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1. Measure Theory

Definition 1.1 (σ-algebra). Let X be a set. A collection A of subsets of X is called a σ-algebra if
• ∅ ∈ A
• If A ⊆ X is in A, then its complement Ac = X\A is in A
• Whenever A0, A1, . . . are subsets of X in A, then their union

∞∪
k=0

Ak

also belongs to A.

Definition 1.2 (Measure). Let X be a set, and let A be a σ-algebra of subsets of X. Suppose that
µ : A → [0,∞] is a function. Then µ is a measure if

• µ(∅) = 0

• Whenever A0, A1, . . . are pairwise disjoint subsets of X in A, then

µ(
∞∪
k=0

Ak) =
∞∑
k=0

µ(Ak)

Proposition 1.3 (Properties of a σ-algebra ). Let A be a σ-algebra of subsets of a set X. Then
• X, ∅ ∈ A
• If Ak ∈ A, then

∩∞
k=0Ak ∈ A

• If A,B ∈ A, then A ∪B,A ∩B ∈ A

Definition 1.4 (Algebra). A collection A of subsets A of X which satisfies the first two conditions
of a σ-algebra and also

• If A,B ∈ A, then A ∪B ∈ A

is called an algebra. Every σ-algebra is an algebra, but not every algebra is a σ-algebra

Definition 1.5 (σ-algebra generated by S). Let S be a collection of subsets of X. Let

A(S) =
∩

{A : A is a σ-algebra , and S ⊆ A}

A(S) is called the σ-algebra generated by S

Definition 1.6 (Borel σ-algebra ). Let X be a metric space and S the collection of all open sets
in X. We call B = A(S) the Borel σ-algebra . Sets in B are called Borel sets.

Corollary. We have the following examples of Borel sets.
• Any open set is a Borel set.
• If B is a Borel set, then so is Bc. If B0, B1, . . . is a sequence of Borel sets, then so are∪∞

k=0Bk and
∩∞

k=0Bk.
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1.1. Properties of Measures.

Proposition 1.7 (The Monotonicity Property). If A and B are µ-measurable subsets of X with
A ⊆ B, then µ(A) ≤ µ(B).

Proposition 1.8 (The Countable Subadditivity Property). If A0, A1, . . . are µ-measurable subsets
of X, then

µ(
∞∪
k=0

Ak) ≤
∞∑
k=0

µ(Ak)

Proposition 1.9 (Monotone Convergence Property of Measures). Let A0 ⊆ A1 ⊆ A2 be an
increasing sequence of measurable sets. Then

µ(

∞∪
k=0

Ak) = lim
k→∞

µ(Ak)

Proposition 1.10. Let A0 ⊇ A1 ⊇ A2 . . . be sets from some σ-algebra A. If µ(A0) <∞, then

µ(
∞∩
k=0

Ak) = lim
k→∞

µ(Ak)

1.2. Constructing σ-algebras and measures.

Definition 1.11 (Lebesgue outer measure). If A ⊆ R, let

m∗(A) = inf
{ ∞∑

k=0

(bk − ak) | ak < bk, A ⊆
∞∪
k=0

(ak, bk)

}
Proposition 1.12 (Properties of the Lebesgue outer measure). The Lebesgue measure obeys the
following properties.

• m∗(A) is defined, and m∗(A) ∈ [0,∞] for any subset of R.
• m∗(∅) = 0

• If A ⊆ B, m∗(A) ≤ m∗(B)

• For every sequence A0, A1, . . . , we have

m∗(
∞∪
k=0

Ak) ≤
∞∑
k=0

m∗(Ak)

Definition 1.13 (Outer Measure). A function µ∗ : P → [0,∞] is such that
• µ∗(∅) = 0

• If A ⊆ B, µ∗(A) ≤ µ∗(B)

• For every sequence A0, A1, . . . , we have

µ∗(
∞∪
k=0

Ak) ≤
∞∑
k=0

µ∗(Ak)
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Then µ∗ is called an outer measure on X.

Theorem 1.14 (Construction from outer measures). Let µ∗ be an outer measure on a set X. Then

A = {A ⊆ X |µ ∗ (S) = µ∗(S ∩A) + µ∗(S ∩Ac) for all S ⊆ X}

Then A is a σ-algebra. Let µ(A) = µ∗(A) when A ∈ A. Then µ : A → [0,∞] is a measure.

Proposition 1.15. Let µ∗ be an outer measure, and let A be the σ-algebra defined in the last
theorem. Let A ⊆ X satisfy µ∗(A) = 0. Then A ∈ A, and so µ(A) is defined, and equals 0.

Definition 1.16 (Null set). If µ : A → [0,∞] is any measure, then a set A ∈ A satisfying µ(A) = 0

is called a null set.

1.3. Properties of the Lebesgue measure on R. Let

M = {A ⊆ R |m ∗ (S) = m∗(S ∩A) +m∗(S ∩Ac) for all S ⊆ R}

The sets in M are called hte Lebesgue measurable subsets of R. If A ∈ M, the we write
m(A) = m∗(A). This real number is called the Lebesgue measure of A.

We now show that this σ-algebra M is very large.

Theorem 1.17. Let m∗ denote the Lebesgue outer measure on R, and let M be the σ-algebra of
Lebesgue measurable sets. Then

• If I ⊆ R is an interval. Then m∗(I) = l(I). That is, the outer measure is just its length.
• If I ⊆ R is an interval, then I ∈ M.

Proposition 1.18. Any open subset of R is in M. Any closed subset of R is in M. That is, all
open or closed sets in R are Lebesgue measurable.

Corollary. Every Borel subset of R is contained in M.

Proof. M is a σ-algebra which contains every open subset of R. The σ-algebra B is by definition
the smallest such σ-algebra. Thus B ⊆ M. �

2. Measurable Functions

Definition 2.1 (Measurable function). Let A be σ-algebra of subsets of a set X. A function
f : X → R, is called measurable (or A-measurable) if for every α ∈ R, the set

{x ∈ X | f(x) > α}

is in A.

Definition 2.2 (Indicator function). . Let S ⊂ X. We define the indicator function of S to be the
function 1S : X → R given by
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1S(x) =

1 if x ∈ S

0 if x /∈ S

Proposition 2.3. Let S ⊂ X. Then 1S is measurable if and only if S ∈ A.

Proof. Let α ∈ R. Then

{x ∈ X | 1S(x) > α} =


∅ if α ≥ 1

S if 0 ≤ α < 1

X if α < 0

As ∅, X are in A, then 1S is measurable if and only if S ∈ A. �

Proposition 2.4 (Continuous functions are Lebesgue measurable). Let f : [a, b] → R be continuous.
Then f is Lebesgue measurable on [a, b]. More generally, if X ⊂ R is in M and f : X → R is
continuous, then f is Lebesgue measurable on X.

2.1. Basic properties of measurable functions.

Lemma 2.5. Let A be a σ-algebra of subsets of a set X, and let f : X → R be a function. Then
f is measurable if and only if it satisfies one of the following conditions.

• For each α ∈ R, the set {x ∈ X | f(x) > α} in in A.
• For each α ∈ R, the set {x ∈ X | f(x) < α} in in A.
• For each α ∈ R, the set {x ∈ X | f(x) ≤ α} in in A.
• For each α ∈ R, the set {x ∈ X | f(x) ≥ α} in in A.

Proposition 2.6. Let A be a σ-algebra of subsets of a set X, and let f, g : X → R be functions.
Then

• f + g is measurable (provided that f(x) = ∞ and g(x) = −∞ or vice versa holds for no
x ∈ X).

• cf is measurable for any constant c ∈ R.
• fg is measurable.
• f/g is measurable (provided that g(x) is nonzero and not infinity for all x ∈ X).

Similarly, let f0, f1, · · · : X → R. Then

• sup{f0, f1, . . . } and inf{f0, f1, . . . } are measurable functions.

Corollary. Let f, g be measurable. Then max{f, g} and min{f, g} are measurable functions.

Proposition 2.7. Let A be a σ-algebra of subsets of a set X, and let f0, f1, · · · : X → R be
measurable functions. Let f(x) = limk→∞ fk(x) for each x ∈ X. Then f is a measurable function.
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2.2. Simple functions.

Definition 2.8 (Simple function). Let A be a σ-algebra of subsets of a setX. A function φ : X → R
is called simple if it is measurable and only takes a finite number of values.

Proposition 2.9. Let A be a σ-algebra of subsets of a set X, and let f : X → [0,∞] be a
nonnegative measurable function. Then there is a sequence (φn) of simple functions such that

• 0 ≤ φ1(x) ≤ φ2(x) ≤ · · · ≤ f(x) for all x ∈ X.
• f(x) = limn→∞ φn(x) for all x ∈ X.

Proof. Define the function φn as follows.
Let

An,k = {x ∈ X | k
2n

≤ f(x) <
k + 1

2n
}

and let An,2n = {x ∈ X | f(x) ≥ n}
Then the function

φn =

n2n∑
k=0

k

2n
1An,k

obeys the required properties. �

3. Integration

Definition 3.1 (Integration of simple functions). Let φ =
∑m

j=1 aj1Aj . Then the integral
∫
X
φdµ

of φ over X with respect to µ is given by∫
X

φdµ =
m∑
j=1

ajµ(Aj)

Proposition 3.2. Let φ and ψ be nonnegative simple functions on X, and let c ≥ 0 be constant.
Then

•
∫
X
φ+ ψ dµ =

∫
X
φdµ+

∫
X
ψ dµ

• If 0 ≤ ψ ≤ φ, then
0 ≤

∫
0

ψ dµ ≤
∫
X

ψ dµ

•
∫
X
cφ dµ = c

∫
X
φdµ

Definition 3.3 (Integral over a subset of X). Let φ be a nonnegative simple function, and let
S ⊂ X be measurable. Then the integral of φ over S with respect to µ, denoted

∫
S
φdµ, is given by∫

S

φdµ =

∫
X

φ · 1s dµ



MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS 7

3.1. Integration of nonnegative measurable functions.

Definition 3.4. Let f : X → [0,∞] be a nonnegative measurable function. We define the integral∫
X
f dµ of f over X with respect to µ by∫

X

f dµ = sup
{∫

X

φdµ |φ is simple, and 0 ≤ φ ≤ f on X

}
Lemma 3.5. Suppose that f, g are two nonnegative measurable functions, and 0 ≤ g ≤ f on X.
Then

0 ≤
∫
X

g dµ ≤
∫
X

f dµ

The following is an extremely important theorem in measure theory.

Theorem 3.6 (Monotone convergence theorem). Let (fk) be a sequence of nonnegative measurable
functions on X. Assume that

• 0 ≤ f0(x) ≤ f1(x) ≤ . . . for each x ∈ X,
• limk→∞ fk(x) = f(x) for each x ∈ X.

When these hold, we write fk ↗ f pointwise.
Then f is measurable, and ∫

X

f dµ = lim
k→∞

∫
X

fk dµ

Corollary. Let f, g be measurable on X. THen∫
X

f + g dµ =

∫
X

f dµ+

∫
X

g dµ

Theorem 3.7. Suppose that fk is a nonnegative measurable function for k = 0, 1, . . . . Then∫
X

( ∞∑
k=0

fk

)
dµ =

∞∑
k=0

(∫
X

fk dµ

)
Theorem 3.8. Suppose that X is a set, A is a σ-algebra of subsets of X and µ : A → [0,∞] is a
measure. Let f be nonnegative and measurable on X. Then define µf : A → [0,∞] by

µf (A) =

∫
A

f dµ =

∫
X

f · 1A dµ

Then µf is a measure.

Proposition 3.9. Suppose that f is nonnegative and measurable on X, and suppose that
∫
X
f dµ <

∞. Then the set {x ∈ X | f(x) = ∞} has measure 0.

Proposition 3.10. Suppose that X is a set, A is a σ-algebra of subsets of X and µ : A → [0,∞]

is a measure. Suppose that there is a set N ∈ A with µ(N) = 0 and suppose that some property P
holds for all x ∈ X outside N . Then we say that the property P holds almost everywhere or for
almost all x ∈ X.



MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS 8

Proposition 3.11. Suppose that fk is a nonnegative measurable function on X for k = 0, 1, . . . .
Suppose that

∞∑
k=0

(∫
X

fk dµ

)
<∞

Then
∞∑
k=0

<∞ for almost all x ∈ X

Proposition 3.12. Suppose that f is a nonnegative measurable function on X. Then∫
X

f dµ = 0 ⇐⇒ f(x) = 0 almost everywhere.

Theorem 3.13 (Fatou’s Lemma). Suppose that fk is a nonnegative measurable function on X, for
k = 0, 1, . . . , and that limk→∞ fk(x) = f(x) for each x ∈ X. Then∫

X

f dµ ≤ lim inf
k→∞

(∫
X

fk dµ

)
3.2. Integration of real and complex valued functions.

Lemma 3.14. Let f : X → R be a measurable function, and let f+ and f− be the positive and
negative parts of f . Then f = f+−f−, and |f | = f++f−. Moreover, |f | is a measurable function,
and

f is integrable if and only if
∫
X

|f | dµ <∞

Definition 3.15 (Integral of a complex valued function). Let f = u + iv, where u, v : X → R.
Then ∫

X

f dµ =

∫
X

u dµ+ i

∫
X

v dµ

Lemma 3.16. Let f : X → C̄. Then f is integrable if and only if
∫
X
|f | dµ <∞.

The next theorem is probably the most important single theorem in these notes. It has many
applications, both of a theoretical and practical nature.

Theorem 3.17 (Dominated convergence theorem). Let (fk) be a sequence of real or complex valued
measurable function on X. Assume that

• limk→∞ fk(x) = f(x)

and that there is a measurable function g : X → [0,∞] such that
• |fk(x)| ≤ g(x) for each k and x, and
•
∫
X
g dµ <∞

Then ∫
X

f dµ = lim
k→∞

∫
X

fk dµ
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Theorem 3.18 (Bounded convergence theorem). Let (fk) be a sequence of real or complex valued
measurable function on X. Assume that

• limk→∞ fk(x) = f(x) for each x ∈ X,
• There exists a constant M <∞ such that |fk(x)| ≤M for each k and x,
• µ(X) <∞.

Then ∫
X

f dµ = lim
k→∞

∫
X

fk dµ

Theorem 3.19. Suppose that fk is a measurable real or complex valued function on X for k =

0, 1, . . . . Suppose that we have
∞∑
k=0

(∫
X

|fk| dµ
)
<∞

or, equivalently, ∫
X

( ∞∑
k=0

|fk|

)
dµ <∞

Then we have ∫
X

( ∞∑
k=0

fk

)
dµ =

∞∑
k=0

(∫
X

fk dµ

)
Definition 3.20 (Integrable function). We call f : X → K µ -integrable if f is µ measurable and∫

X

|f | dµ <∞

We set
L1(X,K) = {f : X → K | fµ-integrable}

Theorem 3.21. L1(X,K) is a vector space over K

Definition 3.22 (The Lebesgue-Stieltjes integral). Let F : R → R be an increasing right continuous
function, that is lims→t+ F (s) = F (t) for all t ∈ R. Then for A ⊆ R let

µ⋆
F (A) = inf{

∞∑
k=0

(F (bk)− F (ak)) |A ⊆
∪
k∈N

(ak, bk)

The µ⋆
F is an outer measure inducing an inner measure on R. Then we have

• µF is a Borel measure.
• µF ((a, b]) = F (b)− F (a).

We then define
∫
A
f dF =

∫
A
f dµF as the Lebesgue-Stieltjes integral.

Lemma 3.23. If µ is a finite measure on R, then we define F (t) = µ((−∞, t]) as the distribution
function of R.
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Theorem 3.24. There is a bijection from finite measures and some class of right-continuous
increasing functions.

Definition 3.25 (Measures from other measures). Let g : X → [0,∞] be a µ-measurable function.
For A ∈ A define

ν(A) =

∫
A

g dµ

Then using the monotone convergence theorem one can show that ν is a measure defined on A.
Moreover, if f : X → K is µ-measurable, then∫

X

f dν =

∫
X

fg dµ

We call g the density of ν with respect to µ.

Proposition 3.26. Let f ∈ L1(X,K) with respect to the Lebesgue measure. Then∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx

3.3. Parameter integrals.

Definition 3.27 (Parameter integral). Let (X,A, µ) be a measure space and Y a metric space.
Suppose that f : X × Y → K is such that

• x 7→ f(x, y) is µ-integrable for all y ∈ Y ,
• y 7→ f(x, y) is continuous at y0 for almost all x ∈ X,
• there exists g ∈ L1(X,R) such that

|f(x, y)| ≤ g(x)

for almost all x ∈ X.

Define F (y) =
∫
X
f(x, y) dµ(x). Then F is continuous at y0 ∈ Y .

Theorem 3.28 (Differentiation of parameter integrals.). Let (X,A, µ) be a measure space and
L ⊂ R an interval. Suppose that f : X × L→ R is such that

• x 7→ f(x, y) is µ-integrable for all y ∈ Y ,
• ∂

∂tf(x, t) exists for all t ∈ L, for almost all x ∈ X, and is continuous ,
• there exits g ∈ L1(X,R) with | ∂∂tf(x, t)| < g(x) for almost all x ∈ X and all t ∈ L.

Define F (t) =
∫
X
f(x, t) dµ(x). Then f : L→ K is differentiable and

F ′(t) =

∫
X

∂

∂t
f(x, t) dµ(x)
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4. The Lp-spaces

Definition 4.1 (Lp-spaces). Let 1 ≤ p <∞ and f : X → K measurable. We call

∥f∥p =

(∫
X

|f |p dµ
) 1

p

the Lp-norm of f . We set

Lp(X) = {f : X → K | f measurable, ∥f∥p <∞

Theorem 4.2 (Hölder’s inequality). Let p, q ∈ [1,∞] such that 1
p + 1

q = 1. If f ∈ Lp(X) and
g ∈ Lq(X), then

|
∫
X

fg dµ| ≤ ∥f∥p∥g∥q

Proposition 4.3 (Minkowski’s inequality). If f, g ∈ ℓp, 1 ≤ p ≤ ∞, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p

Definition 4.4 (Lp-spaces). Let f ∼ g if f = g almost everywhere. Denote the equivalence class
of f by [f ]. Then

Lp(X) = {[f ] | f ∈ Lp(X)}

Definition 4.5 (Cauchy sequence). A sequence (fn) ∈ Lp(X) is called Cauchy if for every ϵ > 0

there exists n0 ∈ N such that
∥fn − fm∥p < ϵ

for all n,m > n0.

Theorem 4.6 (Completeness of Lp(X)). Let (fn) be a sequence in Lp(X). Then (fn) converges
in Lp(X) if and only if (fn) is a Cauchy sequence.

Remark. Introducing the metric d(f, g) = ∥f−g∥p, we have that L((X)X) is a complete normed
space or a Banach space. If p = 2, then ∥f∥2 is induced by an inner product - hence L2(X) is a
complete inner product space, or a Hilbert space.

Proposition 4.7. Suppose that fn, f ∈ Lp(X) with ∥fn− f∥ → 0. Then there exists a subsequence
(fnk

) with fnk
converging pointwise to f for almost every x ∈ X.

Theorem 4.8. The simple functions are dense in Lp(X) for 1 ≤ p <∞.
In RN and the Lebesgue measure, we can modify the statement to the simple function with

bounded support are dense in RN .

Theorem 4.9. For 1 ≤ p <∞

span{1U |U ⊆ RN open and bounded}
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is dense in Lp(RN ).
We can also use bounded rectangles in the place of open bounded sets here.

Definition 4.10 (Essential supremum). Let (X,A, µ) be a measure space and f : X → R µ-
measurable. We call ess-supf(x) = inf{t ∈ R |µ({x ∈ X | f(x) > t}) = 0} the essential supremum
of f . The essential supremum of |f | is denoted ∥f∥∞

Theorem 4.11 (Completeness of L∞(X)). L((X)∞) is a complete normed space.

Lemma 4.12. Hölder’s inequality holds for p = 1, q = ∞. That is,

| inf
X
fg dµ| ≤ ∥f∥p∥g∥q

Lemma 4.13. If µ(X) <∞, then limp→∞ ∥u∥p = ∥f∥∞

4.1. Fubini’s Theorem.

Theorem 4.14 (Tonelli). Suppose that f : Rn ×Rm → [0,∞] is measurable. Then there exist sets
N ⊆ Rn and M ⊆ Rm of measure zero such that

(i) x 7→ f(x, y) is measurable for all y ∈ Rm −M ,
(ii) y 7→

∫
Rn f(x, y) dx is measurable,

(iii) y 7→ f(x, y) is measurable for all x ∈ Rm −N ,
(iv) x 7→

∫
Rm f(x, y) dy is measurable,

(v) ∫
Rn×Rm

f(x, y) d(x, y) =∫
Rm−M

(∫ n

R
f(x, y)dx

)
dy =∫

Rn−N

(∫ m

R
f(x, y)dy

)
dx

Theorem 4.15 (Fubini). Suppose that f : Rn × Rm → [0,∞] is measurable. Let N,M be the sets
from Theorem 4.14 applied to the function |f | such that (v) holds with f replaced with |f |. Assume
that one of these integrals is finite - and hence all of them. Then there exists sets N1 of Rn and
M1 of Rm such that (i)− (v) of Theorem 4.14 hold with N,M replaced with N1,M1.

Definition 4.16 (Complete measure space). Let (X,A, µ) be a measure space. We call the measure
µ complete if whenever A ∈ A has measure 0, then any subset of A is in A, (and has measure 0).

Definition 4.17 (σ-finite measure space).
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5. Convolution

Definition 5.1 (Translation of a function). Let f : RN → C be a function and t ∈ RN a fixed
vector. We define the translation operator τt by

τtf(x) = f(x− t)

Theorem 5.2 (Continuity of translation). Let 1 ≤ p <∞ and f ∈ Lp(RN ). Then

lim
t→0

∥τtf − f∥p = 0

Remark. This does not hold if p = ∞.

Lemma 5.3. Let f : RN → C be measurable and set

F1(x, y) = f(x)

F2(x, y) = f(y − x)

Then F1, F2 : RN × RN → C are measurable.

Definition 5.4 (Convolution). Let f, g : RN → C be measurable. We define the convolution
f ⋆ g : RN → C by

(f ⋆ g)(x) =

∫
RN

f(x− y)g(y) dy

wherever the integral exists

Definition 5.5 (Convex function). A function φ : (a, b) → R is called convex if

φ(λs+ (1− λ)t) ≤ λφ(s) + (1− λ)φ(t)

for all s, t ∈ (a, b) and all λ ∈ (0, 1)

Lemma 5.6. This is equivalent to the condition
φ(t)− φ(s)

t− s
≤ φ(u)− φ(t)

u− t

whenever a < s < t < u < b.

Theorem 5.7 (Jensen’s inequality in Lp(X)-spaces). Let f ∈ Lp(X), 1 ≤ p < ∞, and let g ∈
L1(X). Then (∫

X

|fg| dµ
)p

≤ ∥g∥p−1
1

∫
X

|f |p|g| dµ

Theorem 5.8 (Young’s inequality). Let 1 ≤ p ≤ ∞. If f ∈ Lp(RN ,C) and g ∈ L1(RN ,C), then
f ⋆ g exists almost everywhere and f ⋆ g ∈ Lp(RN ,C). Moverover,

∥f ⋆ g∥p ≤ ∥f∥p∥g∥1
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Theorem 5.9. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. If f ∈ Lp(RN ) and g ∈ Lq(RN ), then

f ⋆ g ∈ BC(RN )

where BC is the vector space of bounded continuous functions.

5.1. Approximate identities.

Definition 5.10 (Approximate identity). Let φ : RN → [0,∞) be measurable with∫
RN

φdx = 1

and set φn(x) = nNφ(nx) for all x ∈ RN and n ∈ N. Then (φn) is called an approximate identity

Theorem 5.11. Let (φn) be an approximate identity and f ∈ Lp(RN ), 1 ≤ p <∞. Then

f ⋆ φn → f

in Lp(RN ) as n→ ∞

Theorem 5.12. Let f ∈ L∞(RN ) and (φn) an approximate identity. If f is continuous at x, then

f(x) = lim
n→∞

(f ⋆ φn)(x)

Definition 5.13 (Test function). Let U ⊆ RN be open. We let

C∞(U,K) = {f : U → K | f has partial derivatives of all orders}

and
C∞

c (U,K) = {f ∈ C∞(U,K) | supp(f) ⊆ U, supp(f) compact

The functions in C∞
c (U,K) are called test functions on U .

Proposition 5.14. Let f : RN → K be measurable such that f ∈ L1(B) for every bounded set
B ⊆ RN . If φ ∈ C∞

c (RN ), then f ⋆ φ ∈ C∞(RN ) and
∂

∂xi
(f ⋆ φ) = f ⋆

∂φ

∂xi

Theorem 5.15. Let U ⊆ RN open and 1 ≤ p <∞. Then C∞
c (U) is dense in Lp(U).

Remark. The above proposition does not hold for p = ∞.

6. The Fourier Transform

Definition 6.1 (Fourier transform). Let f ∈ L1(RN ,C). We call

f̂(t) =

∫
RN

f(x)e−2πix·t dx

Theorem 6.2. We have
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• f̂ : RN → C is continuous,
• ∥f̂∥∞ ≤ ∥f∥1

Proposition 6.3. Let φ(x) = e−π|x|2 . Then ∥φ∥1 = 1 and φ̂ = φ.

Proposition 6.4. Let f ∈ L1(RN ,C), x0 ∈ RN and α ∈ R,α > 0.
(i) If g(x) = f(x− x0), then ĝ(t) = e−2πix0·tf̂(t),

(ii) If g(x) = f(αx), then ĝ(t) = 1
αN f̂

(
x
α

)
,

(iii) If g(x) = f(−x), then ĝ(t) = f̂(t)

Definition 6.5. Let C0(RN ,K) = {f ∈ C(RN ,K) | lim|x|→∞ f(x) = 0}, the set of continuous
functions vanishing at infinity

Theorem 6.6 (Riemann-Lebesgue). If f ∈ L1(RN ,C), then f̂ ∈ C0(RN ,C) and ∥f̂∥∞ ≤ ∥f∥1.

Theorem 6.7. If f, g ∈ L1(RN ,C) then f ⋆ g ∈ L1(RN ,C) and

f̂ ⋆ g = f̂ ĝ

Proposition 6.8. Let f, g ∈ L1(RN ,C). Then∫
RN

f̂g dx =

∫
RN

fĝ dx

Lemma 6.9. Let φ(x) = e−π|x|2 and φn(x) = nNφ(nx). Then∫
RN

f̂(t)e2πix·tφ

(
t

n

)
dt = (f ⋆ φn)(x)

for all f ∈ L1(RN ,C), x ∈ RN , and n ∈ N.

Theorem 6.10 (Fourier inversion formula). Let f ∈ L1(RN ,C). Then
(i)

lim
n→∞

∫
RN

f̂(t)e2πix·te−π
|t|2

n2 dt = f

in L1(RN ,C).
(ii) If f is continuous at x, then

lim
n→∞

∫
RN

f̂(t)e2πix·te−π
|t|2

n2 dt = f(x)

Corollary. Let f, g ∈ L1(RN ) with f̂ = ĝ. Then f = g almost everywhere.

6.1. The Fourier transform on L2(RN ). We have defined the Fourier transform f̂ with f ∈
L1(RN ). We have that C∞

c (RN ) is dense in L2(RN ) as well as in L1(RN ), so in particular L2(RN )∩
L1(RN ) is dense in L2(RN ). We can use this to extend the Fourier transform to L2(RN ). The key
for doing so is the following theorem.
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Theorem 6.11 (Plancherel). Let f ∈ L2(RN ) ∩ L1(RN ). Then ∥f̂∥2 = ∥f∥2.

Proposition 6.12. There is a unique coninuous linear operator

F : L2(RN ) → L2(RN )

such that Ff = f̂ for all f ∈ L2(RN ) ∩ L1(RN ). Moreover, ∥f∥2 = ∥Ff∥2 for all f ∈ L2(RN ).

Remark. We use the notation f̂ = Ff for f ∈ L2(RN ).

Remark. Let φn : RN → [0, 1] such that φn ∈ L2(RN ) and φn(x) → 1 for all x ∈ RN . If
f ∈ L2(RN ), then

f̂ = lim
n→∞

∫
RN

f(x)φn(x)e
−2πix·t dx

Common choices for φn are
• φn(x) = 1B(0,n),

• φn(x) = e−π
|x|2

n2

Theorem 6.13. Let f ∈ L2(RN ,C). Then

lim
n→∞

∫
RN

f̂(t)e2πix·te−π
|t|2

n2 dt = f

in L2(RN ,C).

Theorem 6.14. F : L2(RN ) → L2(RN ) is bijective with (F−1f)(x) = (Ff)(−x) for all f ∈
L2(RN ).

Remark. Let
⟨f, g⟩ =

∫
RN

f(x)g(x) dx

denote the inner product on L2(RN ). Then the above theorem implies

⟨f̂ , ĝ⟩ = ⟨f, g⟩.

Moverover, by approximating f, g by functions in L2(RN ) ∩ L1(RN ) we also have

⟨f̂ , g⟩ = ⟨f, ĝ⟩

7. The Radon-Nikodym Theorem

7.1. The Reisz representation theorem. Let H be an inner product space with inner product
(x|v). Then H is a normed space with norm

|u∥ =
√
(u|u)

We call H a Hilbert space if H is complete with respect to ∥.∥, that is, every Cauchy sequence
in H converges.
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Theorem 7.1 (Projections). Let H be a Hilbert space and M ⊆ H a closed subspace of H. Let
u ∈ H. Then there exists m0 ∈M such that

∥u−m0∥ = min
m∈M

∥u−m∥

Moreover,
(u−mo|m) = 0

for all m ∈M .

Remark. Fix g ∈ H and consider the function φg : H → K given by

φg(f) = (f |g)

Then φg is linear, and by the Cauchy-Swartz inequality,

|φg(f) = |(f |g)| ≤ ∥f∥∥g∥

for all f ∈ H. We say φg is a bounded linear functional on H.

Definition 7.2. Let H be a Hilbert space. We call a linear operator φ : H → K a bounded
linear functional on H if there exists M > 0 such that

|φ(f)| ≤M∥f∥

for all f ∈ H.

Theorem 7.3 (Riesz representation theorem). Let H be a Hilbert space over K and φ(H → K) a
bounded linear function. Then there exists g ∈ H such that

φ(f) = (f |g)

for all f ∈ H.

7.2. The Radon-Nikodym Theorem. Suppose that µ is a measure defined on the σ-algebra A
of subsets of X. Given a measurable function g : X → [0,∞] we define

ν(A) =

∫
A

g dµ

Then ν is a measure defined on the σ-algebra A.
The converse does not necessarily hold - that is, given two measures µ and ν on a σ-algebra A,

there is not always a measurable function g : X → [0,∞] such that the above equation holds.

Definition 7.4 (Absolute continuity). Let ν, µ be the measures defined on a σ-algebra A. We call
ν absolutely continuous with respect to µ if ν(A) = 0 whenever µ(A) = 0. In that case, we
write ν << µ.
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Proposition 7.5. Let µ, ν be measures defined on a σ-albegra. Suppose that µ(X), ν(X) <∞. Set
λ = µ+ ν. Then there exists a measurable function h : X → [0,∞] such that∫

X

f dν =

∫
X

fh dλ

for all f ∈ L2(X,λ)

Theorem 7.6 (Radon-Nikodym). Let µ, ν be measures defined on a σ-algebra. Suppose that ν and
µ are σ-finite and that v << u. Then there exits a measurable function g : X → [0,∞) such that
ν(A) =

∫
A
g dµ for all A ∈ A.

Formally we can write ∫
X

f dν =

∫
X

f
dν

dµ
dµ

if we define g = dν
dµ , where g is the density function from the Radon-Nikodym theorem.

Remark. If g is the function in the Radon-Nikodym theorem, it is not hard to show that∫
X

f dν =

∫
X

fg dµ

for all f ∈ L1(X, ν).

8. Probability Theory

Definition 8.1 (Random variable). Let (Ω,A, P ) be a probability space. A A-measurable function

X : Σ → R

is called a random variable.

Definition 8.2. Let X : Σ → R a random variable. We say that X has finite expectation if
X ∈ L1(Σ) and call

E[X] =

∫
Σ

X dP

the expectation of X.

Definition 8.3 (Distrbution). For every Borel set A ⊆ R we define

PX [A] = P [{ω ∈ Ω|X(ω) ∈ A}] = P [X ∈ A]

Since X is measurable, X−1[A] is measurable for all Borel sets A ⊆ R.

Definition 8.4 (Distribution). Let X be a random variable. The Borel measure defined above is
called the distribution of X. The function

F (t) = PX [(−∞, t]] = P [X ≤ t]

is called the distribution function of X.
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Lemma 8.5. Let X be a random variable and let f : R → R be Borel measurable. Then∫
Σ

f ◦X dP =

∫
R
f dPX

8.1. Conditional expectation.

Definition 8.6 (Conditional expectation). Let X : Ω → R a random variable with finite expecta-
tion. Let A0 be a σ-algebra with A0 ⊆ A. We call

X0 : Σ → R

a conditional expectation given A0 if
• X0 is A0-measurable
•
∫
A
X0 dP =

∫
A
X dP for all A ⊆ A0.

We write X0 = E[X|A0]

Theorem 8.7. Let X be a random variable with finite expectation. If A0 is a σ-algebra with
A0 ⊆ A, then the conditional expectation X0 = E[X|A0] exists and is essentially unique.

Remark. • If X is A0-measurable, then X = E[X|A0] almost everywhere.
• If we set A0 = {φ,Ω}, then

E[X|A0] = E[X]
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