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1. STOCHASTIC PROCESSES
Definition 1.1 (Markov process). A process X = {X; :t € T} is a Markov process if
P(X(t) <z|X(t1) =1, X(t2) = T2y..., X(tn) =xp) =P(X(t) < x| X(tn) = zn)

whenever t1 <ty < --- <t, <t.
In other words, a Markov process is a stochastic process satisfying the Markov property: the

conditional distribution of future values is independent of the past.

Definition 1.2 (Markov chain). A Markov chain is a stochastic process with a finite or countable
state space is a Markov chain if it satisfies the Markov property. Define the transition probabilities
P;j by

P, =P(X,11=j|X,=1)

Theorem 1.3 (Chapman-Kolmogorov equation). Let P}, denote the probability of going from state

1 to state j in n steps, that is,
PZJL = P(Xn-&-m =] ‘ X = Z) = P(Xn =] | Xo = Z)

Then we have, for any m,n=20,1,2,... andi,j € S,
(o)
Pyt = PRl
k=0

In terms of matrixz multiplication, this is equivalent to
Pn+m — Pan
Proposition 1.4 (Initial distribution). At time ¢, let m, denote the column vector such that
Tn(j) =P(X,, =7) forallj€S.
T, = moP"
2. CLASSIFICATION OF STATES

Definition 2.1 (Classification of states). Define an equivalence relation ~ on the set of states such
that ¢ <» j if and only if P/} > 0 for some n > 0. Two states ¢ and j which are accessible to each

other are said to communicate and we write ¢ <> j
Lemma 2.2. Communication is an equivalence relation on the set of states.

If two states communicate with each other we say they belong to the same communicating
class.

Definition 2.3 (Irreducible). A Markov chain is said to be irreducible if there is only one class,
i.e., all states communicate with each other. A class C' is closed if no state outside C' can be reached

from any state in C. A state ¢ is called absorbing if the set {i} is a closed class, i.e., P;; = 1.
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Definition 2.4 (Period of a state). A state ¢ is said to have period d; if P} = 0 except when
n:dz,le,?)dl,

Proposition 2.5. Ifi <> j then d; = d;.

Definition 2.6 (First transition time). For any states ¢ and j, define ;; as the probability that

starting in 4, the first transition into j occurs at time n, that is

0

ij 0
fz? :P(Xn :.]7Xk 7&]7k:172a7n_1|X0 :Z)

Let T; be the random time of the first transition into state j. Thus we have

P(Ty =n|Xo =1) = fj;

If Xo = j then T} is the first return time to j. If Xo = ¢ # j then T} is the first hitting time of
j.
We define the quantity f;; by the equality

oo
fiy=Y_ fh

n=1
f is the probability of ever making a transition into state j, given that the process starts in

state i. We also have that f;; > 0 if and only if state j is accessible from state i.

Definition 2.7 (Recurrent states). A state is recurrent if
P(X,, =iforsomen >1|Xy=14)=1

A state ¢ is recurrent if and only if f;; = 1. A state i is transient if and only if f;; < 1.

Proposition 2.8. A state i is recurrent if and only if

oo
>R =
n=1

A state i is transient if and only if

oo
Z Pl < o0
n=1

Corollary. Ifi is recurrent and i < j then state j is recurrent.

Corollary. Ifi < j and j is recurrent then f;; = 1.
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3. LIMIT THEOREMS FOR MARKOV CHAINS

Let m;; be the mean recurrence time, that is, the expected number of transitions until a
Markov chain starting in j returns to that state, so
_ 00 if j is transient
mjJ) = 0o o
Y n—ynfjy if j is recurrent

Definition 3.1 (Ergodic state). Let j be recurrent. Then a state j is called positive recurrent if

mj; < oo and null recurrent if m;; = co. A positive recurrent, aperiodic state is called ergodic.

We have —mlk = 0 if a state j is either transient of null recurrent. If j is positive recurrent then
73
1
0< <00

Theorem 3.2. Assume i <+ j. If a state j is aperiodic, then

1
lim P} =—
n—oo m,j]
If a state j has period d;, then
d.
lim P = —L
n—oo m,j,]

Definition 3.3 (Stationary distributions). A probability distribution 7* is called stationary for

for a Markov chain X with transition matrix P if
P =7

We note that the stationary distribution 7* associated with a Markov chain is not necessarily

unique, nor does it always exist.

Theorem 3.4 (Irreducible aperiodic Markov chains). Let X be an irreducible aperiodic Markov

chain. Then

e Fither all the states are transient or null recurrent; in that case we have that lim,, o P/* =0

1% =
for alli,j and there exists no stationary distribution.

e or else all states are positive recurrent - in that case we have II; = lim, P[j‘ > 0 for
all i, j; moreover, 11; is a stationary distribution and the stationary distribution is unique.

Moreover, for all j,

We note that in a finite-state, irreducible, aperiodic Markov chain all states are positive recur-
rent/ergodic, and so the stationary distribution exists and is unique.
In a finite state, irreducible, periodic Markov chain all states are positive recurrent and the

unique stationary distribution exists and is unique.
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4. FIRST STEP ANALYSIS

Consider the Markov chain X with transition probability matrix

1 00
P=la B v
00 1

We ask the following questions.

e What state will the process ultimately be absorbed in?

e How long, on average, will it take to reach one of these states?

Let
T =min{n >0|X,, =0or X, =2}
be the random time of absorption for the process X. We ask the questions
UZP(XT:0|X0 = 1)
and
v=E[T|Xo=1]
Thus u is the probability of begin absorbed in state 0 given we start in state 1, and v is the
expected time of being absorbed given we start in state 1.
Now we have the following.
u=1-a+u-8+0-7v

Similarly, we have
v=14+a-0+p-v+7-0

5. BRANCHING PROCESSES

Definition 5.1 (Branching process). let Xo = 1 and for every n =0,1,2,... define

Xn
Xnt1 = Z Z;
)

where Z; are independently, identically distributed random variables with probability distribution
P(Z=k)= Py, k=0,1,2,.... Then X = {X,,n > 0} is a branching process

We have the following formulas.

Lemma 5.2. We have
E[E(X,)] = pE[X; 1] = p"
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and

Var(X,) =

Proposition 5.3 (Extinction probabilities). Define u,, to be the probability of extinction at or prior

to the n'* generation, assuming Xo = 1. Then
u, =P(X, =0]|Xy=1)
Then we have -
Up = Z-Pk(unfl)]c
k=0
where P, = P(Z = k).

Proposition 5.4. Let Iy = lim, o P(X,, = 0) be the probability of eventual extinction. Then,
definining the probability generating functions G,(s) = E [SX"] = E;io sTP(X,, = j), we have that
o Iy =14if and only if u <1,
o Ifu>1 then Iy <1 is the smallest positive number p satisfying G(p) = p - that is,

o = G(Ilp)

where G(p) = 272" Pj.

6. POISSON PROCESS

Definition 6.1 (Poisson process). A process N = {N(t),t > 0} is a Poisson process if
e N(0)=0,
e N is a process of independent increments.
e The number of events in any interval of length ¢ has a Poisson distribution with parameter

At, that is
67)\t (At)n
n!
The positive paramenter A > 0 is called the intensity of the process. We have that E [N ()] = At
and Var (N (t)) = At

P(N(t+s)— N(s)=n)=

Lemma 6.2. The sum of two Poisson processes of intensities X and p is a Poisson process of
intensity \ + L.

7. SOJOURN AND WAITING TIMES
Definition 7.1 (Soujourn time). For n =0,1,2,..., the sojourn time in state n equals

S, = inf{t € [0,00) | N(t + Sp_1) — N(Sn_1) = 1}
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Lemma 7.2. The sojourn times S,, are independently, identically distributed exponential variables

with parameter \.
Definition 7.3 (Waiting time). For n =0, 1,2, ..., the waiting time until the n'" event equals
W,, = inf{t € [0,00) | N(t) = n}

Lemma 7.4. If X; are independently, identically distributed exponential random variables with

parameter A then Z;L:l X, is distributed with a gamma distribution with parameters n, A, that is,

T(n,\).

Proposition 7.5. Given N(t) = 1, the waiting time Wy = Sy = T1 has uniform distribution on
[0,1]

Theorem 7.6. Given that N(t) = 1, the waiting times (W1,...,W,) have the same conditional
joint probability density of n independently, identically distributed uniformly distributed random

variables on the interval [0, ).
Lemma 7.7. If X;,i = 1,2 are independent exponential random variables with parameters \;, then

A
P(X; < X3) = T +1A2

8. CONTINUOUS-TIME MARKOV CHAINS
Consider a continuous time Markov process X = {X(t),t > 0} where transition probabilities
Pij(t) =P(X(t +5) = j| X(s) =)
are independent of s. This is a time-homogenous, or stationary, process.

Definition 8.1 (Pure birth process). A pure birth process is a Markov process satisfying the
following conditions.

Py ky1(h) = Agh + o(h),

Py (k) =1—Xph+o(h),

P(X(t+h)—X(t)<0|X(t)=k)=0,

X(0)=0o0r X(0)=1

Example 8.2. Let us review some interesting special cases for birth intensities \g.
e Poisson process: A\, = A for all k.
e Simple birth: \; = k5. This model gives the probabiities
1—kBh+o(h) m=0
POX(t+h) = X(0) =m|X() =k) = { kphto(h)  m=1

o(h) otherwise
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e Simple birth with immigration: \;, = k5 + v.

9. DIFFERENTIAL EQUATIONS FOR MARGINAL PROBABILITIES
Consider a pure birth process. Let P, (t) = P(X(t) = n). Assume Py(0) = 1.
Theorem 9.1. The functions P, satisfy the following system of ordinary differential equations.
Bl(t) = ~MoPo(1)
Pl (t) = =M Pu(t) + A1 Pa1(t)

n
Lemma 9.2. The marginal probability functions P, satisfy
Po(t) = ei)mt

and .
P,(t) =/\n_167)‘"t/ e* P, _1(s)ds
0

As above, define Sj; to be the time between the kth and (k + 1)th birth. Then we have the

following lemma.

Lemma 9.3. The random wvariables Sy are independent and Sy has an exponential distribution

with parameter A

10. BIRTH AND DEATH PROCESSES

Definition 10.1 (Pure birth process). A birth and death process is a Markov process satisfying
the following conditions.

Pi. py1(h) = Ah + o(h),

Py (h) =1— (A + prh + o(h),

Py k—1(h)pih + o(h)

P(X(t+h)—X(t)<0|X(t)=k)=0,

X(0)=0o0r X(0)=1

Proposition 10.2 (Chapman-Kolmogorov equation).
Pij(t + 8) = Z Pij(t)ij (S)
k=0

Proposition 10.3 (Sojourn times). We wish to calculate the sohourn time in state i, denoted
S;. Defining P(S; > t) = D;(t). We have
Dy(t) = e~ Oetmot

Thus S; is exponential distributed with parameter A\; + ;.
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Proposition 10.4. The process stays in a given state © for a random length of time whose distri-

bution function is exponential with parameter \; + p;. The process leaves state © by entering state

Ai i
Aitpi Aitpi

1+ 1 ori— 1 with probability and

Proposition 10.5. Transition probabilities P;;(t) satisfy a system of ordinary differential equations,

known as the backward Kolmogorov equations. For a fized j,
Py (t) = =XoPo;(t) + Ao Puj(t)
Pji(t) = piPi—15(t) — (N + pi) Pij (t) + X Piga (1)
with initial conditions P;;(0) = d;;. In matriz notation,
P(t) = AP(t),
with P(0) = 1.

Proposition 10.6. Transition probabilities P;;(t) satisfy a system of ordinary differential equations,

known as the forward Kolmogorov equations. For a fized j,
Pio(t) = =XoPio(t) + 1 Pia(t)
PJi(t) = Xj1Pij1(t) — (i + pa) Pij(t) + pj Pijya (1)

with initial conditions P;;(0) = §;;. In matriz notation,

with P(0) = I.

From the forward Kolmogorov equation, we can find a system of ordinary differential equations
for the marginal probabilities P, = P(X (t) = j). We have
Po(t) = =XoPo(t) + pa Pi(t)
Pi(t) = XNj—1Pj—1(t) — (Nj + ) Py () + i1 Py (t)

with P;(0) = mo(j). In matrix notation,

7y = mA



STAT 3911 - STOCHASTIC PROCESSES 10

11. TIME SERIES ANALYSIS

Definition 11.1 (Time series). Let {X;} be a time series with E [X?] < co. The mean function
for {X,} is

px (t) = E[X¢]
The covariance function of {X;} is

vx (r,8) = Cov (() X, Xs) = E[(Xy — px (r)(Xs — px (s)))]

Definition 11.2 (Stationary). A time series {X;} is weakly stationary if

e ux(t) is independent of ¢,
e yx(t + h,t) is independent of ¢ for each h.

Definition 11.3 (Autocovariance function). Let {X;} be a stationary time series. The autoco-
variance function (ACVF) of {X;} at lag h is

’YX(t) = COV (Xt+h7 Xt)

The autocorrelation function (ACF) of {X;} at lag h is

px(h) = Z/f(ig; = Cor(X¢+n, Xt)

Definition 11.4 (Sample autocovariance function). The sample autocovariance function is

n—|h|

Z (@psin) — @) (2 — T)

t=1

i(h) =

S|

The sample autocorrelation function is

12. ARMA(p,q) MODELS

Definition 12.1 (ARMA(p, ¢) process). A time series {X;} is an ARMA((p, q) process if {X;} is

stationary and if for every t,
Xe—01 Xy 1 — =0 Xy p=Zs + 012y + -+ 0424
where {Z;} ~ WN(0,0?) and the polynomials () and ¢(z) have no common factors.

Theorem 12.2 (Stationary). A stationary solution {X;} of the equations exists, and is the unique

stationary solution if and only if

Pz)=1—¢1z—--—¢pzP #0
forall|z] =1
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Theorem 12.3 (Causality). An ARMA (p,q) process is causal, if there exists constants {1;} with

Xy = Z Vi Zy—
=0

for all t.
Causality is equivalent to the condition
pz)=¢(z)=1—¢1z2— - — ¢zl #0
forall|z] < 1.

The coefficients 1); can be determined by the identity
0(z)
Tﬁ(z)*wO‘f‘?/)lZ‘f‘"'*%
Definition 12.4 (Invertibility). An ARMA(p, q) process {X,} is invertible if there exist constants
m; such that

Zt = Z Wth,j
7=0

Invertibility is equivalent to the condition
0(z)=14012+ -+ 0,21
for all |z] < 1.

The coeffients m; can be determined by the identity
o(2)

7r(z)z7r0—|—7rlz—|—~~:m

Definition 12.5 (Partial autocorrelation function). The partial autocorrelation function a(-)

satisfies the following equations.

a(0)=1
a(l) = p(1)

_p(2) = p(1)?
A Ok

and in general, is the last component of
_ -1
¢h - Fh Yy
where I';, is the covariance matrix and vy, is a vector of covariances.

Theorem 12.6. The PACF of an AR(p) process is given by

a(p) = ¢p



STAT 3911 - STOCHASTIC PROCESSES 12
and
alh)=0
for h >p
Theorem 12.7 (Stationary AR(2) process). An AR(2) process Xy = a1 Xi—1 + aoXi—o + Zy s
stationary if and only if the following all hold.
ap tag <1
ap —as > —1

ag > —1

13. ARIMA MODELS

Definition 13.1 (ARIMA process). If d is a nonnegative integer, then {X;} is an ARIMA (p,d, q)
process if Y; = (1 — B)X, is a causal ARMA(p, q) process.

14. MODEL SELECTION
To select a model, we must first transform the data until we are examining a stationary process.
Then, we consider the ACF and PACF functions. A few general points.

e A slowly decaying (slower than exponential decay) ACF indicates the data needs to be
differenced, i.e., that an ARIMA(p, d, ¢) model should be considered.

e A PACF that cuts out sharply after lag p indicates an AR(p) model. This can be quantified
by Quenoille’s Test.

Theorem 14.1 (Quenouille’s Test). If a process is AR(m), and if N is large, then
. 1
WkNN(O,N), k>m

Thus any 7y, satisfying |7x| > % for k > m, indicates disagreement with Hy at the 5%

significance level.

e Any MA process must have p(1) < 0.5
e An MA(q) process must have p(k) = 0 for all k > q.
e An AR(p) process will have the ACF function exhibiting exponential decay.

To test the fit of a model, we use the Box-Pierce test and consider the AIC statistic.

Theorem 14.2 (Box-Pierce test). Assume an ARIMA(p,d,q) model has been fitted to time series.

Consider the series of residual {s;}. Then, for a fized mazimum lag K, we consider the statistic

K
BP=N> #}
k=1
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where f‘z is the squared sample autocorrelation coefficient for the residual time series.

This is distributed with according to a x2-distribution with K — p — q degrees of freedom. This
statistic is then used to test the hypothesis that the none of the autocorrelation coefficients for the
residuals are different from zero against the alternate that at least one autocorrelation coefficient is

greater than zero.

Theorem 14.3 (AIC). The AIC statistic for a fitted model is a sum of the likelihood (as estimate
of model fit) and the number of parameters (p and q). The best model is the one that minimizes
the value of the AIC.

15. PREDICTION USING ARIMA (p,d, q) MODELS

Definition 15.1 (Best linear predictor). The best linear predictor of Y in terms of X;,i = 1,2,...,n

in the least squares sense, is the linear function of X
AX) =B+ > BiX;
i=1

where 3;,7 =0,1,2,...,n are chosen to minimise
n 2
E (Y —fo— Z&&)
i=1

Theorem 15.2 (Properties of the best linear predictor). If A(X) = By + S BiX; is the best

linear predictor for Y in terms of X;,i =1,2,...,n, the the residual
U=Y - \X)

has expectation 0 and is uncorrelated with every linear function A\(X).

Theorem 15.3 (Uniqueness of the best linear predictor). Let A\(X) = o + Zf;l BiX; be the best
linear predictor, and let U =Y — \(X).
Suppose \*(X) = 5 + vazl BrX; and U* =Y — X*(X) has the properties:

(1) E[U*]=0
(2) U* is uncorrelated with every linear function of X1, Xa,...X,,. Then

M (X) = AMX)
Example 15.4 (Best linear predictor for AR(p)). Let {X;} be an AR(p) process. Then we have
X)) =p+a Xy g+ +0p X,

is the best linear predictor for X; in terms of X;_q,..., Xy
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Example 15.5 (Best linear predictor for ARMA(p,q)). Let {X;} be an ARIMA(p,q) process.

Then we have
Xiea(D)=p+orXig+-+apXep+ B1Zi1+ -+ By Zi—q
As we have
Xns1 = Xn(1) = Z, ~ N(0,0%),
we then have a (1 — a)100% confidence interval for X1 is given by

Xn(1) £ ® (1 - %) oz

Example 15.6 (Two step predictors for an AR(p) process). We have the best linear predictor for
X;—2(2) is given as

Xia2)=p+a1Xio(1) + X0+ +apXi_yp

where X;_2(1) is the one step predicted value for the AR(p) process above.
We can calculate that the (1 — a)100% confidence intervals for X; are given by

Xi 5(2) £ @ (1 - %) (1+a2)o
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