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1. CurvEs IN RV
Definition 1.1. A curve is said to be regular if o/(t) # 0 for all ¢

Definition 1.2. Let a be a curve parametrized by arc length. The number |/ (s)| = k(s) is called

the curvature of o at s.

Definition 1.3 (Frenet equations).

t' =kn
n = —kt+7b
b'=—7n

Definition 1.4. Total curvature of a unit speed curve a(s) from a to b is defined as

/b kds = 0(b) — 0(a)

Definition 1.5. The winding number k is defined as the integer such that, for a closed curve, the

b
/ kds = 2mk

Theorem 1.6 (Rotation Theorem). For a piecewise smooth simple closed curve, traversed in an

total curvature

anti-clockwise direction around a bounded region of the plane, the winding number is 1

2. GENERAL ANALYSIS

Definition 2.1 (Homeomorphism). A map is a homeomorphism is it is continuous and has a

continuous inverse.

Definition 2.2 (Diffeomorphism). A map is a diffeomorphism is it is smooth and has a smooth

inverse

Definition 2.3 (Differential of a smooth map). The differential of a smooth map ¢ : RY — RM is
defined as follows. Let w € RM, and let a be a differentiable curve such that a(0) = p, a’(0) = w.

Then the composition § = ¢ o « is differentiable, and we have
dpp(w) = B'(0) = (v 0 @)'(0)

Theorem 2.4 (Inverse function theorem). Let ¢ : U C RN — RM be a differentiable mapping and

suppose that the differential do is an isomorphism at p € U. Then there exists a neighbourhood
V C U and a neighbourhood W of F(p) such that ¢ is a diffeomorphism.

Theorem 2.5 (Implicit function theorem).
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Definition 2.6. A map ¢ is regular at a point p if the matrix of d¢ has full rank at p. A critical
point has that the matrix of d¢ does not have a full rank at p.

Definition 2.7 (Implicitly defined surfaces). Let f : R3 — R be a smooth function. Let p be a
point in R? with f(p) = 0 and f’(p) # 0. Then there exists a neighbourhood of the point a such
that there exists a smooth parameterisation ¢ : U — R3 of the set of solutions to f(x) = 0.

Remark. This allows us to define surfaces implicitly as the set of solutions to some function. E.g.

the sphere in R3, the sphere S? is defined as the set of solutions to

f(x,y,Z):$2+y2+Z2—1:0

3. SURFACES IN R?

Definition 3.1. A regular surface is defined intuitively that for every point p € S, there exists a

diffeomorphism between some open set U € R? and a neighbourhood V of that point p € S

Definition 3.2. Let ¢ : U — R3? be a parametrization of a surface S. The tangent space T,S to
the surface at a point p € U is the image of the mapping

dg, : R? — R3

Theorem 3.3 (Surface as a graph). Let S C R? be a reqular surface and p € S. Then there exists
a neighbourhood V' of p in S such that V is the graph of a differentiable function which has one of
the following forms: z = f(x,y),y = g(z,2),z = h(z,y).

Definition 3.4 (Surface of revolution). Let C'(v) = (a(v), 0, 8(v)) be a curve in the zz plane. Then
we can parameterise the surface formed by revolving the curve about the z axis by

o(u,v) = (a(v) cosu, a(v) sinu, fv)

Definition 3.5 (First fundamental form). Let S be a surface parameterised by ¢ : (u!,u?) C

R2 — R3. Write E; = gfi. Then we can define the matrix g of the second fundamental form I as
9ij = (Ei, Ej)

Definition 3.6. The arc length of a parameterised curve a(t) = ¢(u'(t),u?(t)) is given by

0= [ = [ /S g

Definition 3.7 (Area of a regular surface). Let R C S be a bounded region of a regular surface,
contained in the coordinate neighbourhood of the parameterization ¢ : U C R? — R3. The positive

number

/ / E1 x Epldu'du® = A(R), Q=6 \(R)
Q
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Definition 3.8 (Orientation). A regular surface is orientable if it is possible to cover it with a family
of coordinate neighbourhoods in such a way that if a point p € S belongs to two neighbourhoods of
this family, then the change of coordinate matrix has a positive determinant at p. If such a choice

is not possible, then the surface is called non-orientable.

Definition 3.9 (Normal vector). We define the normal vector N to a regular surface S as

S Rak

o |E1 X E2|
Definition 3.10 (Gauss Map). Let S C R? be a regular surface with an orientation N. The map
N : S — R3 takes its values in the unit sphere S?, and this map N : S — S? is called the Gauss

map.

N(p)

Proposition 3.11. The differential dN, : T,(S) — T,(S) is a self adjoint linear map - i.e.
<dN;D(w)’ U> = <w’ dNP(U»
Definition 3.12. The matrix of the second fundamental form is given by
ITij = hi; = —(Nu;, E) = —(dN(E:), Ej) = (N, Eyj)

We have
I, (X) = —(dNp(X), X)

Definition 3.13 (Normal curvature). The normal curvature of a space curve k, is defined as

kn, = kcosf, where 0 is the angle between N and n.
Definition 3.14. The principle curvatures are the eigenvalues of —dN,.

Theorem 3.15. If the normal curvatures 11,(X) with | X| =1 are not all equal, then there is an

orthonormal basis e1, ez of T,S such that

IT,(cosfeq + sinfex = ky cos? 0 + kysin® 6
where k1, ko are the principle curvatures as defined above.
Definition 3.16. A point p € S where k; = ks is called an umbilical point
Definition 3.17. A curve a(t) is asymptotic if its normal curvature is zero for all ¢.
Definition 3.18. A curve is a line of curvature if o/ (t) is an eigenvector of —dN,y) for all ¢
Definition 3.19. The Gauss curvature of an oriented surface at a point p is

K(p) = det(—dN,) = k1(p)k2(p)

The mean curvature of S at p is

H(p) = %traee(—de)
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Theorem 3.20.
—(dNy)" = (1))
_ hithoy — b,
B 911922 — 9%2
_ h11ga2 — 2hi2g12 + hasgin
a 2(g11922 — 972)

K

H

Definition 3.21 (Minimal surface). A surface is a minimal surface if its mean curvature is iden-
tically zero.

H=0

Definition 3.22. A coordinate chart ¢ : U C R2 — ¥ C R3 is called isothermal if g11 = g22, g12 =
g22 = 0. This is equivalent to saying (I) is a multiple of the identity.

Theorem 3.23. If ¢ is isothermal, then ¢(U) = X is a minimal surface if and only if VZ¢ = 0

Definition 3.24 (Isometry). A diffeomorphism

¢:§1—>SQ

is an isometry if it preserves the inner product, i.e. for all p € S; and X,Y € TpS;

(X, Y )p = (dpp(X), dip(Y)) s )
This is equivalent to
1p(X) = Ly (dip(X)
If for each p € Sy, there is an open neighbourhood U; of p and a map ¢ : U; — Ss, then we say
that Sy is locally isometric to Ss.

Theorem 3.25. If two surfaces ¢ : U — S1 and ¢ : U — Sy have the same coefficients for g;;,

then S, and So are locally isometric.

Definition 3.26 (Christoffel symbols). Define the Christoffel symbols I‘ék by
¢u1u1 = F%l(éul + F%lqbuz + LN
d)uluQ = F%Zd)ul + F%Z(buz + LN
¢u2u1 = F%ld)ul + F§1¢u2 + EQN
¢u2u2 = F%2¢u1 + ].—‘32(1)“2 + L3N

Taking inner products with E; gives
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1
{911+ Tigie = 5(911)u1
1 2 1
Fi1912 + 11922 = (912)uy — 5(911)u2
1
Iipg11 + Iihg12 = 5(911)u2
1
Iipg12 + Iipg20 = 5(922)1“
1 2 1
o011 + 159012 = (912)uy — 5(922)u1
1
I3ag12 + I'30020 = 5(922)@

Theorem 3.27 (Gauss’ Theorem).
g K = ([F)us — ((12)u, + 1105 + T1iTT, — Tl — THTT
Theorem 3.28 (Mainardi-Codazzi equations).

(h11)us — (h12)u, = h11T1g + h1a(D3y — T1y) — hool'3
(h12)us — (h22)u, = h11T3y + h1a(I'3; — T'fy) — haol'3y

Theorem 3.29 (Christoffel symbols in terms of the metric).

1 .
iy, = 5971 (9ijk + Gjki — Grij)
Definition 3.30. Let w be a smooth vector field in a neighbourhood U of p € S. Let a« C S be a
smooth curve with «(0) = p,a’(0) = v. Define
Dw
dt

to be the projection of %" = dw,(p) to T,,S, and call it the covariant derivative at p of the vector

(0) = Dvw(p>

field w in the direction of v.

Definition 3.31. Let the vector field w = ¢’E; and v = bjEj. Then we have

D da’ i
Vuw(v) = Vy(w) = d—:) = c%Ei + albjl"ijk

Definition 3.32 (Parallel transport). A vector field w along a curve o C S is called parallel if
Va/(t)w =0
for all ¢.

Definition 3.33. A nonconstant parameterised curve « is a parameterised geodesic if

Ve (t) =0
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i.e. if its tangent vector field is parallel along the curve.

Definition 3.34. Let w be a smooth field of unit vectors along a curve a where « lies in an oriented

surface. Then define the algebraic value of the covariant derivative [V o yw] by

Va,(t)w = [Va/(t)w]N X w(t)

Definition 3.35. Let a be a curve parameterised by arc length. The algebraic value of Vo (t)
is called the geodesic curvature of a and is denoted by k.

Remark. Up to sign, V. (yc/(t) is the tangential projection of o’ (s), and so the geodesic curvature

is up to sign the tangential component of a’(s).

Theorem 3.36. For a curve o in an oriented surface S, we have
2 2 2
k* =k, +k;
Remark. Thus, « is a geodesic if and only if its geodesic curvature is identically zero.

Theorem 3.37. Let v(t) = ¢(ul(t),u?(t)). Then v'(t) = (u')'E;. Then we have v is a geodesic if
and only if
0 = V,Y/(t)’yl(t)

= V’Y'(t) (uj)’Ej

= (u!)"E; + (0))'V(uiy e, B

= [(?)" + ()" (u") T ) Ex
if and only if

()" + () ()T =0
fork=1,2

Theorem 3.38. A point and a tangent vector to that point uniquely determine a geodesic in a

sufficiently small neighbourhood of that point.

Theorem 3.39. For each p € X, there is some neighbourhood U of p such that for any q € U, the
geodesic from p to q has length less than or equal to the length of any other path from p to q.

Theorem 3.40. Let v and w be smooth unit vector fields along a curve a C S. Then

do

Ve wyw] = [Varyv] =

where 6 is a smooth choice of angle from v to w.
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3.1. The Gauss Bonnet Theorem. We first prove a local version, and then the full global
theorem.

The depth of this (global) theorem lies in its topological content rather than in its geometric
content, and its most striking feature is that it relates the two.

In fact, a corollary is

Corollary. For an orientable compact surface S,

//S Kdo =2mx(5)

Theorem 3.41 (Theorem of Turning Tangents). Let S be an oriented surface, and ¢ : U — S a
coordinate chart. Let a be a simple, closed, parameterised curve, reqular in each interval [t;,t;11].

Choose a smooth angle function 0; on each [t;,t;1+1] which measures the angle from Eq to o.
Denote by v; the external angle at t;. Then

k k

D (Biltisr) = 0:(t:) + Y v = £27

i=0 =0

and the above sum is 27 if a is a positively oriented curve.

Theorem 3.42 (Local Gauss-Bonnet Theorem). Let S be an oriented surface, U C R? be homeo-
morphic to an open disk and ¢ : U — S be a coordinate chart compatible with the orientation, such
that gi2 = 0.

Let R C ¢(U) be a simple region and « a positively oriented piecewise reqular curve whose trace

equals OR. Let « be parameterised by arc length, with vertices at Sg, S1, ..., Sk-
Then
ko s k
Z/ k:g(s)ds—i—// Kdo+ v =27
i=0 78 R i=0

Corollary. Let R C ¢(U) be a simple region with piecewise regular boundary, and o : [0,1] — S be
an arc length parametrisation of OR. Take a unit vector wo € Ty (0)S and let w be the vector field

along o generated by the parallel transport of wg. Then we have

AG = 0(1) — 6(0) = //R Kdo

where 0 is a continuous choice of angle from Eq to w.

Definition 3.43. The FEuler characteristic x(S) of a surface S is given by x(S) =V — E+ F,

where V, E| F' are the number of vertices, edges and faces of any triangulation of S.
Theorem 3.44. If two surfaces S1 and Sz are homeomorphic, then x(S1) = x(S2).

Theorem 3.45.
x(5)=2-2g
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where g is the number of holes of S, called the genus of S.

Theorem 3.46 (Global Gauss-Bonnet). Let R C S be a regular region of an oriented surface with

positively oriented boundary curves C;. Write y; for the external angles of the curves C;. THen
E / kg(s)ds + // Kdo + E v; = 2mx(S)
- C. R -
7 v J

Definition 3.47. A point p is said to be a singular point of the smooth vector field v on S if

v(p) =0

Take a positively oriented simple closed curve « enclosing an isolated singular point of a vector

field v. Let 6, be a smooth choice of angle from E; to v. THen
0,(1) — 0,(0) = 2xI
for some integer I. We call I the index of v at p.

Theorem 3.48 (Poincare-Hopf Theorem). Let v be a smooth vector field on S with isolated singular

points p1,...,pn. Then
ZL‘ = x(5)
i=1

Corollary (Hairy-Ball theorem). If S is not homeomorphic to a torus, then any smooth vector

field on S must vanish somewhere.

Theorem 3.49 (Morse’s Theorem). Let f : S — R be a smooth function on a compact oriented
surface S such that all critical points (df, = 0) are non-degenerate (det A(p) # 0, where A is the
Hessian matriz of f).

Let

o M = number of local mazxima,
e m = number of local minima,

e s = number of saddle points.

Then
M —s+m = x(S)

This is independent of the function f, and depends only upon the topology of S.
4. ABSTRACT MANIFOLDS
Definition 4.1 (Abstract manifolds).
An abstract surface is a set X together with a family of maps

b Uy = %
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of open sets U, C R? into ¥ so that

L4 Ua¢a(Ua) =X
e Whenever a, 3 are such that Wag = ¢a(Ua)Np(Up) # 0, then ¢ (Wag), d5" (W)ap C R?

are open and
$5' 0 a3 Wap) = 65" (Wap)

Definition 4.2. A function f: M — R is smooth at p € M if for all coordinate charts ¢ : U — M
about p,
fogp:UcCRN =R
is smooth
A map f: M; — M, between smooth manifolds is smooth at p € M if for all coordinate charts
¢ : U — M, about p, and coordinate chart ¢ : V. — My

v lofog:UcCRNM RN
It is called smooth if it is smooth at every point.

Definition 4.3. Two manifolds M7 and M, are diffeomorphic if there is a smooth map f : My — My
that has a smooth inverse.

A necessary condition is that the manifolds have the same dimension.

Definition 4.4. A smooth parameterised curve in a (smooth) manifold M is a smooth map « :
(a,b) = M

Definition 4.5 (Tangent vectors as equivalence classes of curves). A tangent vector v to the smooth
manifold M at p € M is an equivalence class [o] of curve a : (—¢,€) — M with a(0) = p.

Fix a coordinate chart ¢ : U — M around p. If oy, as satisfy a;(0) = az(0) = p, then we define
ay~ag & (37 o) (0) = (¢! o a)'(0)
This is independent of the choice of ¢

Definition 4.6 (Derivation). A derivation is a map from the real vector space of smooth function

on M to R, which is linear and satisfies the product rule at p, i.e.
D(fg) = fD(g) + gD(f)

Theorem 4.7. THe set of all derivations at p € MY forms an n-dimensional vector space, with

basis

where
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Definition 4.8 (Tangent vector as an operator that acts on functions). There is a one-to-one
correspondence between equivalence classes of curves through p and derivations at p. We can thus

alternatively define a tangent vector at p to be a derivation at p.

Definition 4.9. A smooth manifold M is orientable if it has an atlas (i.e. may be covered with
coordinate neighbourhoods) so that whenever p € M lies in the image of two local parameterisations
¢ and 1), the change of basis matrix at p has positive determinant.

If this is possible, then the choice of such an atlas is called an orientation of M, and we say that
M is oriented.

An orientation of a smooth manifold M can be thought of as an orientation of every tangent

plane that “varies smoothly”.

Definition 4.10 (Tangent Bundle). Define
TM = {(p,v) : plinM,v € T,M}

Definition 4.11. A smooth vector field on the smooth manifold M is a smooth map v : M — T M
such that v, € T),M for each p € M.

Definition 4.12. Let v, w be smooth vector fields on M. A covariant derivative on a smooth
manifold M is a map
V:(v,w) = V,yw
such that
e V, is linear in v i.e. Vyypgy(w) = fVy(w)+ gVy(w)
e Each V, satisfies linearity over R: V,(u+ w) = V,(u) + V,(w)
e Fach V, satisfies the product rule

Vo(fu) = fVu(u) +v(f)u

Definition 4.13 (Levi-Civita connection). On a Riemannian manifold, there is a unique covariant
derivative satisfying the following two conditions:
9 g, 9

Fer Oul | a7 Oul

and viewing % as a derivation,
0 g 9. a 0 0 0
o w5k = Vi gu g T G Vo b

Definition 4.14 (Christoffel symbols on an abstract manifold). Define the Christoffel symbols Ffj

with respect to a local coordinate chart by

o . 0

o —— =1,
2ut OUJ 7 Ouk
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‘We have

1
F?j = 59“ (9ir,j + gj1.i — Gij1)

which defines a unique covariant derivative.
Definition 4.15 (Geodesic). A geodesic is a curve « satisfying
Via' =0

This gives us the equations
(u®)" + T (u') () = 0
fork=1,...,n

12

Definition 4.16. The hyperbolic plane is defined to be the upper half plane with the metric (writing

ul = zu? = y)

1

1
911 = —5,912 = 0,920 =
y? y?
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