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1. Stochastic Processes

Definition 1.1 (Markov process). A process X = {Xt : t ∈ T} is a Markov process if

P(X(t) ≤ x |X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn) = P(X(t) ≤ x |X(tn) = xn)

whenever t1 < t2 < · · · < tn < t.
In other words, a Markov process is a stochastic process satisfying the Markov property: the

conditional distribution of future values is independent of the past.

Definition 1.2 (Markov chain). A Markov chain is a stochastic process with a finite or countable
state space is a Markov chain if it satisfies the Markov property. Define the transition probabilities
Pij by

Pij = P(Xn+1 = j |Xn = i)

Theorem 1.3 (Chapman-Kolmogorov equation). Let Pn
ij denote the probability of going from state

i to state j in n steps, that is,

Pn
ij = P(Xn+m = j |Xm = i) = P(Xn = j |X0 = i)

Then we have, for any m,n = 0, 1, 2, . . . and i, j ∈ S,

Pn+m
ij =

∞∑
k=0

Pm
ikP

n
kj .

In terms of matrix multiplication, this is equivalent to

Pn+m = PnPm

Proposition 1.4 (Initial distribution). At time t, let πn denote the column vector such that
πn(j) = P(Xn = j) for all j ∈ S.

πn = π0P
n

2. Classification of states

Definition 2.1 (Classification of states). Define an equivalence relation ∼ on the set of states such
that i ↔ j if and only if Pn

ij > 0 for some n ≥ 0. Two states i and j which are accessible to each
other are said to communicate and we write i↔ j

Lemma 2.2. Communication is an equivalence relation on the set of states.

If two states communicate with each other we say they belong to the same communicating
class.

Definition 2.3 (Irreducible). A Markov chain is said to be irreducible if there is only one class,
i.e., all states communicate with each other. A class C is closed if no state outside C can be reached
from any state in C. A state i is called absorbing if the set {i} is a closed class, i.e., Pii = 1.
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Definition 2.4 (Period of a state). A state i is said to have period di if Pn
ii = 0 except when

n = di, 2di, 3di, . . . .

Proposition 2.5. If i↔ j then di = dj.

Definition 2.6 (First transition time). For any states i and j, define fnij as the probability that
starting in i, the first transition into j occurs at time n, that is

f0ij = 0

fnij = P(Xn = j,Xk ̸= j, k = 1, 2, . . . , n− 1 |X0 = i)

Let Tj be the random time of the first transition into state j. Thus we have

P(Tj = n |X0 = i) = fnij

If X0 = j then Tj is the first return time to j. If X0 = i ̸= j then Tj is the first hitting time of
j.

We define the quantity fij by the equality

fij =
∞∑

n=1

fnij

f ij is the probability of ever making a transition into state j, given that the process starts in
state i. We also have that fij > 0 if and only if state j is accessible from state i.

Definition 2.7 (Recurrent states). A state is recurrent if

P(Xn = i for some n ≥ 1 |X0 = i) = 1

A state i is recurrent if and only if fii = 1. A state i is transient if and only if fii < 1.

Proposition 2.8. A state i is recurrent if and only if
∞∑

n=1

Pn
ii = ∞

A state i is transient if and only if
∞∑

n=1

Pn
ii <∞

Corollary. If i is recurrent and i↔ j then state j is recurrent.

Corollary. If i↔ j and j is recurrent then fij = 1.
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3. Limit theorems for Markov chains

Let mjj be the mean recurrence time, that is, the expected number of transitions until a
Markov chain starting in j returns to that state, so

mjj =

∞ if j is transient∑∞
n=1 nf

n
jj if j is recurrent

Definition 3.1 (Ergodic state). Let j be recurrent. Then a state j is called positive recurrent if
mjj <∞ and null recurrent if mjj = ∞. A positive recurrent, aperiodic state is called ergodic.

We have 1
mjj

= 0 if a state j is either transient of null recurrent. If j is positive recurrent then
0 < 1

mjj
<∞.

Theorem 3.2. Assume i↔ j. If a state j is aperiodic, then

lim
n→∞

Pn
ij =

1

mjj

If a state j has period dj, then
lim
n→∞

Pn
ij =

dj
mjj

Definition 3.3 (Stationary distributions). A probability distribution π⋆ is called stationary for
for a Markov chain X with transition matrix P if

π⋆P = π⋆

We note that the stationary distribution π⋆ associated with a Markov chain is not necessarily
unique, nor does it always exist.

Theorem 3.4 (Irreducible aperiodic Markov chains). Let X be an irreducible aperiodic Markov
chain. Then

• Either all the states are transient or null recurrent; in that case we have that limn→∞ Pn
ij = 0

for all i, j and there exists no stationary distribution.
• or else all states are positive recurrent - in that case we have Πj = limn→∞ Pn

ij > 0 for
all i, j; moreover, Πj is a stationary distribution and the stationary distribution is unique.
Moreover, for all j,

Πj =
1

mjj

We note that in a finite-state, irreducible, aperiodic Markov chain all states are positive recur-
rent/ergodic, and so the stationary distribution exists and is unique.

In a finite state, irreducible, periodic Markov chain all states are positive recurrent and the
unique stationary distribution exists and is unique.
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4. First step analysis

Consider the Markov chain X with transition probability matrix

P =

1 0 0

α β γ

0 0 1


We ask the following questions.

• What state will the process ultimately be absorbed in?
• How long, on average, will it take to reach one of these states?

Let
T = min{n ≥ 0 |Xn = 0 or Xn = 2}

be the random time of absorption for the process X. We ask the questions

u = P(XT = 0 |X0 = 1)

and
v = E [T |X0 = 1]

Thus u is the probability of begin absorbed in state 0 given we start in state 1, and v is the
expected time of being absorbed given we start in state 1.

Now we have the following.
u = 1 · α+ u · β + 0 · γ

Similarly, we have
v = 1 + a · 0 + β · v + γ · 0

5. Branching processes

Definition 5.1 (Branching process). let X0 = 1 and for every n = 0, 1, 2, . . . define

Xn+1 =

Xn∑
i=1

Zi

where Zi are independently, identically distributed random variables with probability distribution
P(Z = k) = Pk, k = 0, 1, 2, . . . . Then X = {Xn, n ≥ 0} is a branching process

We have the following formulas.

Lemma 5.2. We have
E [E(Xn)] = µE [Xn−1] = µn
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and

Var (Xn) =

σ2µn−1
(

µn−1
µ−1

)
µ ̸= 1

nσ2 µ = 1

Proposition 5.3 (Extinction probabilities). Define un to be the probability of extinction at or prior
to the nth generation, assuming X0 = 1. Then

un = P(Xn = 0 |X0 = 1)

Then we have
un =

∞∑
k=0

Pk(un−1)
k

where Pk = P(Z = k).

Proposition 5.4. Let Π0 = limn→∞ P(Xn = 0) be the probability of eventual extinction. Then,
definining the probability generating functions Gn(s) = E

[
sXn

]
=
∑∞

j=0 s
jP(Xn = j), we have that

• Π0 = 1 if and only if µ ≤ 1,
• If µ > 1 then Π0 < 1 is the smallest positive number p satisfying G(p) = p - that is,

Π0 = G(Π0)

where G(p) =
∑∞

j=0 p
jPj.

6. Poisson process

Definition 6.1 (Poisson process). A process N = {N(t), t ≥ 0} is a Poisson process if

• N(0) = 0,
• N is a process of independent increments.
• The number of events in any interval of length t has a Poisson distribution with parameter
λt, that is

P(N(t+ s)−N(s) = n) =
e−λt(λt)n

n!
The positive paramenter λ > 0 is called the intensity of the process. We have that E [N(t)] = λt

and Var (N(t)) = λt

Lemma 6.2. The sum of two Poisson processes of intensities λ and µ is a Poisson process of
intensity λ+ µ.

7. Sojourn and waiting times

Definition 7.1 (Soujourn time). For n = 0, 1, 2, . . . , the sojourn time in state n equals

Sn = inf{t ∈ [0,∞) |N(t+ Sn−1)−N(Sn−1) = 1}
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Lemma 7.2. The sojourn times Sn are independently, identically distributed exponential variables
with parameter λ.

Definition 7.3 (Waiting time). For n = 0, 1, 2, . . . , the waiting time until the nth event equals

Wn = inf{t ∈ [0,∞) |N(t) = n}

Lemma 7.4. If Xi are independently, identically distributed exponential random variables with
parameter λ then

∑n
i=1Xi is distributed with a gamma distribution with parameters n, λ, that is,

Γ(n, λ).

Proposition 7.5. Given N(t) = 1, the waiting time W1 = S0 = T1 has uniform distribution on
[0, t]

Theorem 7.6. Given that N(t) = 1, the waiting times (W1, . . . ,Wn) have the same conditional
joint probability density of n independently, identically distributed uniformly distributed random
variables on the interval [0, t].

Lemma 7.7. If Xi, i = 1, 2 are independent exponential random variables with parameters λi, then

P(X1 < X2) =
λ1

λ1 + λ2

8. Continuous-time Markov chains

Consider a continuous time Markov process X = {X(t), t ≥ 0} where transition probabilities

Pij(t) = P(X(t+ s) = j |X(s) = i)

are independent of s. This is a time-homogenous, or stationary, process.

Definition 8.1 (Pure birth process). A pure birth process is a Markov process satisfying the
following conditions.

• Pk,k+1(h) = λkh+ o(h),
• Pk,k(h) = 1− λkh+ o(h),
• P(X(t+ h)−X(t) < 0 |X(t) = k) = 0,
• X(0) = 0 or X(0) = 1

Example 8.2. Let us review some interesting special cases for birth intensities λk.
• Poisson process: λk = λ for all k.
• Simple birth: λk = kβ. This model gives the probabiities

P(X(t+ h)−X(t) = m |X(t) = k) =


1− kβh+ o(h) m = 0

kβh+ o(h) m = 1

o(h) otherwise
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• Simple birth with immigration: λk = kβ + ν.

9. Differential equations for marginal probabilities

Consider a pure birth process. Let Pn(t) = P(X(t) = n). Assume P0(0) = 1.

Theorem 9.1. The functions Pn satisfy the following system of ordinary differential equations.

P ′
0(t) = −λ0P0(t)

P ′
n(t) = −λnPn(t) + λn−1Pn−1(t)

Lemma 9.2. The marginal probability functions Pn satisfy

P0(t) = e−λ0t

and
Pn(t) = λn−1e

−λnt

∫ t

0

eλnsPn−1(s)ds

As above, define Sk to be the time between the kth and (k + 1)th birth. Then we have the
following lemma.

Lemma 9.3. The random variables Sk are independent and Sk has an exponential distribution
with parameter λk

10. Birth and death processes

Definition 10.1 (Pure birth process). A birth and death process is a Markov process satisfying
the following conditions.

• Pk,k+1(h) = λkh+ o(h),
• Pk,k(h) = 1− (λk + µkh+ o(h),
• Pk,k−1(h)µkh+ o(h)

• P(X(t+ h)−X(t) < 0 |X(t) = k) = 0,
• X(0) = 0 or X(0) = 1

Proposition 10.2 (Chapman-Kolmogorov equation).

Pij(t+ s) =
∞∑
k=0

Pij(t)Pkj(s).

Proposition 10.3 (Sojourn times). We wish to calculate the sohourn time in state i, denoted
Si. Defining P(Si ≥ t) = Di(t). We have

Di(t) = e−(λi+µi)t

Thus Si is exponential distributed with parameter λi + µi.
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Proposition 10.4. The process stays in a given state i for a random length of time whose distri-
bution function is exponential with parameter λi + µi. The process leaves state i by entering state
i+ 1 or i− 1 with probability λi

λi+µi
and µi

λi+µi
.

Proposition 10.5. Transition probabilities Pij(t) satisfy a system of ordinary differential equations,
known as the backward Kolmogorov equations. For a fixed j,

P ′
0j(t) = −λ0P0j(t) + λ0P1j(t)

P ′
ij(t) = µiPi−1,j(t)− (λi + µi)Pij(t) + λiPi+1,j(t)

with initial conditions Pij(0) = δij. In matrix notation,

P ′(t) = AP (t),

with P (0) = I.

Proposition 10.6. Transition probabilities Pij(t) satisfy a system of ordinary differential equations,
known as the forward Kolmogorov equations. For a fixed j,

P ′
i0(t) = −λ0Pi,0(t) + µ1Pi,1(t)

P ′
ij(t) = λj−1Pi,j−1(t)− (λi + µi)Pij(t) + µj+1Pi,j+1(t)

with initial conditions Pij(0) = δij. In matrix notation,

P ′(t) = P (t)A,

with P (0) = I.

From the forward Kolmogorov equation, we can find a system of ordinary differential equations
for the marginal probabilities Pk = P(X(t) = j). We have

P ′
0(t) = −λ0P0(t) + µ1P1(t)

P ′
j(t) = λj−1Pj−1(t)− (λj + µj)Pj(t) + µj+1Pj+1(t)

with Pj(0) = π0(j). In matrix notation,
π′
t = πtA
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11. Time Series Analysis

Definition 11.1 (Time series). Let {Xt} be a time series with E
[
X2

t

]
<∞. The mean function

for {Xt} is
µX(t) = E [Xt]

The covariance function of {Xt} is

γX(r, s) = Cov (()Xr, Xs) = E [(Xr − µX(r)(Xs − µX(s)))]

Definition 11.2 (Stationary). A time series {Xt} is weakly stationary if
• µX(t) is independent of t,
• γX(t+ h, t) is independent of t for each h.

Definition 11.3 (Autocovariance function). Let {Xt} be a stationary time series. The autoco-
variance function (ACVF) of {Xt} at lag h is

γX(t) = Cov (Xt+h, Xt)

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) =
γX(h)

γX(0)
= Cor(Xt+h, Xt)

Definition 11.4 (Sample autocovariance function). The sample autocovariance function is

γ̂(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄)

The sample autocorrelation function is

ρX(h) =
γX(h)

γX(0)

12. ARMA(p, q) Models

Definition 12.1 (ARMA(p, q) process). A time series {Xt} is an ARMA(p, q) process if {Xt} is
stationary and if for every t,

Xt − ϕ1Xt−1 − · · · − ϕpXt−p = Zt + θ1Zt + · · ·+ θqZt−q

where {Zt} ∼WN(0, σ2) and the polynomials θ(z) and ϕ(z) have no common factors.

Theorem 12.2 (Stationary). A stationary solution {Xt} of the equations exists, and is the unique
stationary solution if and only if

ϕ(z) = 1− ϕ1z − · · · − ϕpz
p ̸= 0

for all |z| = 1



STAT 3911 - STOCHASTIC PROCESSES 11

Theorem 12.3 (Causality). An ARMA(p, q) process is causal, if there exists constants {ψj} with

Xt =
∞∑
j=0

ψjZt−j

for all t.
Causality is equivalent to the condition

ϕ(z) = ϕ(z) = 1− ϕ1z − · · · − ϕpz
p ̸= 0

for all |z| ≤ 1.

The coefficients ψj can be determined by the identity

ψ(z) = ψ0 + ψ1z + · · · = θ(z)

ϕ(z)

Definition 12.4 (Invertibility). An ARMA(p, q) process {Xt} is invertible if there exist constants
πj such that

Zt =
∞∑
j=0

πjXt−j

Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + · · ·+ θqz
q

for all |z| ≤ 1.

The coeffients πj can be determined by the identity

π(z) = π0 + π1z + · · · = ϕ(z)

θ(z)

Definition 12.5 (Partial autocorrelation function). The partial autocorrelation function α(·)
satisfies the following equations.

α(0) = 1

α(1) = ρ(1)

α(2) =
ρ(2)− ρ(1)2

1− ρ(1)2

and in general, is the last component of

ϕh = Γ−1
h γy

where Γh is the covariance matrix and γy is a vector of covariances.

Theorem 12.6. The PACF of an AR(p) process is given by

α(p) = ϕp
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and
α(h) = 0

for h > p

Theorem 12.7 (Stationary AR(2) process). An AR(2) process Xt = α1Xt−1 + α2Xt−2 + Zt is
stationary if and only if the following all hold.

α1 + α2 < 1

α1 − α2 > −1

α2 > −1

13. ARIMA Models

Definition 13.1 (ARIMA process). If d is a nonnegative integer, then {Xt} is an ARIMA(p, d, q)

process if Yt = (1−B)dXt is a causal ARMA(p, q) process.

14. Model selection

To select a model, we must first transform the data until we are examining a stationary process.
Then, we consider the ACF and PACF functions. A few general points.

• A slowly decaying (slower than exponential decay) ACF indicates the data needs to be
differenced, i.e., that an ARIMA(p, d, q) model should be considered.

• A PACF that cuts out sharply after lag p indicates an AR(p) model. This can be quantified
by Quenoille’s Test.

Theorem 14.1 (Quenouille’s Test). If a process is AR(m), and if N is large, then

π̂k ∼ N (0,
1

N
), k > m

Thus any π̂k satisfying |π̂k| > 2√
N

for k > m, indicates disagreement with H0 at the 5%
significance level.

• Any MA process must have ρ(1) < 0.5

• An MA(q) process must have ρ(k) = 0 for all k > q.
• An AR(p) process will have the ACF function exhibiting exponential decay.

To test the fit of a model, we use the Box-Pierce test and consider the AIC statistic.

Theorem 14.2 (Box-Pierce test). Assume an ARIMA(p, d, q) model has been fitted to time series.
Consider the series of residual {st}. Then, for a fixed maximum lag K, we consider the statistic

BP = N
K∑

k=1

r̂2k
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where r̂2k is the squared sample autocorrelation coefficient for the residual time series.
This is distributed with according to a χ2-distribution with K − p − q degrees of freedom. This

statistic is then used to test the hypothesis that the none of the autocorrelation coefficients for the
residuals are different from zero against the alternate that at least one autocorrelation coefficient is
greater than zero.

Theorem 14.3 (AIC). The AIC statistic for a fitted model is a sum of the likelihood (as estimate
of model fit) and the number of parameters (p and q). The best model is the one that minimizes
the value of the AIC.

15. Prediction using ARIMA(p, d, q) models

Definition 15.1 (Best linear predictor). The best linear predictor of Y in terms ofXi, i = 1, 2, . . . , n

in the least squares sense, is the linear function of X

λ(X) = β0 +
n∑

i=1

βiXi

where βi, i = 0, 1, 2, . . . , n are chosen to minimise

E

(Y − β0 −
n∑

i=1

βiXi

)2


Theorem 15.2 (Properties of the best linear predictor). If λ̂(X) = β̂0 +
∑n

i=1 β̂iXi is the best
linear predictor for Y in terms of Xi, i = 1, 2, . . . , n, the the residual

U = Y − λ̂(X)

has expectation 0 and is uncorrelated with every linear function λ(X).

Theorem 15.3 (Uniqueness of the best linear predictor). Let λ̂(X) = β̂0 +
∑N

i=1 β̂iXi be the best
linear predictor, and let U = Y − λ̂(X).

Suppose λ⋆(X) = β⋆
0 +

∑N
i=1 β

⋆
iXi and U⋆ = Y − λ⋆(X) has the properties:

(1) E [U⋆] = 0

(2) U⋆ is uncorrelated with every linear function of X1, X2, . . . Xn. Then

λ⋆(X) = λ̂(X)

Example 15.4 (Best linear predictor for AR(p)). Let {Xt} be an AR(p) process. Then we have

Xt−1(1) = µ+ α1Xt−1 + · · ·+ αpXt−p

is the best linear predictor for Xt in terms of Xt−1, . . . , Xt−p
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Example 15.5 (Best linear predictor for ARMA(p, q)). Let {Xt} be an ARIMA(p, q) process.
Then we have

Xt−1(1) = µ+ α1Xt−1 + · · ·+ αpXt−p + β1Zt−1 + · · ·+ βqZt−q

As we have
XN+1 −XN (1) = Zt ∼ N (0, σ2

Z),

we then have a (1− α)100% confidence interval for XN+1 is given by

XN (1)± Φ
(
1− α

2

)
σZ

Example 15.6 (Two step predictors for an AR(p) process). We have the best linear predictor for
Xt−2(2) is given as

Xt−2(2) = µ+ α1Xt−2(1) + α2Xt−2 + · · ·+ αpXt−p

where Xt−2(1) is the one step predicted value for the AR(p) process above.
We can calculate that the (1− α)100% confidence intervals for Xt are given by

Xt−2(2)± Φ
(
1− α

2

)√
(1 + α2

1)σ
2
Z
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