). A topological space (X, τ) is called a T0-space if for any pair of
distinct points a, b of X, either there exists an open set U containing a and not b or an open set V

containing b and not a.

Definition 10.2 (T1-spaces). A topological space (X, τ) is called a T1-space if for any pair of
distinct points a, b of X, there exists an open set U in X with a ∈ U and b /∈ U .

Every T1-space is T0, but not the reverse.

Theorem 10.3 (Characterisation of T1-spaces). AA topological space (X, τ) is called a T1-space
if and only if eery singleton set {a} of X is closed (and so every finite subset of X is closed).

Definition 10.4 (T2-spaces or Hausdorff spaces). A topological space (X, τ) is called a T2-space
or a Hausdorff space if for any pair of distinct points a, b of X, there are disjoint open sets U

and V in X such that a ∈ U and b ∈ V .

Every T2-space is T1, but not the reverse.

Example 10.5. Any metric space is a T2-space

Theorem 10.6. Every subspace of a T1- or T2-space is a T1- or T2-space.

Theorem 10.7. Every product space of a T1- or T2-space is a T1- or T2-space.

10.1. Regular Spaces and T3-spaces.

Definition 10.8 (Regular space). A topological space (X, τ) is called a regular space if for any
closed set F in X and a ∈ X\F , there are disjoint open sets U and V in X such that F ⊆ U and
a ∈ V . A regular T1-space is called a T3-space.

Theorem 10.9. A topological space X is regular if and only if for any point a in X and any open
set U containing A, there is an open set W containing a such that W ⊆ U .

Every T3-space is T2, but not the reverse.

10.2. Normal Spaces and T4-spaces.

Definition 10.10 (Normal spaces and T4-spaces). A topological space (X, τ) is called a normal
space if for any two disjoint closed sets A and B in X, there are disjoint open sets U and V in X

such that A ⊆ U and B ⊆ V . A normal T1-space is called a T4-space.

Clearly every T4-space is a T3-space. However, a normal space may not be a T1-space or a regular
space and a regular space may not be normal.
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Theorem 10.11. Every metric space (X, d) is a T4-space

Theorem 10.12. Every compact Hausdorff space is normal. Additionally, any compact subset A

of a Hausdorff space X is closed.

Our final theorem is Urysohn’s Lemma.

Theorem 10.13 (Urysohn’s Lemma). Let X be a normal space. Then, for any disjoint closed
sets A and B in X, there exists a continuous function f : X → [0, 1] such that F (A) = {0} and
F (B) = {1}.

Theorem 10.14 (Tietze Extension Theorem). Let X be a normal space, A a closed subset of X,
and f : A → R continuous. Then there is a continuous function g : X → R such that g|A = f -
that is, g restricted to A is f .

11. Hilbert Spaces

Let V be a vector space over a field F, where F is either R or C.

Definition 11.1 (Inner product space). A function ⟨·, ·⟩ : V × V → F is called an inner product if
• ⟨u, v⟩ = ⟨u, v⟩ for all u, v ∈ V .
• ⟨u, u⟩ ≥ 0 for all u ∈ V with equality if and only if u = 0.
• ⟨αu+ βv,w⟩ = α⟨u,w⟩+ β⟨v, w⟩ for all u, v, w ∈ V and α, β ∈ F.

We say that V equipped with ⟨·, ·⟩ is an inner product space.

Definition 11.2 (Induced norm). If V is an inner product space with ⟨·, ·⟩, we define

∥u∥ :=
√
⟨u, u⟩

for all u ∈ E. The operation ∥ · ∥ is the induced norm.

Theorem 11.3 (Cauchy-Schwarz inequality). Let V be an inner product space. The

|⟨u, v⟩| ≤ ∥u∥∥v∥

Definition 11.4 (Hilbert space). An inner product space which is complete with respect to the
induced norm is called a Hilbert space.

Proposition 11.5 (Continuity of the inner product). Let V be an inner product space. Then the
inner product is continuous with respect to the induced norm.

Proposition 11.6 (Parallelogram identity). Let V be an inner product space and ∥ · ∥ the induced
norm. Then

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2

for all u, v ∈ E
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11.1. Projections and orthogonal complements.

Definition 11.7 (Projection). Let V be a normed space and M a non-empty closed subset of V .
We define the set of projections of x onto M by

PM (x) = {m ∈ M | ∥x−m∥ = d(x,M)}

This set is non-empty as M is closed.

Definition 11.8 (Orthogonal complement). For an arbitrary non-empty subset M of an inner
product space H we set

M⊥ := {x ∈ H | ⟨x,m⟩ = 0 for all m ∈ M}

We call M⊥ the orthogonal complement of M in H.

Lemma 11.9 (Properties of the orthogonal complement). Suppose M is a non-empty subset of
the inner product space H. Then M⊥ is a closed subspace of H and M⊥ = M

⊥
= (span M)⊥ =

(span M) ⊥

Theorem 11.10 (Key properties of the orthogonal complement). Suppose that M is a closed
subspace of a Hilbert space H. Then

• H = M ⊕M⊥

Corollary 11.11 (Dense subspace of a Hilbert space). A subspace M of a Hilbert space H is dense
in H if and only if M⊥ = {0}.

11.2. Orthogonal systems.

Definition 11.12 (Orthogonal systems). Let H be an inner product space with inner product ⟨·, ·⟩
and induced norm ∥ · ∥. Let M ⊂ H be a non-empty subset.

• M is called an orthogonal system if ⟨u, v⟩ = 0 for all u, v ∈ M with u ̸= v.
• M is called an orthonomal system if it is orthogonal and ∥u∥ = 1.
• M is called a complete orthonormal sytem or orthonormal basis of H if it is an

orthonormal system and span M = H.

Theorem 11.13 (Pythagoras’s Theorem). Suppose that H is an inner product space and M an
orthogonal system in H. Then the following assertions are true:

• M\{0} is linearly independent.
• If (xn) is a sequence in M with distinct terms and H is complete, then

∑
xk converges if

and only if
∑

∥xk∥2 converges. In that case,∥∥∥∑xk

∥∥∥2 =
∑

∥xk∥2
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Theorem 11.14 (Bessel’s Inequality). Let H be an inner product space and M an orthonormal
system in H. Then ∑

m∈M

|⟨x,m⟩|2 ≤ ∥x∥2

for all x ∈ H. Moreover, the set {m ∈ M | ⟨x,m⟩ ̸= 0} is at most countable for all x ∈ H.
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